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Calculation of Thermoelectric Power and Electron Drift Mobility at
Low Electric Field in Al,Ga;.xN Using an Iterative Method

Hadi Arabshahi

Department of Physics, Payame Nour University of Fariman, Fariman, Iran.

Received on: 21/12/2010;
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Abstract: An iteration calculation has been carried out to study electron transport
properties in Al,Ga;.«N lattice-matched to GaN. The two-mode nature of the polar optic
phonons is considered jointly with deformation potential acoustic, piezoelectric, ionized
impurity and alloy scattering. Band non-parabolicity, admixture of p-functions, arbitrary
degeneracy of the electron distribution and the screening effects of the free carriers on the
scattering probabilities are incorporated. Electron drift mobility and thermoelectric power
are calculated for different temperature and doping dependencies. It is found that the
electron drift mobility decreases monotonically as the temperature increases from 100 K to
400 K. The low temperature value of electron mobility is also found to decreases
significantly with increasing doping concentration. The agreement of iterative results with
the available experimental data is found to be satisfactory.

Keywords: Iteration method; Thermoelectric power; Piezoelectric; Electron drift mobility.

1. Introduction

Gallium nitride has long been considered
promising  material for  electronic and
optoelectronic device applications [1-4]. The
wide and direct energy gap, large breakdown
field, high thermal conductivity and favorable
electron-transport characteristics, make the GaN
ideally suited for high-power and high-speed
applications. While initial efforts to study this
material were hindered by growth difficulties,
recent improvements in the material quality have
made the realization of a number of GaN-based
devices possible. In particular, lasers [5],
transistors and photodetectors [6] have been
fabricated with these  materials. These
developments have fueled considerable interest
in the GaN material.

In order to analyze and improve the design of
GaN-based devices, an understanding of the
electron transport that occurs within this material
is necessary. While electron transport in bulk
GaN has been extensively examined [7-9], the
sensitivity of these results to variations in the

material parameters has yet to be considered.
Electron mobility in the ternary alloy has been
measured; Monte Carlo calculations of mobility
have also been performed [10]. In the mean time
our knowledge of the basic parameters and of the
scattering mechanisms for the alloy has
improved. Particularly, it is now known that the
polar-phonon scattering which is the dominant
lattice scattering mechanism in the ternary alloy,
has a two-mode character [11]. It is important to
calculate the transport coefficients using such
currently available information on scattering
mechanisms and material parameters. We use
such information in the present paper to calculate
electron mobility and thermoelectric power in
the AlLGa;4N alloy. We consider band non-
parabolicity, admixture of p-type valence-band
wave functions, degeneracy of the electron
distribution to any arbitrary degree and the
screening effects of free carriers on the scattering
probabilities. Electrons in bulk material suffer
intravalley scattering by polar optical, non-polar

Corresponding Author: Hadi Arabshahi. Email: arabshahi@um.ac.ir
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optical, alloy, acoustic phonons, piezoelectric,
plasmon and ionized impurity scattering.

Acoustic and piezoelectric scattering are
assumed elastic and the absorption and emission
rates are combined under the equipartition
approximation which is valid for lattice
temperatures above 77 K. Elastic ionized
impurity scattering is described using the
screened Coulomb potential of the Brooks-
Herring model [12]. The Boltzmann equation is
solved iteratively for our purpose, jointly
incorporating the effects of all the scattering
mechanisms.  Our calculated results are
compared with the available experimental data
on both the temperature and the compensation
dependence of mobility.

This paper is organized as follows. Details of
the iterative model and the electron mobility and
thermoelectric power calculations are presented
in section 2 and the results of iterative
calculations carried out on Al,Ga;«N structures
are interpreted in section 3 and finally
conclusions are drawn in section 4.

2. Theoretical model

In principle the iterative technique gives
exact numerical prediction of electron mobility
in bulk semiconductors. To calculate mobility,
we have to solve the Boltzmann equation to get
the modified probability distribution function
under the action of a steady electric field. Here,
we have adopted the iterative technique for
solving the Boltzmann transport equation. Under
application of a uniform electric field the
Boltzmann equation can be written as

(%)E.ka =ls'f (@—F)-sf @-F NNk (1)

where f=f(k) and f'=f(k) are the probability
distribution  functions and s=s(k,k') and
s'=s(k',k) are the differential scattering rates. If
the electric field is small, we can treat the change

from the equilibrium distribution function as a 4

—E of

Hadi Arabshahi

perturbation which is first order in the electric
field. The distribution in the presence of a
sufficiently small field can be written quite
generally as

f (k) = f, (k) +g(k)cos & @)

where, f,(k) is the equilibrium distribution
function, @ is the angle between k and E and
g(k) is an isotropic function of k, which is
proportional to the magnitude of the electric
field. In general, contributions to the differential
scattering rates come from two types of

scattering processes, elastic scattering, s, , due to

acoustic, impurity, plasmon and piezoelectric
phonons, and inelastic scattering, S, ., due to

polar optic phonons
S(k, k') = 5 (K, k') + 800 (K, K') ©)

The polar phonon energy is quite high (~92
mev) in case of GaN. Hence, this scattering
process cannot be treated within the framework
of the relaxation time approximation (RTA)
because of the possibility of the significant
energy exchange between the electron and the

polar optic modes. In this case, S;,, represents

Ine
transitions from the state characterized by k to Kk,
either by emission [s,,(k,k')] or by absorption

inel 1

[s,,(k,k')] of a phonon. The total elastic scattering

rate will be the sum of all the different scattering
rates which are considered as elastic processes,
i.e. acoustic, piezoelectric, ionized impurity, and
electron-plasmon scattering. In the case of polar
optic phonon scattering, we have to consider
scattering-in rates by phonon emission and
absorption as well as scattering-out rates by
phonon absorption and emission. Using
Boltzmann equation and considering all
differential scattering rates, the factor g(k) in

the perturbed part of the distribution function
f (k) can be given by

=04 > [ 9O [S g LT ) 45,4 )k

(4)

> [@-cosg)sdk + Y [[Sie @—T )+ T Tk

v initial distribution is chosen to be the equilibrium

Note, the first term in the denominator is
simply the momentum relaxation rate for elastic
scattering. It is interesting to note that if the

60

distribution, for which g(k) is equal to zero, we
get the relaxation time approximation result after
the first iteration. We have found that
convergence can normally be achieved after only
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a few iterations for small electric fields. Once
g(k) has been evaluated to the required

accuracy, it is possible to calculate quantities
such as the drift mobility which is given by

d
h o3 E 5)

Tk 2f (k )dk

Ay =3m

where d is defined as 1/d =mV, E/#’k . Here, we

have calculated low field drift mobility in
Al,Ga; 4N structure using the iterative technique.
In the following sections electron-phonon,
electron-impurity, electron-plasmon and alloy
scattering mechanisms will be discussed.

A. Deformation potential scattering

The acoustic modes modulate the inter-
atomic spacing. Consequently, the position of
the conduction and valence band edges and the
energy band gap will vary with position because
of the sensitivity of the band structure to the
lattice spacing. The energy change of a band
edge due to this mechanism is defined by a
deformation potential and the resultant scattering
of carriers is called deformation potential
scattering. The energy range involved in the case
of scattering by acoustic phonons is from zero

to 27v.k , where vs is the velocity of sound, since

momentum conservation restricts the change of
phonon wave-vector to between zero and 2k,
where k is the electron wave-vector. Typically,
the average value of k is of the order of 10" cm™
and the velocity of sound in the medium, is of

the order of 10° cms™. Hence, 2hv.k~1 meV,

which is small compared to the thermal energy at
room temperature. Therefore, the deformation
potential scattering by acoustic modes can be
considered as an elastic process except at very
low temperature. The deformation potential
scattering rate with either phonon emission or

absorption for an electron of energy E in a non- 4

JmTe?K 2K, T

parabolic band is given by Fermi's golden rule as
[13-14]

2DZ (m{m))"* KT
v 2ht *

NEA+aR) i bEY 4 1/3(E )

1+2aE)

S, (k.k")=
(6)

where D, is the acoustic deformation potential,
p is the material density and « is the non-
parabolicity coefficient. This formula clearly
shows that the acoustic scattering increases with
temperature.

B. Piezoelectric scattering

The second type of electron scattering by
acoustic modes occurs when the displacements
of the atoms create an electric field through the
piezoelectric effect. This can occur in the
compound semiconductors such as the I11-V and
11-VI materials including GaN, which in fact has
a relatively large piezoelectric constant. The
piezoelectric scattering rate for an electron of
energy E in an isotropic, parabolic band has been
discussed by Ridley [15] who included the
modification of the Coulomb potential due to
free carrier screening. The screened Coulomb
potential is written as

2

€ . exp(_q 0 r ) (7)
Are, e, r

V(r)=

where & is the relative dielectric constant of the
material and ¢, is the inverse screening length,
which under non-degenerate conditions is given

by

ne?
Jo=——— (8)

B o KT

where n is the electron density. The expression
for the scattering rate of an electron in a non-
parabolic band structure retaining only the
important terms can be written as [13-14]

©)

R, (k)= M2(E)1+2aE)* x
P 4\/§7Th28085 d
- 2
s 8ME 1 J2aE
h°q, 1+h°q, /8m y(E) 1+2aE
where K, is the dimensionless so called average electromechanical

coupling constant.
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C. Polar optical phonon scattering

The dipolar electric field arising from the
opposite displacement of the negatively and
positively charged atoms provides a coupling
between the electrons and the lattice which
results in electron scattering. This type of
scattering is called polar optical phonon
scattering and at room temperature is generally
the most important scattering mechanism for
electrons in I11-V semiconductors. This is also
the case in GaN despite the fact that the optical
phonon energy is particularly high at ~92 meV
which suppresses the phonon population and
also electrons must reach that energy before
phonon emission is possible. The scattering rate
due to this process for an electron of energy E in
an isotropic, non-parabolic band is [13-14]
¢5{%2@m(1 1)1+20E"
8re,h e, & y"*(E) (10)

Nw+q

Ry (k)=
xFy(E,E){N

op’

where

7(E)" (€|
A =[2(+aE)L+aE ) +a(y+7)] (11)
B =—2ay"%y"? [4(1+ aBE)l+aE ) +a(y+ }/')]
C =4(1+aE )1+ aE )(1+2aE )1+ 2aE )

Fo(E,E '):C_l{A |n|}/(E)1/2 +y(E I)1/2|+B}

where N, is the phonon occupation number and
the upper and lower cases refer to absorption and
emission, respectively. For small electric fields,
the phonon population will be very close to
equilibrium so that the average number of

phonons is given by the Bose-Einstein
distribution
Nop:; (12)
(hwop) L
e i
P KgT

where ha,, is the polar optical phonon energy.

D. Non-polar optical phonon scattering

Non-polar optical phonon scattering is similar
to deformation potential scattering, in that the
deformation of the lattice produces a perturbing
potential but in this case the deformation is
carried by optical vibrations. The non-polar
optical phonon scattering rate in non-parabolic
bands is given by [13-14]
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DZ *2 .00 ¥\1/2
Rnpo (k): od (mt3m| )
\/@rh P&y,

where D4 is the optical deformation potential
and E = E'thaw,,is the final state energy

(1+20E )" (E)[N, N, +1] (13)

op’!

phonon absorption (upper case) and emission
(lower case).

E. Intravalley impurity scattering

The standard technique for dealing with
ionized impurity scattering in semiconductors is
the Brook-Herring (BH) technique [15], which is
based on two inherent approximations. First, is
the first order Born approximation and second is
the single ion screening approximation. These
two approximations essentially lead to a poor fit
to the experimental mobility data [16]. Several
attempts have been made to modify the BH
technique phenomenologically [17]. It has been
shown that phase-shift analysis of electron-
impurity scattering is the best way to overcome
the Born approximation. Departure from the BH
predictions of electron mobility is evident at
higher electron concentrations. Meyer and
Bartoli [18-19] have provided an analytic
treatment based on phase-shift analysis taking
into account the multi-ion screening effect and
finally been able to overcome both the
approximations. All the previous techniques of
impurity screening by free electrons in
semiconductors were based on the Thomas-
Fermi (TF) approximation which assures that a
given impurity should be fully screened. The
breakdown of the single-ion screening formalism
becomes prominent in the strong screening
regime, where the screening length calculated
through TF theory becomes much shorter than
the average distance between the impurities and
hence neighboring potentials do not overlap
significantly. This essentially leads to a
physically unreasonable result. In the case of
high compensation, the single-ion screening
formalism becomes less relevant, because in
order to maintain the charge neutrality condition,
it would be more difficult for a given number of
electrons to screen all the ionized donors
separately. In the case of GaN, the compensation

ratio is usually quite large, and the ratio N, /n is

also temperature dependent. Hence the multi-ion
screening correction is very essential in GaN.
The effective potential of an ionized impurity
scattering center is spherically symmetric in
nature, so one can use phase-shift analysis to
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find the differential scattering rate s(k,k') more
accurately. The effective potential v(r)due to an
ionized impurity can be expressed as:
V(r)=—(Z,e°)/(4re,x,r)e"*, where Z, is the

charge of the ionized impurity in units of e and 1
is the screening length. The standard technique
to find out the screening length is the TF
approach which is based on single ion screening
approximation. In TF one can calculate the
charge contribution ¢; to the screening of a
single ionized donor by an electron of energy E;

and is given by ¢ =-(26°4/&,x,EV). In the
case of multi-ion problem, the TF approach can
be generalized to find out the effective charge
contribution due to an electron to screen all
ionized donors and can be given by:
Q =—(2°N}*/gxE,) . Total screening charge
exactly neutralizes the ionized donors, when Q; is
summed over all electronic states

> -2t E) =N 1)
For the sufficiently low energy electrons, Q;
can be greater than the electronic charge, which is
physically unreasonable. One way to tackle this
problem is to introduce a factor S; such that
E.
Si (Ei) = ? (15)

where £=(2N;c’Z /¢,k,), Qi will be modified to

Q =QS, in equation 14. For the low energy

electrons the contribution will be —e. Since the
total contribution to the screening by the low
energy electrons has been effectively decreased,
equation 14 no longer holds. However, if the
screening length A4 is more than the average
distance between the donors, it is not necessary to
insist that each donor be fully screened, only it is
required that overall charge neutrality should be
preserved. Electrons in the overlap region can
provide screening to both the ionized donors.
Here we can define a factor p, which would be the
fraction of the total charge, which is contained
within a sphere of radius R surrounding the donor.
Hence equation 14 will be modified as

Q .
2~ fo(E)=pNg (16)
where  Q'=pQS,. The screening charge
requirement will be fulfilled by adjusting the

screening length until equation 16 is satisfied and
is given by:

At =niy (17)

where A, is multi-ion screening length and A, is
TF screening length. The differential scattering
rate for ionized impurity can be given as
.8t 2 ,
Si(k,k) =——5|F(X)| S[E()-E(K)] (18)
m -V
Where the scattering amplitude f(x) depends on

the phase shift & and Legendre polynomial P,
and is given by

f(X)zii(znl)(ez“"' _DR(X)  (19)

It has already been mentioned that in n-type
GaN the activation energy of the donors is quite
large, which keeps a large number of donors
neutral at low temperatures. Neutral impurity
scattering has been dealt with previously using the
Erginsoy expression [20] which is based on
electron scattering by a hydrogen atom and a
scaling of the material parameters. It has been
shown that an error as high as 45% results in the
neutral impurity scattering cross section with this
simple model. Meyer and Bartoli [18-19] have
given a phase shift analysis treatment based on the
variation results of Schwartz [21] to calculate the
neutral impurity cross section, which is applicable
for a larger range of electron energy.

F. Intravalley alloy scattering

Alloy scattering refers to the scattering due to
the random distribution of the component atoms
of the alloy among the available lattice sites.
Harrison et al. [22] assumed that the alloy crystal
potential can be described as a perfectly periodic
potential which is then perturbed by the local
deviations from this potential, due to the
disordering effects in the alloy. Using the
Harrison model [22], the scattering rate due to
the chemical disorder in a ternary alloy of
electrons in a non-parabolic band is given by
[13-14]

427m™2r8 x (1-x )(AU )?
on* 0% (20)
x Y'2(E)(1+2aE)

Ralloy (k ) =

where x denotes the molar fraction of one of the
binary components of the alloy, Q is the volume
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of the primitive cell and AU is the spherical
scattering potential.

G. Intravalley scattering due to optical
phonons

The constant energy surfaces for the
conduction band of GaN derive from several
valleys. Thus, under the application of high
electric field, electrons can be scattered from an
initial state in a certain valley to a final state in a
non-equivalent valley. For example, in wurtzite
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I" valley is heated and is able to transfer to the
higher U and K valleys. In the case of T to zone
edge valley scattering the process involves a
substantial change of electron wave-vector.
Acoustic and optical phonons of sufficiently
large wave-vector can effect the transition but in
view of the large wave-vectors involved it is
normal to treat all processes like deformation
scattering by optical phonons. Then the total
nonequivalent intervalley scattering rate from a
state k in a certain valley to a set of Z; different

GaN this process occurs when an electron in the 4 valleys is given by [13-14]

(DK)Z (m*m)""
\/Eﬁpa)oph3

Requiv(k) =

(¢ tho,, — Agy; )2 x [1+ 20(s tho,, —Agy )]{Nop, N, +1}

(21)

where %a@,, is the optical phonon energy and ¥ where g is the energy of electron with

Ag ; is the difference between the energies of

the bottoms of the final and initial valleys. (D:K);
is the coupling constant, which depends on the
initial and final valleys and the branch of
phonons involved in the transition. N, is the
phonon occupation number, with the upper and
lower cases corresponding to phonon absorption
and emission, respectively.

H. Electron-plasmon scattering

The electron-plasmon interaction
Hamiltonian can be written in random phase
approximation as [23]

H int — Z M q (anI:—+qu + aqu;+qu) (22)

Here a,, a, and ¢, C, are the creation and

annihilation operators for plasmons and
electrons, respectively. The matrix element

.(2gk +9?)/q

(23)

243
M, o
8Qem “w, (q)

where @, (q) is the dispersion relation for

plasmons, g and k are the plasmon and electron
momenta, respectively, e and m* are the charge
and effective mass of an electron, ¢ the
background dielectric constant, and Q the real-
space volume. The first term in parentheses in
equation 22 describes the plasmon absorption
process which obeys the energy conservation
law as

vty =heo (0) 20 (24)
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momentum K. In a similar manner, the plasmon
emission process, in accordance with the second
term in parentheses in equation 22, is governed
by the energy conservation law which can be
written as

£~ &g =hw, (Q) 20 (25)

Note that equation 24 describes the emission
of plasmon with momentum -g. To impart a
more conventional form to the energy
conservation law, replace the variable of
summation g in terms governing the plasmon
emission in equation 1 by -g. Then we can
rewrite equation 22 as

Hie = D.(M 2,6 0C +M 42, ,C,) (26)

The notation of equation 22 leads to the
following form of the energy conservation law
for the emission processes

& —&q=hw,(q)=0 (27
From the Fermi Golden rule, we can calculate
the electron-plasmon scattering rates for
emission W, and absorption W,
27 ¢ Qdq 2
We,a(k):_ 3 ‘<f |Hint|l>‘
h 8x (28)

X 5[51« - & ihwp(q)]

where k and k' are electron momenta in an initial
state |i) and a final state | f ), respectively. Here

and further the upper signs in formulae
correspond to the plasmon emission, whereas the
lower ones do to the plasmon absorption. By
using equation 22 and the energy conservation
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requirements in the forms of equations 24 and 26

which are consistent with this notation of Hiy, 4
B ZJTJ'qu

W, 0)="F 25

M 2,0] &g =&, 210, @) [x{ (N, +D5(N ),

equation 28 becomes

(29)

where Ng is the Bose-Einstein distribution
function for plasmons. The integration bounds
with respect to g are defined from the following
conditions

®,(@)<hkq/m” Thq®/2m” }

. N (30)
w,(@) =7k, q/m +hq"/2m
where k; is the electron momentum at the Fermi
surface.

I. Thermoelectric power

The thermoelectric power Q, is the ratio of
electric field E to temperature gradient VT across
an open-circuited crystal, i.e., the electron
current density J is set equal to zero.
Theoretically, the current density in the presence
of electric field E and temperature gradient VT in

an isotropic crystal is
J=0lE—(VE, /e)-Q] (31)

where o is the conductivity and Ef is the Fermi
energy. Equation 31 is valid for the small driving 4

K jsz(l—f)(E/T)dk E,
el [Kkfa-fyk

J/o

kT | oT/ez

v forces considered here, for which ¢ and Q are

independent of the field strengths. When J = 0,
as in the open-circuit measurement of Q, the
crystal maintains equilibrium so that VEr = 0
and

Q=E/aT /éz)

which is the defining equation for Q. The
temperature gradient is taken parallel to the z-
axis. Since all driving forces are small, the
transport coefficients o and Q are constant and
equation 32 yields Q also in the short-circuit
case when E =0

Q= e e 2]
0z o| oz

(32)

(33)

Substitution Poisson's equation and Fermi-
Dirac distribution function in equation 33, the
thermoelectric power is

(34)

Important parameters used throughout the simulations are listed in Table 1.

Table 1: Valley and material parameters of energy band structure for wurtzite structure of GaN and

Alp,GaggN used in the present model [5-11].

GaN Alo_zGao_gN
Density p (kgm™®) 6150 6810
Longitudinal sound velocity vs (ms™) 6560 6240
Low-frequency dielectric constant &, 9.5 15.3
High-frequency dielectric constant ., 5.35 8.4
Acoustic deformation potential (eV) 8.3 7.1
Polar optical phonon energy (eV) 0.0995 0.089
I-valley effective mass (m¥*) 0.2 0.11
U-valley effective mass (m*) 0.4 0.4
K-valley effective mass (m*) 0.3 0.3
I-valley nonparabolicity (eV™) 0.189 0.419
U-valley nonparabolicity (eV™) 0.065 0.065
K-valley nonparabolicity (V™) 0.7 0.7
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3. Calculation results

Low field electron mobility in Al,Ga;«N as a
function  of temperature and  doping
concentration has been performed by Morkoc
[24] and Udayan et al. [25]. Their calculations
show that an electron mobility as high as 900
cm’Vist could be achieved in case of
uncompensated Al,Ga; 4N at room temperature.
In the case of high quality samples with very low
compensation, a mobility of more than 800
cm?Vst | at room temperature, with a similar
doping concentration has been reported. On the
other hand, there has been very little work on the
calculation of low field electron mobility in
AlLGa;,N. Wang et al. [26] have used the
variational principle to calculate low field
electron mobilities and compared their results
with fairly old experimental data. They have
tried to fit the experimental data with an
overestimated compensation ratio. In old
samples, low electron mobility was due to poor
substrate and buffer quality and other growth
related problems. The iterative technique has
been used by Rode and Gaskill [2] for low field
electron mobility in GaN for the dependence of
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mobility on electron concentration, but not on
temperature, and ionized impurity scattering has
been estimated within the Born approximation,
which might be the reason for poor fitting at high
electron concentrations.

Here we have performed a series of low-field
electron mobility calculations in AlGa;«N
structure. Low field mobilities have been derived
using iteration method. Fig. 1 shows the
temperature  dependence of electron drift
mobility in Al,Ga;.«xN for x =0.2, 0.4 and 0.5. In
curve 1, the carrier concentration is taken to be n
= 10" cm™. The ionized impurity concentration
is put equal to the electron concentration. In
curve 2, n is taken to be n = 5x10'" ¢cm™ and in
curve 3, n is given the value of 10" cm?™. The
results plotted in figure 1 indicate that the
electron drift mobility decrease with increasing
temperature due to increasing optical phonon
scattering rate. Also it can be seen that with
increasing compensation from 0.2 to 0.5 the
calculated electron drift mobility is decreased
due to a higher impurity scattering rate. This is
also largely due to the higher T" valley effective
mass in the higher compensation ratio.

1°
° 17 3
3000 - e —*—x=02
/({T .\. —0—x=04
> N —%—x=0.5
~ \
e *
o *
2 2000+ 5+10” cm® ’
5 .
@] :)\> %ogo o N
1= 2° %% '\.
o 3 l % ” 0 _®e
= *%,°%0%
2 10" e’ =i,
@D *%38
m 288
0 T T T T T T T T
0 100 200 300 400 500

Temperature (K)

FIG.1. Variation of electron drift mobility with temperature for Al,Ga;«N lattice-matched to GaN, for
x = 0.2 (curve 1), x = 0.4 (curve 2) and x = 0.5 (curve 3). In curve 1, n = 10" cm™, in curve 2, n =

5x10*cm™ and in curve 3, n = 10" cm>.

Fig. 2 shows the calculated variation of the
electron mobility as a function of the donor
concentration for different compensation ratio.
The mobility does not vary monotonically
between donor concentrations of 10" and 10
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cm’® due to the dependence of electron scattering
on donor concentration, but reaches to a value of
850 and 550 cm?Vs™ for donor concentrations
of 10" and 10" cm®, respectively.
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FIG.2. Variation of electron drift mobility with different compensation ratio for Al,Ga,;«N lattice-
matched to GaN at room temperature. Calculated curves are for n = 10" cm™®, n = 5x10*’cm™ and n

=108 cm?,

In order to wunderstand the scattering
mechanisms which limit the mobility of
AlLGa; N under various conditions, we have
performed calculations of the electron drift
mobility when particular scattering processes are
ignored. The solid curve in Fig. 3 shows the
calculated mobility for including all scattering
mechanisms whereas the dashed, dotted, and

open circle curves show the calculated mobility
without ionized impurity, piezoelectric and polar
optical scattering, respectively. It can be seen
that below 300 K the ionized impurity scattering
is dominant while at the higher temperatures
electron scattering is predominantly by optical
modes.

10°
— All scattering mechanizims
e -——- Without impurity scatbering
L LN Sy === Withoul non-pambolicity factor
- . &t Without polar optical scatiering
bl - . . .
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=

L

=

=

=]

B

=]

=

=)

o

A

=]

10 L= L L L —
100.0 200.0 a00.0 400.0 RI0.0
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FIG.3. Comparison of electron drift mobility in wurtzite Al,Ga;.xN with donor concentration of n =
10" ¢cm™ and when individual scattering processes are ignored. The effect of I'-valley non-

parabolicity is also shown.

Thus the marked reduction in mobility at low
temperatures seen in Fig. 3 can be ascribed to
impurity scattering and that at high temperatures

to polar optical phonon scattering. In figure 3 the
mobility in the absence of band non-parabolicity
is plotted as a dash-dot curve. Non-parabolicity
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leads to approximately a 8% reduction relative to
the mobility for parabolic band at room
temperature. This is because non-parabolicity
increases the electron effective mass and also the
scattering rates through the density of states.

The temperature variation of thermoelectric
power Q for x = 0.2 is shown in Fig. 4. The
magnitude of Q increases with temperature
mainly because the material becomes more non-
degenerate with a rise in temperature. Also,
assuming that the material is uncompensated, the
thermoelectric power for n = 10 (curve 3) is
larger in magnitude than for n = 10" (curve 1)
since the Fermi level is higher in the latter case.
Considering curves 1 and 3, we find that the

0
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magnitude of Q for a compensated sample is
larger. This is due to the enhancement of ionized
impurity scattering.

The room temperature values of Q for an
uncompensated material are plotted as a function
of x in figure 5. The effective mass decreases
with x, causing an upward movement of the
Fermi level with a rise in x. This results in the
decrease of Q with increasing x. It is clear from
Fig. 5 that inclusion of ionized impurity
scattering enhances Q while that of alloy
scattering reduces Q. Our calculated results on
thermoelectric power could not be compared
with experiments since no such data could be
traced in the literature.
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FIG.4. Temperature dependence of thermoelectric power of Al,Ga; 4N lattice-matched to GaN for x =
0.2. Incurve 1, n = 10Y, in curve 2, 5x10'" and in curve 3, n = 10*® cm™.
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4. Conclusions

In conclusion, we have studied the electron
transport characteristic associated with wurtzite
Al,Ga; 4N lattice-matched to GaN. Temperature
dependent and free electron concentration
dependent of the electron drift mobility have
been calculated. It has been found that the low-
field electron mobility is significantly higher for
the Al,Ga;«N structure with lower compensation

ratio due to the lower I" electron effective mass.
Several scattering mechanisms have been
included in the calculation. lonized impurities
have been treated beyond the Born
approximation using a phase shift analysis.
Screening of ionized impurities has been treated
more realistically using a multi-ion screening
formalism, which is more relevant in the case of
highly compensated I11-V semiconductors like
GaN.
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Abstract: A common characteristic of low energy pion-nucleus double charge exchange
reactions is a resonance like peak around 50 MeV. It has been claimed [1] that this peak
provides evidence for the existence of hypothetical Dibaryon resonance d’ (2.06 GeV) at
this energy. This article will show how this peak could be predicted using conventional
sequential mechanism without invoking dibaryon degrees of freedom.
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Introduction

Due to its isospin-one (I = 1) nature, the pion
exists in three charge states 7", 7°, and 7. Pions
induce a number of reactions in nuclei like
elastic and inelastic scattering, single charge
exchange, absorption, and double charge
exchange. Although, all of these reactions are
linked, this article will concentrate on pion
double charge exchange (DCX) reactions due to
its second order nature for which a pion
projectile of one charge entering the nucleus is to
emerge as a pion of the opposite charge by
exchanging charge with a nucleon (N). Therefore
the pion double charge exchange reaction has to
proceed via successive charge exchange on two
like nucleons in the target nucleus mediated by
the exchange of a pion or another meson
between the two participating nucleons. This
means that DCX is one of the prime reactions for
studying nucleon-nucleon (NN) correlations in
the nuclear target, because it depends on the
separations between the two nucleons involved
[2, 3].

This article is organized as follows: In the
next section, we will introduce the theory of
Dibaryons followed by a short review of the
experimental and theoretical history of low
energy DCX reactions. Then a discussion will be

introduced, and finally the article will be
concluded with a summary.

Dibaryon

Dibaryons are a large family of hypothetical
particles that would consist of six quarks of any
flavors. Based on the theory that quarks (q) are
the basic building blocks of hadrons, the idea
that this substructure of hadrons should cause
nontrivial resonances in the dibaryon system
emerged. With the establishment of quantum
chromodynamics (QCD) as the appropriate
theory of strong interaction first QCD-based
model calculations for 6qg-systems appeared in
the late seventies and early eighties [4, 5],
triggered by the paper of Jaffe [6] on possible H-
dibaryon or dihyperon with strangeness
S =—2. The theory of H-dibaryon has been
reviewed by Tsutomu et al. [7]. Quark models of
dibaryon resonances have been studied by Ping

[8].

Dibaryons are predicted to be fairly stable
once formed. These predictions of a large
number of 6q-states, part of which is shown in
Fig.1, caused a rush for experimental dibaryon
searches in the years to follow. Unfortunately,
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despite a vast number of dedicated experiments
no unambiguous evidence for their existence
could be found. The bulk of these experiments
were dedicated to searches for dibaryons coupled
to NN or NA, where their decay will cause
widths that would be large compared to those of
baryon resonances. Hence, such states should be
very difficult to detect in experiments.

The situation is very different for NN- and
NA-decoupled dibaryon states, i.e. for
resonances with quantum numbers | = 0 and J° =
0%, 0, 2, 4,.... In this case the only decay
channels are YNN and nNN. If the resonance
energy is not far above the NN threshold, then
we expect a very narrow width of the order of
MeV only. As seen in Fig. 1 such low-lying
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predicted [9-11] to be the lowest-lying dibaryon
states. The suitable reactions for detecting these
low-lying states are those reactions with very
small cross sections due to conventional
processes. Therefore, the formation of a
dibaryon resonance has a chance to be detected.
It is also desirable that the reaction only involves
the minimal number of particles necessary to
form or produce such resonance. If the resonance
energy is below the mNN-threshold, then yNN is
the only decay channel. On the other hand, when
it is above mNN-threshold then by far the most
dominant decay channel will be tNN. Under the
conditions discussed above, one suitable
candidate reaction to study dibaryons will be the
pionic double charge-exchange reaction.

states with | = 0 and J° = 02" have been
M
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FIG. 1. Example of a predicted mass spectrum for nonstrange and isoscalar (I = 0)

dibaryon resonances (Ref. 9).

Low Energy Pion Double Charge
Exchange Reactions

Pion double charge exchange reactions on
nuclear targets have been studied extensively,
both experimentally and theoretically, for a
survey see DCX reviews [12, 13]. Measurements
of pionic double charge exchange to individual
final nuclear states have become feasible soon

72

after meson factories had been commissioned.
DCX cross sections are in the range of nb/sr to
ub/sr, while elastic scattering cross sections are
larger by many orders of magnitudes in the range
of mb/sr to b/sr. Thus the DCX experiment has
the task of finding a single negative pion from
the (n*, ') reaction among billions of elastically
scattered positive pions. This can only be
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achieved by using magnetic spectrometers,
where particles can easily be separated according
to their charge and momentum.

The largest part of presently available DCX
data have been collected at pion energies
between 100 MeV and 300 MeV. In 1984 the
first low energy pion DCX measurements were
conducted on *C at incident pion energy of
T_=50MeV [14, 15]. Surprisingly, the forward
angle cross section for this reaction was found to
be as large as at T, =300 MeV. At this energy
the pion-nucleon forward single charge-
exchange reaction exhibits a deep minimum due

to the well-known destructive isovector sp-wave
interference in the aN system [16] as shown in
Fig. 2. However, initial DCX calculations [17,
18] predicted a dip rather than a bump at these
energies, until one realized that inclusion of
distortions, double spin-flip, and coupled
channel effects could wash out this dip and even
produce some kind of bump in such calculations
[19]. Many measured DCX transitions with
different nuclei showed a resonance-like
structure in their forward angle cross section
peaking in the energy range 40-60 MeV as
shown in Fig. 3.
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— IO& E— /‘"’+’_— _:
& - =
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Tr (MeV)

FIG. 2. The 0" c.m. cross section plotted vs laboratory energy for the *C (z*,z°)*N reaction (Ref.
16). FP84 is the free 7'n — z°p cross section, multiplied by 2.The dash-dot curve is the result

of a fourth-order polynomial fit to the data.
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FIG. 3. Calculations of energy dependence of Pion DCX reactions for several nuclei by including
degrees of freedom. The solid curves give the result, when the d ' amplitude is added and the dotted

curve without (Ref. 1).

Discussion

Several reaction mechanisms have been used
to study pion DCX nuclear reactions [20, 21]. In
this section, we will address the peak issue using
a two-step sequential mechanism, first by
involving solely the conventional degrees of
freedom of pions and nucleons and secondly by
invoking dibaryon degrees of freedom.

Conventional Sequential Mechanism

In order to explain the DCX low energy peak,
some authors [22-23] suggested that such a peak
arises naturally because of the pion propagation
in the conventional sequential process.

At low energy the mean free path of a pion in
the nucleus is typically larger than the nuclear
size. It is then natural to base the description of
the DCX process on a multiple-scattering
approach. To leading order, the basic mechanism
for the (n*,n") reaction is the sequential process
illustrated in Fig. 4, in which DCX occurs
through two successive 7N single charge
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exchange reactions on two neutrons. Each single
charge-exchange in this process is dominated by
the spin-averaged s- and p-wave amplitudes.

p p m
0o | /
2 L s
@ o
A
T 1 n

FIG. 4. Sequential DCX mechanism.

The method used in calculating the DCX
reaction involves the evaluation of the matrix
element [22]
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M (E,I{’;ﬁ,@)z[dﬁd@(p:( rz) [‘// (k rz) 2(@2!@5)6 (rl’rl)

SACHATA (S rz)] ? (5,1

The quantity in square brackets is the
sequential (double-scattering) operator for the
pion double-charge-exchange amplitude. The
method for evaluating the effect of the operator
on DCX amplitude is fully described by authors
of reference [24]. The DCX operator is a
function of the coordinates r, r, and spin
variables &, &, (implicit in the two single

charge operators f ) of the two nucleons. The
. (h)\: . h)e
momenta qlz(_—jvland d, :(_—Jvz are
i i
operators on the conjugate coordinates in the

pion  wave functions  y " (IZ, Fl) and

w7 (K'".r,) and the primed values operate on

the corresponding coordinates in the green
function, G (r,,r;)which is the pion propagator
in the nuclear target between the relevant two
nucleons. The functions ¢(r;,r,) are the wave
functions of the two active nucleons.

The quantities f, and f,, the pion-nucleon

charge-exchange (off-shell) amplitudes, are
operators in the nucleon spin space. They are
expressed in momentum space as

M)

q.4) =2 (E Vo (d)Vo(d)
( RERACHACY
+6qxq"4 (E NV, (a)v, (q7)] @

The parameters A;, 4, 4,
from the charge exchange amplitude obtained
from the phase shifts [25]. The quantities g and
g’ are treated as gradient operators on the initial
and final pion wave functions and v(q) is the

off-shell form factor for the pion-nucleon
interaction.

are calculated

We applied the above technique on “**Ca
DCX reactions [24] and showed that this peak
can be understood based on a two-step sequential
process in the conventional pion-nucleon system
with proper handling of nuclear structure and
distortion of pion scattered wave as shown in
Fig. 5. Both pion wave distortion and the effect
of configuration mixing ratios in the nuclear
structure have been applied to DCX reactions on
“*Ca and 'O nuclei and were able to reproduce
the peak without the need to include extra
dibaryon degrees of freedom [26].

6 |

- 42Ca('n LT )*2Ti(107) 1

0O 20

100

150 200 250

T (MeV)
FIG. 5. Cross section for pion double charge exchange on “*Ca leading to the analog state. The dotted
curve displays the results of the calculation without the double spin flip included and the solid

curve with.
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Dibaryon Degrees of Freedom

Miller [27] claimed that high sensitivity to
short range phenomena leads to the hypothesis of
the formation of a narrow dibaryon resonance in
the wNN channel, the so called d' with
I(J")=even(0")and m,. ~2.06 GeV [1,28].
Such a resonance must be decoupled, as
otherwise a huge width due to the fall-apart

it
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decay into the NN channel would be observed as
we mentioned earlier.

According to Bilger [1], the DCX transition
process is given by the primary resonance
amplitude evaluated from the graph shown in
Fig. 6, and folded
with the NN c.m. wave functions for valence
nucleons in initial and final nuclear states, this
amplitude is given by:

us

s

n: ‘f - :p
n P

FIG. 6. Graph of the d’ resonance process in DCX.

T T
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2
E-E, <2 QK
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Here r,r, T, E;=M;—-2m, denote
total and partial widths as well as the resonance
energy of d’in the nuclear medium, and K, is
the pion momentum at resonance. Ry, and Ry
(Qand Q') are the radial wave functions
(momenta) of the c.m. motion of NN pair in
initial and final nuclear states, whereas ()

and ,, (") describe the relative motion of the

two nucleons with | =0and S =0at distances
rand r’, respectively. N,N'.n,n’,L,and
L" are the quantum numbers for nodes and c.m.
angular momentum resulting from the Talmi-

Moshinsky transformations [coefficients
by (J1J)including jj — LS coupling] of the

single particle wave functions with jand j,,
and ¢, (d_ ) denote the two-nucleon coefficients

of fractional percentage for initial (final) nuclear
states. The angles S and y appearing in the

Legendre  polynomials P, (cosf)  and
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P, (cosy) are functions of momenta Q, Q’, k,
and k', where k and k’denote initial and final
pion momenta, respectively, and J stand for the
spinof d’.

To calculate the DCX cross sections, we
break the DCX amplitude into two components,

one due to conventional DCX process “F_” and
the second is due to d’ degrees of freedom.

i
Fot =F +€ %Fres )

with ¢, being a relative phase between
conventional and resonance amplitude [1].With
the adjustment of ¢,, total vacuum width
I' ww =0.5MeV and spreading width
I', =10—-20 MeV due to collision damping all

known data for transitions in the final nucleus
could be described reasonably well [28-30], in
their energy dependence as shown in Figs. 3 and
7.
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FIG. 7. Energy dependence of the forward angle cross section of the ground state transitions in *°O and
“Ca from Refs. [29]. Dotted lines represents AA process and solid curves give the results with the

d’ amplitude added.

Summary

The hypothetical d’ dibaryon assumption
used the technique of adjustment of parameters
in equations 2 and 3 to fit the claimed resonance
for all DCX data, while the conventional
calculations predicted the peaks in “**Ca and
0 nuclei. Also, the d’dibaryon theoretical
model has been rejected by Garcilazo [31].
According to Garcilazo calculations on 7NN

system [32] a O™ resonance with isospin O is not
possible. Based on this we believe that there is
no need to invoke dibaryon degrees of freedom
in DCX calculations to predict those peaks at
low energy. More DCX calculations on other
nuclei both of angular and energy dependence,
are under investigation by the author to support
the  conventional  sequential  mechanism
calculations.
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Abstract: Series of experiments have been carried out tostipate the quality of the
recently developed rapid acquisition atomic pastrithution function (RA-PDF) method,
which combines the uses of high energy X-rays amdrage plate area detector. Image
plate data for simple elements (C, Mg, Al, Si, 8y, Zn, Ag, and Pb) have been analyzed,
using (RA-PDF) technique. The affect of undiscriated Compton and fluorescence is
investigated for a wide range of materials withnaitoZ numbers ranging from 6 (Carbon)
and 82 (Pb). We find the RA-PDF method is capablebtaining high quality PDFs where
guantitatively reliable structure information camdxtracted.
Keywords: Rapid acquisition atomic pair distribution funetjorotal scattering, RA-PDF,
X-ray scattering.
PACS: 61.46.Df, 61.10.-i, 78.66.Hf, 61.46.-w.

Introduction

Modem - scenifcaly  and BeComes lese effeeve, for increasrgy

technologically important materials are . '
experiments, short wavelength X-rays or

becoming increasingly disordered. The . .
knowledge of the atomic structure, in threeneutrons are used. Modern third generation

dimensions, of such materials is prerequisit%r@c:;ogglg "é?d d:|ri)\?e”§:Onsr?grl:t:/(\zgv:?eunrcfhs
for understanding their properties. In the P 9 9

literature, there are powerful tools fortprg(r)]ggf anrzl;trznsi)v igorth\’:g%g?gg?]i?tﬂrg
studying long-range atomic structure ge giving q

(crystallography) and local structure \rlélgcl)lutriTc])llflcr[]l 'g]] prl(—‘)(\)lredPDEIgrzea;eua;léﬁ):r?ti
(EXAFS, NMR), but very little for probing - Co o ’
the intermediate structure scale of 110 nm.SUff'(.:Ient counting statistics are needed. The
The atomic pair distribution function (PDF) requw_ed measurement - time for each
method has emerged as a powerful tool tgxperlment IS determln_ed by the amount _Of
study the atomic structure at different IengthSarnIOIe in the beam (in neutron case), its

scales. The PDF is used to characterize thzesgtifggpa 9 Opr?(\e,vﬁgrr?enrdfo)r(;;/?é/c/a ngu:;%ré IgL[JDXF
local structure of crystalline and nano- : P

crystalline materials [1, 2], in additional to applications has been the long data

its traditional use on glass, liquids, a”dgglrlf,(e:té?ign;mep[)(;g trcr)leti]?)d ho\llJvrhsi)Ie Wlthhe
amorphous materials [3, 4]. ’

recently developed rapid acquisition PDF
Being a real space approach assumin¢RA-PDF) method [9] opens up the horizon
long-range order is not preserved, the PDFor new possibilities by significantly
method is growing in popularity as thelowering this barrier. In early proof-of-
conventional  crystallographic  analysisprinciple study [9], the RA-PDF method is
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shown to reduce the data collection time by In this paper, we perform a series of
three to four orders of magnitude, and giveexperiments to investigate the experimental
high quality PDFs with good effects on the quality of the RA-PDF data
reproducibility. The RA-PDF method and the accuracy of the structural
benefits from 2D data collection by information obtained.

coupling high energy X-rays with an image . . .
platg (I?:’) grea de%gctor. Xl'he usage ofgIP Materials with the atomicz numbers

area detector expedites data collectio ranging from 6 to 82 are measured to
P r%ystematically study the effect of Compton

\r,g::ri];r%tcal (;%r:féori:r'ggg the measureda.nd fluorescence contributions to the t_otal
) signal. The data for elements with medium
More recent, the RA-PDF method hasatomic numberz, (12 < Z < 30), and
been successfully applied to quantitativelyhigh-Z, (47 < Z < 82), could be analyzed
measure the strain in nanoparticles [10]and modeled, up tQ@mna.x = 30.0 A and
local distortions in TiSb [11], resulted in high quality PDFs. This study
characterizing mesomorphous andreveals that RA-PDF method is capable of
amorphous active pharmaceuticalobtaining high quality PDFs where
ingredients [12], phase transitionscrAlF;  quantitatively reliable structure information
[13], and in-situ time resolved study of can be extracted.
nano-ceria [13]. The RA-PDF method is
expecting to extend into broad scientificExperiments
areas, which will benefit the local structure
PDF analysis, and will help significantly in
our understanding of structures at the In the recent developed RA-PDF
atomic level. experiments, great efforts have been taken
to reduce the scattering back ground.

quantitative PDF analysis subject to carefu,EXtenSiVe Pb Shielc_iing_ before the sample is
scrutinies imposed by the introducegUSudlly loaded, which is proved to be very
experimental effects. One major concern i'€/Pful. The collimation between the Pb

the lack of energy resolution intrinsic to thes’h'eId and the sample (if there is some

IP. The measured counts are the sum dfonsiderable gap) proved to be rather
elastic Compton and ﬂuorescenceeffectlve too. The IP camera is repeatedly

intensities, while only elastic signal adjusted to be aligned to be orthogonal to

(exponentially decreasing wit®) is useful the incident beam.

to PDF analysis. Extraction of the elastic The IP center is also moved to be on the
component can be very challenging at highincident beam. Those aligning steps are
momentum transferQ where Compton necessary in order to minimize the errors
scattering dominates especially for |@w- during later data corrections, e.g. the
elements. incident angle (used in oblique incident
,angle dependence correction, read on for

Fluorescence can be very significant fod Al lative to the IP | dtob
medium to highz elements when the X-ray d€tails) relative to the IP is assumed to be
the same aso2

energy is not far enough above the
absorption edges. In addition to that, the IP The  diffraction experiment  was

response is energy dependent making thperformed at 6IDD beamline at the advance
situation more complicated. I[P dataphoton source (APS) at Argonne National
collection also exposed to high background aboratory, Argonne, IL (USA). Image

scattering levels mostly coming from theplate camera (Mar345), of a usable diameter
rather long direct beam flight path in airof 345 mm, mounted orthogonal to the

after the sample. The lack of collimation inbeam path with sample to detector distance
front of the IP also raises the issue ofof 178.4 mm, was used to collect the data at
background scattering from sampleroom temperature. The energy of the X-ray
environments, such as low temperaturaised is 98.0 keV. The samples (C, Mg, Al,
measurements with cryostat, studies witlsi, Ni, Cu, Zn, Ag, and Pb) were purchased
pressure anvil cells. from Alfa Aesar and were used as received.

Data acquisition

The use of IP area detector for

8C
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Fine powders of all samples were measuredependence to obtain the normalized total
in flat plate transmission geometry with scattering structure functior§{Q). The PDF,
thickness 1.0 mm packed between kaptois(r), is obtained by a Fourier transformation
tapes. The air-sensitive samples wereaccording to Eq. 2.

handled in a nitrogen-filled glove bag. In the Fourier transform step to get from

Data processing Q) to the PDFG(r), the data are truncated at a
finite maximum value of the momentum
transfer,Q = Qnax Different values oQ.x may

All raw 2D data, like the one shown in Fig. be considered. Here @uax = 30 A* was found
1, were integrated and converted to intensityto be optimalQnaxis optimized such as to avoid
versus B using the sftware Fit2D [14], where large termination effects and to reasonably
20 is the angle between the incident and minimize the introduced noise level as signal to
scattered X-rays. The integrated data were noise ratio decreases wifvalue. More details
normalized bythe average monitocounts. The  about the IP corrections are described in this
data were corrected using standardmethods  section
[1, 2] to obtain the total sattering structure
function, S(Q), andthe PDF, G(r).

Determination of S(q) from the raw data

The atomic PDF analysis of X-ray and
neutron powder diffraction data is a powerful

B0 1000 1200 1400 160 1800 0 2300 2400 2600 method for studying the structure of locally
- distorted materials. [1, 2, 8, 16-18] Recently, it
2410 has been explicitly applied to study the structure

of discrete nanoparticles. [18-22] The PDF
method can yield precise structural information
= at different length scales, provided that special
i care is applied to the measurement and to the

method used for analyzing the data. The atomic
b PDF,G(r), is defined as

e G(r)=4mr [pt)-p, 1, 1)

wherep(r) is the atomic pair-densityy is the
average atomic number density andis the
a0 radial distance. [23] The PDF yields the
0120 1400 o mtf:n probability of finding pairs of atoms separated
by a distance. It is obtained by a sine Fourier
— , = transformation of the reciprocal space total
W o ”;wl scattering structure functid®Q), according to

a0 1000

20

Rovars

- 1200

- 1000

Intensity
FIG. 1. Two dimensional contour plot from the 27 .
Mar345 Image Plate Detector. The XRD data are © (") ‘TTJQ[Sa( Q -1sin( Qr) dQ, (2)
from nickel powder measured at ambient 0
conditions. The concentric circles representwhere Q) is obtained from a diffraction
intersections of different colors with the area experiment. This approach is widely used for
detector (Debye-Scherrer rings). The sample Wa%tudying liquids, amorphous and crystalline

contained in a flat plate, 1.0 mm thickness, . .
irradiated volume 0.25 minbeam size 0.5x 0.5 materials, a_md has _recently been applied to
nanocrystalline materials. [2]

mn?. The small dark area in the center of the

image is a shadow cast by the beam stopExtraction of the structural information from
assembly. G(r).

Calculation of G(r) from (q) Structural information was extracted from the

Program PDFgetX2 [15] was used to proces§DFs using a full-profile real-space local-
X-ray powder diffraction data to obtain the structure refinement method [24] analogous to
experimental PDFG(r). Standard corrections Rietveld refinement. [25] We used the program
were made to the raw data to account folPDFfit [26] to fit the experimental PDFs.

experimental effects such as Compton,Starting from a given structure model and given
fluorescence, and oblique incident angle@ set of parameters to be refined, PDFfit searches
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for the best structure that is consistent with the Energy dependence of the IP response The
experimental PDF data. The residual functioncounts of the IP is proportional to the X-ray
(Ry) is used to quantify the agreement of theenergy stored in its phosphor layer, and thus
calculated PDF from model to experimental datadepends on both the absorption coefficient per
- incident photon and the photon energy. This
ZW (F)[Gupo(1,) =G (1] energy dependence of th_e IP response was found
= . 3) to decrease slowly with increasing photon

RN:

N ) energy with few discontinuities at low energies
ZW (1 )Gons (1) [33]. No correction of this nature is necessary for
N the elastically scattered photons as they have the
Here the weighto(r;) is set to unity which is same energy at all angles. However, the
justified because in G(r) the statistical Compton scattering does not conserve the
uncertainty on each point is approximately equalphoton energies which monotonously decrease
[27, 28] with increasing scattering angle. Here we use an

The structural parameters of the model wereemIOIrICaI analytical form to approximate the

unit  cell parameters, isotropic  atomic energy depende_nce of the detection_efficit_ency.
displacement parameters (ADPs). Non structura-lrhe usec(jj analyt'%‘?‘ll formula_can bhe eltger Im_ear
parameters that were refined were a correctio ][f' qua r3t|c whiie .ﬁr:lsurlng the  detection
for the finite instrumental resolutiongd), low-r etiiciency decreases with energy.
correlated motion peak sharpening facté}, ( Fluorescence background the contribution
[29, 30] and scale factor. from fluorescence can be very significant when
the X-ray energy is not too far above the
constituent elements’ absorption edge(s). The
angular dependence of the fluorescence is
Data analysis of IP data involves more stepsconstant before self absorption correction. The
As the raw data coming off the IP are twomagnitude of the fluorescence is used as an
dimensional (concentric Debye-Sherrer rings inadjustable parameter during data processing. In
our case of powder diffraction) images, programprinciple, its intensity can be estimated from
FIT2D [31] was first used to integrate around thetheoretical cross section tables. However, as the
rings to obtain the one dimensional scatteringenergy of fluorescence is usually well separated
intensity versus @ equivalent to an angle from both Compton and elastic scatterings, the
dispersive scan. The integrated data were theimterpolated energy dependence of the IP
normalized by the total incident beam flux response causes the estimation less accurate.
during that exposure(s). Once we have the
sample and background data, they can be used Results and Discussion
PDFgetX2 [15] to obtain thés(r). However, ) )
additional corrections are necessitated due to the 1N€ €xperimental reduced structure functions,

nature of the IP data collection, as explained irf (Q), and the corresponding PDRr), for Cu,
the following. Zn, C and Pb samples are shown in figures 2- 5,

respectively. Ideally, th&(Q) would asymptote
Incident angle dependence this correctiong zero with increasin value. A quick visual
accounts for the angular dependence of theheck reveals that the data quality varies rather
scattered photon effective path length in the IR:onsiderably with the atomic Z number. Our data
phosphor layer [32], as a direct result of itsshow that for low Z element, like carbon, shown
incomplete absorption of the scattered photonsin Fig. 4, extraction of the elastic component can
This correction becomes very significant at highpresent a challenge at high momentum trar@fer
X-ray energies and large incident angles (bothyhere Compton scattering dominates. For the
present in RA-PDF analysis). Two parametersigh z element, like lead, shown in Fig. 5, the
are used here, scattered photon absorptiogontribution from fluorescence is found
coefficient of the IP phosphor layer and thesjgnificant since the used X-ray energy is not too
incident angle (= @. The X-ray energy used in far above the measured-element absorption
our experiments is highly penetrating with theedge(s). The used X-ray energy is 98.0 keV
absorption coefficient less than 1%. where the Pb K-absorptioadge is 88.0 keV.
The obtained lattice parameters are slightly
higher than the widely accepted values, for

Description of X-ray PDF data analysis using
| P area detector
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all the systems reported in Tables 1 and Zeproduce their literature values fairly well;
due to systematic errors in the calibratedsee (Table 1 and 2). This can be taken as an
sample-detector distance. However, thesvidence of the accuracy of (RA-PDF)
refined lattice parameters from all elementanethods.
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FIG. 2. (a) The experimental reduced structuFdG. 3. (a) The experimental reduced structure
function F(Q) = Q (SQ) - 1) for Cu. (b) The  functionF (Q) = Q (S(Q) - L)for Zn. (b) The
experimental G(r) obtained by Fourier experimental G(r) obtained by Fourier
transforming the data in (a) (solid dots) and the transforming the data in (a) (solid dots) and the
calculated PDF from refined structural model calculated PDF from refined structural model
(solid line). The difference curve is shown (solid line). The difference curve is shown

offset below offset below.
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FIG. 4. (a) The experimental reduced structu
function F(Q) = Q (S(Q) — 1) for C. (b) The
experimental G(r) obtained by Fourier
transforming the data in (a) (solid dots) and the
calculated PDF from refined structural model
(solid line). The difference curve is shown
offset below.

Fc. s. (@) The experimental reduced structure
function F(Q) = Q (§Q) - 1) for Pb. (b) The
experimental G(r) obtained by Fourier
transforming the data in (a) (solid dots) and the
calculated PDF from refined structural model
(solid line). The difference curve is shown
offset below.
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TABLE 1. The result of the refined parameter values ftbenmeasured simple elements with cubic

unit cell.

Z a('&)literature a(A) Uiso(Az) RWp
Pb 83 4.95 4.968(2) 0.0104(1) 0.14
Ag 47 4.09 4.1042) 0.009¥1)  0.10
Cu 29 3.61 3.627(2) 0.0074(1) 0.10
Ni 28 3.52 3.534(2) 0.0051(1) 0.09
S 14 5.43 5.43i(2) 0.00641) 0.13
Al 13 4.05 4.069(2) 0.0115(1) 0.11

TABLE 2. The result of the refined parameter valfiesn the measured simple elements with a

hexagonal unit cell.

Z a, C(A)Iiterature a C(A) UiSO(AZ) RWp
Zn 30 2.66, 4.95 2.67(1), 4.961(1) 0.0157(1) 0.09
Mg 12 3.21,5.21 3.217(1), 5.221(1) 0.0162(1) 0.12
C 6 2.47,6.7' 2.447(1),6.79¢C  0.0058(1  0.32

Data colledion with image plate can be
subjected to quite high background. Parof
the dataanalysis process is sibtracting this
background from the data.A scale factor
close to unity suggests that uncertain
background intensities have beenubtracted

successfully. Fronthe results shown in Fig. 6,

the value of the average &le factor for
medium-Z and high-Zlements are 0.893and
0.816, respedtively, but for low-Z elements it
is 0.30. The scalefactor for medium and high-
Z elements is closeto 1.0. This siggests the
data corrections for these data have been
applied successfully. However, for
element data, like carbon,thereis a challenge
in analyzingthe data,even with loweringQmax
value downto 20.0A™. Thebest value for the
scale factor could be obtained, in case of
carbon, is 0.30, forQ, ., 200 A™

1.05

Pb

@(Mg
R
Cu Zn S

! - fo _—
e -

Scale Factor
03 045 06 075 09

30 40 50 80 70 80
Atomic No.(Z)

10 20

All the PDFs from elements with cubic
structure (Pb, Ag, Cu, Si, Ni, and Al) show
highly acceptable qualities. For example, the Cu
PDF, G(r), data withQmn.= 30.0 A%, Fig. 2,
appears to have minimal systematic errors
(unphysical features), which appear as small
ripples before the first PDF peakrat 2.55 A.
The structural model (space grobm-3n) was
readily refined, in the three dimensions real
space, and gave excellent agreement with data
as evident from the very small difference curve.
The values of the weighted-profile R-valu®,)
are listed in Table 1 and Table 2, with average

low-Z value of Ry, 0.11, noting that a value of 0.10

indicates excellent agreement for PDF
refinement. As can be seen from tRg, value

for cubic structure elements (Al, Ni, Cu, and
Ag) has small fluctuation around the average of
them 0.08 by = 0.008, which indicates in this
Z —range (13< Z < 47) theR,, value (which is
excellent) for that type of structure isn’t
influenced by the atomic number Z. However,
for high-Z elements like Pb the obtain&,
value is 0.32, foRQma= 30.0A™. The agreement
factor R,,) for the Pb is the worst, due to the
contribution of fluorescence signal, which is
very significant since the used X-ray energy
(98.0 keV) is not too far above the Pb K-
absorption edge (88.0 keV). For high Z
elements, the measured total counts are the sum
of elastic, fluorescence intensities, while only
elastic signal (exponentially decreasing w@h

is useful to PDF analysis. Extraction of the

FIG. 6. Scale factor vs. atomic number (Z). All the e!astic component can be very challenging at
data haveQmax = 30.0 A, except Pb and C they high momentum transfe® where fluorescence

haveQnax 20 and 25 A&, respectively.
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intensity dominates. Hence, thHe,, value is
expected to improve as lowering tQg.x value.
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The Ry, value for the Pb in Table 1 obtained for number Z (12< Z < 48). However, the data for
Qmax= 20.0 A*, and it is 0.14. low-Z elements like C (Z = 6) and extremely
high-Z elements like Pb (Z = 82) were difficult

For the elements with hexagonal structure _ -1
(Zn and Mg), the PDFs show highly acceptableto analyze up t@na= 30.0 A™. The Pb and C

iy : . -~ “data could be analyzed up@,.,= 25.0 A'and
ualities, and the obtaind®},, value are listed in - . L
Table 2. with average value &, 0.11. It is Qmax= 20.0 A”, respectively. Over all the fitting

worth to notice that the fit of cubic structure > quite good and satisfactory, indicating that

model, Cu (Z = 29), Fig. 2, was comparable tO_RA-PDF technique can be confidently employed

. in structural studies of elements with atomic
the fit with hexagonal structure model, Zn (Z = .
30), Fig. 3. The results suggest that eIementgtuon;]t;Srnzur(jirZZS 42.Sél'£[eaelerne12{1tihv;“2r10\év o
with different structure models, but very close Z over data correpction duegto the ma'%rit
number, are expected to have the same PDF da‘? P Jority

quality. This can be seen from the differenceccmmbmIon of Compton scattering in higd

curve bellow in figures Fig. 2 and Fig. 3, Whereregion. The elements with high atomic number

Cu shows smaller differences as Zn, indicatin ’hif:zoz:var? E(;nt\flel:;utlgp n?]lcicf;un(:r?iﬁgr?caeslﬂggg
that cubic structure data has same fitting qualit&_ra enerav is no){ tog far above the elements
as hexagonal. Noticing that both of them have b y ’ 938

almost the same atomic number (Z). absorption edge(s).

Weakly scattering element, like carbon, ACknowledgments

presents a great challenge to proper data \we would like to acknowledge help from
corrections due to the majority contribution of pidier Wermeille, Doug Robinson, for help in
Compton scattering signal in highregion. The  collecting data. We would also like to
reduced  structure function, F(Q), for  acknowledge Dr. Simon Billinge group for the
Qmax= 25.0 A%, and the corresponding PDF aresypport in  obtaining and analyzing the
shown in Fig. 4. A structural model (spaceSynchrotron data. This work was supported in
groupP63mg is refined and gavB,, of 0.32, as  part by National Science Foundation (NSF)
we can see from the difference curve below ingrant DMR-0304391. Data were collected at the

Fig. 4 6IDD beamline of the MUCAT sector at the
_ Advanced Photon Source (APS). Use of the
Conclusion APS is supported by the U.S. DOE, Office of
The lattice constant, scale factor andSmence, Office of Basic Energy Sciences, under

Contract No. W-31-109-Eng-38. The MUCAT
ector at the APS is supported by the U.S. DOE,
ffice of Science, Office of Basic Energy
ciences, through the Ames Laboratory under
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isotropic thermal factors were refined, with all
the parameters maintaining the symmetry of
each space group for each structure type. Hig
quality PDFs can be obtained witQn.x =

30.0 A (or more) for elements with atomic
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Abstract: Caputo fractional derivatives for classical fielgstems are investigated using
the fractional Hamiltonian formalism. Two contingowexamples are worked out to
demonstrate the application of the formalism. Témuliing equations of motion are found
to be in exact agreement with those obtained hygusie ordinary Hamiltonian formalism.

Keywords: Caputo fractional derivatives; Lagrangian and Hemmian formulation; Euler-
Lagrange equations.

1. Introduction

The fractional derivatives are of significant They presented generalized Euler-Lagrange
importance in various disciplines such as€guations and the transversality conditions for
science, engineering, and applied mathematicBactional variational problems that were defined
[1-5]. A new approach in mechanics that allowsin terms of both the Riemann-Louville and
one to obtain the equations for non-conservativé-aputo fractional derivatives.

systems using fractional derivatives is presented Recent investigations have shown that the
elsewhere[6, 7]. Lagrangian and Hamiltonian formulation can be
This approach is used by others to construcéPplied to fractional fields [15-19]. The
the Lagrangian and Hamiltonian for non- Hamilton’s equations of motion are obtained in a
conservative systems [8, 9]. They obtainegsimilar manner to the.usual mechanics; the
potentials through Laplace transform operatorgesults are found to be in exact agreement with
for fractional derivatives and demonstrated thathe formalism available in references [11-13].
the Hamiltonian equations of motion are in However, the fractional Hamiltonian systems
agreement with Euler-Lagrange equation for the¥ith  linearly dependent constraints  within
non-conservative systems. fractional Riemann-Liouville derivatives have

been investigated in addition to a review of some

Based on the Caputo fractional derivative, aye trends in the fractional variational principles
fractional ~derivative operator for arbitrary greay14).

fraction of ordera is defined. The Schrodinger . ]
wave equation by quantization of the classical N this paper we develop the fractional
nonrelativistic Hamiltonian is derived generating Hamiltonian equations of motion for discrete and
free particle solutions which are confined to aclassical fields in terms of Caputo fractional
certain region of space. Therefore, confinemenflérivatives. The present paper is organized as

is a natural consequence of the use of théollows: In section 2 the Caputo fractional
fractional wave equation[10]. Lagrangian mechanics is discussed briefly.

Section 3 is devoted to the Caputo fractional

An investigation using a different approach of Hamiltonian of continuous systems. The
the traditional calculus of variations for systemsconclusion is presented in section 4.

containing Riemann-Louville fractional
derivatives was carried out in references [11-14].

Corresponding Author: Khaled I. NawaflehEmail: knawafleh@mutah.edu.jo
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2. Caputo Fractional Lagrangian a—L+°D” oL cmp  OL

. + +
Mechanics dgp ' " aSDfp ' 0SDfe @
The left Caputo fractional derivative reads as cya_ 0L cop 0L  _
1 *TroiDlp "7 oDip
SDF (x) = ————x : -
r(n-a) It is worth mentioning that fora, -1,
X Y @ Eq.(7) reduces to the usual Euler-Lagrange
j(x -7) (E) f(r)dr equation for classical fields [22].
which is denoted as the LCFD and the right>: Caputo Fractional Hamiltonian of
Caputo fractional derivative reads as Continuous Systems
e 1 The Lagrangian of classical fields which
<Dpf (X)=mx contains fractional partial derivatives is a
) STV ) function of the form
o [S]t@ar]  L=L@DretDiaDin Do, @®
" We introduce the conjugate momenta as

which is denoted as the RCFD. Heme is the
oL oL

order of the derivative such that-1<a<n 7. = © T = . (9)
i is an | “ 9,09 ¥ 0,Df
and is not equal to zero. & is an integer, these abe @ %
derivatives are defined in the usual sense, i.e., Thus, the Hamiltonian reads as
D4 (x) =(dij f(x): H =7, D p+m, Dfp-L . (10)
X
4\ Taking the total differential of both sides, we
°DJf (x)=(—d—) f(x); a=12,... (3) obtain
X
dH =77, dS Dp+dm, S D g+ 11, dS D o+
Consider now the action integral ada ¢ oL a8 Df'¢(;L ;i Do
cnB,,_ Y4, c —
S(9)=[UaS ¥ qS Of g ydt. (@) 7 D05, 5epagpta P
The corresponding Euler-Lagrange equations oL d °Dfg- oL dDig- (11)
i CnA t~b Cha a ~x
are obtained as 0;Dfp 0,Djg
oL oL
Lrepg-Lovpp-Loc0. @ seprt g
aq <D/q 0Dfq xDp @
ca_d Substituting the values of the conjugate
@ d
‘DS = T and Eq.(5) reduces to the standardgH = dm, €D g+ dzz, c Df(”‘g—; dp
Euler-Lagrange equation.
| - _goprg-— 2 _qcprl12)
The Euler-Lagrange equation has been aSD% * X7 aDfp |
extended to classical field systems [20, 21]. The az * *
action of the classical field containing fractional - = dt
partial derivatives takes the form ot
S = jL(ca,iD:’ca,fcha,inca,SDﬁca,t)d“X(6) Using the Euler-Lagrange equation (7), we

obtain

The extremization of this action leads to the
fractional Euler-Lagrange equation of the form
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- CRHa CRA
dH =dr, CD¢g+ dr, £ Df s R
oDfm; + Dy m; + ¢ N 2?1 (19)
cpa_ 0L L cpp 0L dg +SD£6CD‘?¢
a xangw X baC;Dxﬂ(D a—~ x
aL e aL cp As a first example of continuous systems let
- 9D * " 9= P ch¢d x Do @ us consider the following Lagrangian
a—x x~b
oL L=ihy Dy
at . hz cna,yCnya,,t + (20)
T an‘// an‘// -V (X)I,W/
(13) 2m
But the Hamiltonian is a function of the form The conjugate momenta are calculated as
H=H(gm m, D, _ oL
S N T
xDb ﬂﬂ’an¢ixDb¢vt) a—t
. oL
Thus, the total differential of the Hamiltonian 72, =—7 5 == 0; (21)
takes the form Dy
oH oH oH __ oL o _ oL
dH =—d@+—dm, +—dr, Mg=—=—5-=0, m=—c—7-=0. (22
og ¢ om, ° om, 7’ 7 oiDfy 7 oDy
+ oH 4D+ oH d D’y Thus, the Hamiltonian reads as
Cha a X CH A X —b
PO 0D H o=, Dy +r, SOy + .
CnRa CRHA « .
+mdanﬂa+mdebﬂﬁ 1, S + 1 DLyt - L
+aidt Substituting the Lagrangian, we get
x H =—i—h°D"’z//°D"’7T —i—V Y (24)
(15) 2m a X a X" ta h a "
Comparing Eq. (13) and Eq. (15), we get Using Eqgs.(16) and Eq.(18) we obtain
oH _ oL, n?
ot ot DY =V g+ oD DY, (25)
oH oH
;DS + =°D{p; 16a) and
X b(angna) om, ° g (162) 2
DYy =V g+ Dy Dy, (26)
‘;Df(acaHﬂ )+§H =SDfy; (16b) 2m
<D 7l 7T If a goesto 1, Eq. (25) and Eq. (26) lead to
the Schrodinger equation and its complex
oH oL he Schrodi i d i [
6°D”¢: _6 CD”¢); conjugate [22].
o o As a second example of continuous systems
oH _ oL | (17) consider the Lagrangian
aSDf¢ aSD€¢, Cna CPHa i
L=2D/o.Dio -
aH 2CD(7 CDa ¥, 2.2 * [ " (27)
a_¢:(a:1Dtﬂ”ﬁ+ct:Dl?”a+ C Ly L@ —ILC @
oL [ (18) The conjugate momenta are given by
(;Df C +§<: f C C a,x. .
9Dy 03Dy 7, =.Dg; 7, =0; (28)

By using Eg. (17), Eq. (18) can be written as
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7, = th"gp; ;T; =0. (29) a -1, Eq. (33) and Eq. (34) lead to the Klein-
Gordon equation and its complex conjugate.
Then the Hamiltonian is obtained as

4. Conclusion
In this paper we have constructed the

H =77, +c* SD @ D3¢ + tpC’@p . (30)

The equations of motion are Hamiltonian formulation of classical fields by
o oH _ using Caputo fractional derivatives. We
m, = ,D{y, . =0; (31)  observed that both fractional Euler-Lagrange
£ equations and fractional Hamiltonian equations
dH give the same results.
—CNa . —-N-
ﬂa_aDt¢7 ~ Y (32) . . .
anﬂ In special cases, when the derivatives are of

e . s mege . integral order & - 1), the approach presented
Dy D¢ =i’y +c* D) SDY¢ .,  (33) here and the resulting equations of motion are
very similar to those obtained for ordinary
calculus. This case is demonstrated by applying
beﬂ 2Df’(0=u§c2(0+ cszf Can(g_ (34) the approach for two continuous fields that lead
to the Schrédinger and Klein-Gordon equations.
Again one may obtain the same result using
the Euler-Lagrange Equation given by Eq.(7). If

and
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IS Slhaall (KPa) classs (€ ladll elall iy bl Lyedl) oY unall 1(4) Gale

Months
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Stations
Zakho 0.681 0.720 0.850 1.166 1.221 1.018 1.09P411.0.899 1.132 0.964 0.764
Mosul 0.859 0.899 1.080 1.396 1.463 1.341 1.501 1.521 1.394 1.356 1.132 0.949
Erbil 0.727 0.739 0.908 1.160 1.236 1.198 1.397 1.356 1.197 1.084 0.961 0.808
Baag 0.840 0.852 0.920 1.173 1.181 1.319 1.455 1.496 1.343 1.293 1.068 0.935
Sulaimaniya 0.720 0.685 0.802 1.055 1.109 0.938 1.056 1.085 0.966 1.014 0.948 0.740
Kirkuk 0.881 0.923 1.040 1.309 1.331 1.303 1.470 1.512 1.334 1.306 1.194 0.970
Baiji 0.949 0.973 1.158 1.386 1.496 1.504 1.690 1.744 1.648 1.572 1.276 1.036
Ana 0.864 0.870 0.966 1.179 1.218 1.181 1.492 1.511 1.396 1.333 1.135 0.971
Khalis 0.986 1.017 1.165 1.488 1.638 1779 1984012 1.844 1.692 1.309 1.052
Baghdad 1.003 0.996 1.135 1.359 1.500 1.505 1.703 1.796 1.732 1.621 1.294 1.086
Rutba 0.788 0.771 0.852 1.014 1.105 1.151 1.277 1.327 1.217 1.191 0.987 0.876
Kut 1.029 1.046 1.212 1518 1542 1.492 1.600 3.6¥.567 1.545 1.328 1.186
Nukhaib 0.809 0.811 0.932 1.053 1.057 1.138 1.233 1.325 1.245 1.289 1.102 0.883
Najaf 0.947 0.940 1.061 1.331 1.422 1.338 1.394899. 1.433 1.395 1.211 1.043
Amara 1.024 1.081 1.287 1587 1.705 1.601 1.688491.1.656 1.642 1.395 1.139
Samawa 0.938 0.984 1.118 1.326 1.415 1.371 1.498361 1.485 1.444 1.277 1.032
Nasiriya 1.005 1.029 1.183 1.451 1525 1.405 1.492 1.572 1.565 1.557 1.336 1.103
Basrah 1.070 1.063 1.227 1.479 1517 1.459 1.610 1.709 1.613 1.677 1.396 1.159
Salman 0.883 0.861 0.882 0.959 1.1 1.018 0.949 0.831 1.018 1.009 0.978 0.859
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Stations Months ;AN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Nasiiya Jnn 63 81 126 188 238 266 285 279 244 195 128 78
Tow 17.2 202 256 32.0 389 432 453 452 421 355 26.0 19.3
Bacrah  Imn 7/ 94 138 198 254 27.8 294 286 251 207 141 91
To. 17.9 207 256 32.8 395 438 460 459 424 362 267 19.9
calman  Imn 41 62 110 185 24€270 291 264 253 218 135 37
T.. 183 208 256 327 37. 428 449 431 416 349 273 191
Al albhaall (B RH) Lsaall s, 4yt oY aaall 21(3) Gale
Months
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Stations
Zakho  65.2 62.7 581 545 403 230 19.6 196 2#21 587 643
Mosul 79.7 73.8 67.5 61.3 429 27.6 251 264 313 457 645 782
Erbil 67.0 63.0 59.0 53.0 38.0 26.0 250 250 280 37.0 53.0 66.0
Baag 77 69 59 51 34 28 25 27 31 42 58 76
Sulaimaniya 72.4 66.4 615 53.1 386 227 19.8 21.8 235 395 60.8 713
Kitkuk ~ 72.6 67.8 58.9 50.9 345 245 230 244 27.3 388 585 69.6
Baiji 76.4 67.9 59.9 496 36.8 283 269 286 335 462 629 75.0
Ana  77.2 66.8 56.3 451 33.1 27.0 263 27.2 319 444 625 768
Khalis 77.6 68.1 585 528 412 347 340 350 240500 652 747
Baghdad 72.1 60.2 50.8 41.7 31.8 252 247 27.0 319 424 57.9 69.6
Rutba 70.6 60.8 52.0 428 339 27.6 265 27.8 30.0 41.3 558 70.2
Kut 744 651 57.6 473 329 252 240 259 29.9.64 57.4 722
Nukhaib 63.5 56.1 47.5 36.4 265 219 209 233 257 384 557 655
Najaf  69.0 58.0 49.0 41.0 31.0 230 21.0 220 27380 550 68.0
Amara  72.0 63.8 56.8 47.1 347 258 240 259 2956 586 70.1
Samawa 66.3 583 49.1 391 295 232 222 23952873 535 638
Nasiriya 68.9 59.7 49.9 419 30.8 23.0 219 234 27.7 387 552 66.9
Basrah 69.0 58.7 50.5 40.6 29.1 229 227 245 27.9 39.7 546 66.6
Salman 604 50.6 384 271 24 168 14 137 181 246 37.8 57.1
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IS lhaall (C°) Slaass (Trma) wediadls (Trmin) oiuall =lsgll 5,a clayul i gl &¥axadl 1(2) Gale

Stations Months ;AN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Jakho  Imn 27 39 70 118 162 216 256 248 211 154 82 456
T.. 114 129 169 235 299 370 41.2 403 361 27.9 19.0 133

Vosyl  Imn 22 33 66 112 160 213 251 242 191 137 75 3.7
T.. 124 146 192 253 329 395 433 427 382 305 209 14.3

Erbil T.. 32 34 70 115 170 219 251 247 207 157 91 48
T.. 120 137 181 242 313 379 415 409 365 293 209 13.9

Baag Ton 29 35 62 1L7 175 216 253 239 199 153 82 43
T.. 123 148 188 253 32.7 386 425 418 37.2 307 21.7 143
Suaimanya Imn L4 22 53 108 165 222 270 251 211 143 72 26
T.. 11.0 11.4 151 222 284 349 39.3 384 353 267 183 113

<rkuk  Tmn 46 57 94 146 204 255 286 281 245 191 115 65
T.. 138 159 20.1 26.6 340 400 435 429 382 311 225 16.0

Baii T.. 38 53 01 147 203 244 272 263 221 168 96 52
T.. 148 17.3 224 286 354 405 437 433 395 325 233 165

Aa T.. 23 33 68 127 17.8 209 251 243 195 139 7.7 4.0
T.. 132 16.1 207 27.9 340 370 419 417 376 307 21.6 151

chalic  Tmn 40 54 91 141 188 222 245 238 197 158 91 51
T.. 152 182 231 291 355 405 429 428 387 328 233 17.0

Baghdad 1me 71 94 134 199 255 288 312 304 264 211 136 838
T.. 156 185 237 298 36.7 415 443 437 40.1 33.4 236 17.4

~uba  Tmn 20 33 67 115 162 204 229 226 193 142 7.7 38
T.. 133 155 197 261 31.7 36.0 386 385 358 296 21.0 14.9

Kut T.. 62 76 114 171 222 254 274 266 221 186 122 80
T.. 160 188 233 309 382 429 452 447 411 345 252 191

Nukhaip  Tmn 29 47 90 148 197 235 254 248 216 165 94 45
T.. 158 17.8 228 294 352 403 42.8 421 39.3 323 228 163

Naaf  Ime 55 74 114 175 227 266 289 279 243 19 12 72
To. 162 191 240 310 37.4 41.9 444 437 405 334 241 17.9

Amara Imn 63 83 124 180 238 271 201 282 240 191 126 7.9
T.. 166 197 246 317 387 434 459 452 421 352 257 189

camawa _Imn 57 7.3 116 175 231 260 278 270 235 189 123 73
T.. 16.8 201 251 321 384 426 445 444 413 348 259 19.1

=l
2
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. Months ;AN FEB MAR  APR  MAY JUN JUL AUG SEP OCT NOV  DEC
Stations

nN 0660 0700 0664 0676 0703 0831 0849 0.892 0.839 0764 0710 0642

Ra 200 246 309 365 401 414 406 377 327 264 210 185

Najaf Rso 150 185 232 274 301 311 305 283 246 198 158  13.9
Rs 107 136 165 197 222 254 253 242 202 154 117 97

Rn 425 612 851 1092 1245 1366 1337 1235 994 701 473  3.65

nN 0621 0689 0633 0680 0722 0849 0849 0.883 0.863 0784 0702 0617

Ra 201 247 309 365 401 413 406 377 328 264 211 186

Amara Rso 151 185 232 274 301 310 305 283 246 198 158  14.0
Rs 104 135 162 199 226 258 254 242 207 157 117 96

Rn 429 629 865 11.31 13.01 1427 1391 1295 1049 7.46 496 3.74

nN 0682 0710 0686 0682 0704 0840 0863 0.889 0.849 0787 0731 0641

Ra 204 250 311 366 401 413 406 378 329 267 214 189

Samawa Rso 153 187 234 275 301 31.0 304 283 247 200 161 142
Rs 11.3 141 172 202 225 259 258 245 208 161 123  10.1

Rn 445 639 887 11.09 1254 1389 13.75 1278 1028 7.34 501  3.79

nN 0640 0680 0643 0644 0668 0.708 0.726 0.763 0.791 0757 0686 0.628

Ra 206 251 312 367 401 413 406 378 330 268 215 191

Nasiiya  Rso 154 188 234 275 301 310 304 283 248 201 162 143
Rs 106 139 167 197 214 218 223 212 193 154 116 96

Rn 442 642 875 11.05 1216 1213 1223 1142 983 730 497  3.83

nN 0642 0703 0673 0667 0718 0824 0808 0.837 0848 0793 0726 0667

Ra 209 254 314 368 401 412 405 378 332 271 219 194

Basrah Rso 157 190 236 276 301 309 304 284 249 203 164 146
Rs 11.3 145 175 203 232 259 251 240 212 166 127 107

Rn 471 666 911 11.32 12.88 1394 1362 1279 1065 7.90 535 4.16

nN 0665 070 0654 0689 0699 0821 0841 0851 0831 0738 0703 0629

Ra 209 254 314 368 401 412 405 378 332 271 219 194

Salman Rso 158 19.2 237 277 302 311 306 285 250 204 165 147
Rs 11.6 144 172 207 228 258 258 242 209 159 125 104

Rn 461 6.46 859 1072 1223 1308 1253 11.18 939 656 467  3.88
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. Months ;AN FEB MAR  APR  MAY JUN JUL AUG SEP OCT NOV  DEC
Stations

n/N 0543 0620 0617 0614 0698 0.798 0805 0.838 0.824 0718 0655 0528

Ra 184 232 298 360 401 416 407 374 319 251 195  16.9

Baiji Rso 139 175 225 271 302 313 306 281 240 189 147 127
Rs 82 112 144 173 208 236 232 219 185 133 97 7.4

Rn 347 527 7.73 997 12.07 1333 1312 12.03 958 639 406 295

n/N 0582 0653 0660 0644 0685 0811 0812 0851 0832 0746 0666 0528

Ra 185 233 299 360 401 416 407 374 319 251 196 17.0

Ana Rso 139 175 225 271 302 313 306 281 240 189 147 128
Rs 86 116 151 17.9 207 239 234 222 187 137 99 75

Rn 353 535 7.87 1006 11.72 13.16 1301 11.90 939 634 404 297

n/N 0564 0617 0642 0652 0716 0824 0815 0.848 0827 0735 0686 0567

Ra 188 236 302 361 401 415 407 375 321 255 200 17.4

Khalis Rso 142 177 226 271 301 312 305 281 241 191 150 131
Rs 88 116 152 184 216 245 238 225 190 139 105 81

Rn 371 550 807 1059 12.63 1423 1394 12.83 1022 6.86 438  3.17

nN 0603 0670 0679 0676 0739 0849 0848 0.873 0829 0746 0695 0623

Ra 192 239 304 362 401 415 407 375 323 257 203 177

Baghdad Rso 144 179 228 272 301 311 305 282 243 193 152  13.3
Rs 103 134 165 202 229 253 251 231 198 153 112 9.0

Rn 398 591 843 11.09 12.82 1388 13.85 1255 10.16 7.11 448  3.32

nN 0644 0681 0686 0682 0731 0872 0885 0.885 0865 0787 0737 0631

Ra 194 240 305 363 401 415 407 376 324 258 204 179

Rutba Rso 148 183 232 277 306 316 31.0 286 247 197 156 136
Rs 92 124 163 204 231 261 259 235 203 156 112 9.0

Rn 386 571 841 1111 12.85 1422 1402 1240 997 7.00 444  3.38

nN 0650 0692 0680 0683 0744 0865 0861 0.886 0.881 0806 0712 0652

Ra 198 244 307 364 401 414 406 376 326 261 208 183

Kut Rso 148 183 231 273 301 311 305 282 245 196 156 137
Rs 103 132 165 196 228 259 253 239 206 156 115 9.6

Rn 421 612 870 11.13 12.88 1418 1381 1276 1036 7.25 473  3.67

nN 0675 0725 0.705 0687 0690 0827 0843 0854 0842 0772 0747 0616

Ra 200 246 309 365 401 414 406 377 327 263 210 185

Rso 151 186 233 276 303 313 307 285 247 199 159 140
Nukhaib Rs 10.8  13.9 17.1 199 219 253 251 235 203 15.4 12.0 9.5
Rn 419 615 867 1074 11.96 1345 1324 1216 978 701 479 355
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Gl

(RY) I pwntll placz¥) (RSO Gilall sl N vatl) gLl ((RE) (ssadl YAl zola puandll glas ¥l (NN g sl s 100 JS Gpged) ¥ nall 2(1) Gale
IS albasll (MINT. d) claasy (RN) pladdl ilos

. Lot JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
Stations
n/N 0.455 0.489 0.496 0.576 0.680 0.794 0.849 0.84D.836 0.716 0.549 0.484
Ra 16.9 21.8 28.8 35.4 40.0 41.7 40.7 37.0 31.0 8 23. 18.0 15.3
Zakho Rso 12.8 16.5 21.8 26.9 30.3 31.7 30.9 28.1 235 .018 136 11.6
Rs 6.3 8.5 11.3 15.2 19.2 22.2 22.8 20.6 17.1 11.87.5 5.9
Rn 2.72 4.19 6.31 8.96 11.23 12.22 12.10 10.43 7.835.29 3.14 2.28
n/N 0.477 0531 0579 0.607 0.711 0.840 0.839 0.850 0.846 0.738 0.636 0.480
Ra 17.4 22.3 29.1 35.6 40.0 41.7 40.7 37.1 31.3 24.2 18.5 15.9
Mosul Rso 13.1 16.8 22.0 26.9 30.2 31.5 30.7 28.0 23.6 18.2 13.9 12.0
Rs 6.7 9.7 12.6 16.1 19.9 21.7 21.5 19.6 16.9 11.8 8.3 6.1
Rn 2.99 4.70 6.99 9.56 11.77 12.38 12.13 10.75 8.59 5.62 3.48 2.55
n/N 0.489 0.554 0561 0549 0.652 0.789 0.788 0.840 0.827 0.718 0.608 0.471
Ra 17.5 22.3 29.2 35.6 40.0 41.7 40.7 37.1 31.3 24.3 18.6 15.9
Erbil Rso 13.3 16.9 22.1 27.0 304 31.6 30.9 28.2 23.8 18.4 14.1 12.1
Rs 7.0 9.6 12.7 15.3 19.1 22.6 22.1 21.0 17.6 12.3 8.5 6.3
Rn 2.95 4.58 6.90 9.01 11.19 1264 1234 11.17 8.59 5.45 3.35 2.48
n/N 0.488 0.488 0.620 0.650 0.703 0.818 0.838 0.856 0.819 0.745 0.647 0.491
Ra 17.6 22.4 29.3 35.7 40.1 41.7 40.7 37.2 31.4 24.3 18.7 16.0
Baag Rso 13.3 17.0 22.1 27.0 30.3 31.5 30.8 28.1 23.8 18.4 14.1 12.1
Rs 7.1 9.0 13.6 17.1 20.2 23.3 23.1 21.4 17.5 12.7 8.9 6.5
Rn 3.07 4,52 7.24 9.76 1152 13.09 12.84 11.53 8.81 5.81 3.53 2.61
n/N 0.521 0504 0500 0590 0.703 0.832 0.854 0877 0852 0.724 0.625 0.545
Ra 17.9 22.7 29.5 35.8 40.1 41.6 40.7 37.2 31.6 24.6 18.9 16.3
Sulaimaniya Rso 13.7 17.4 22.6 27.5 30.8 32.0 31.3 28.6 24.2 18.9 14.5 12.5
Rs 7.6 9.4 12.2 16.3 20.4 23.8 23.7 22.0 18.3 12.8 9.0 7.1
Rn 3.21 4.68 6.82 9.50 11.78 1286 1253 11.27 8.60 5.73 3.67 2.71
n/N 0.543 0569 0.604 0.600 0.666 0.782 0.787 0.830 0.839 0.738 0.651 0.566
Ra 17.9 22.7 29.5 35.8 40.1 41.6 40.7 37.2 31.6 24.6 19.0 16.4
Kirkuk Rso 13.6 17.2 22.3 27.1 30.3 31.5 30.8 28.2 23.9 18.6 14.4 12.4
Rs 7.7 10.2 13.3 16.9 20.7 23.0 23.5 21.9 18.8 13.6 9.4 7.0
Rn 3.21 4.89 7.23 9.76 11.84 12,77 1290 11.62 9.11 6.03 3.77 2.71
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Estimation of the Net Solar Radiation in Iraq and t's Relation with
Radiation and Weather Parameters
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Physics Department, College of Education, Mosul University, Iraq.

Abstract: FAO-56 Model, which is widely used in the world, svased to estimate the net
Radiation (Rn) in 19 weather stations spread inQRAr the time period (1980-2008). Linear
Regression Equations were found for Irag betweemtikan monthly values of (Rn) and the
mean monthly values of: Extraterrestrial Radiatj®ia), Total solar radiation(Rs), Net Short
wave radiation (Rns), Net Long wave radiation (Rnjun shine ratio (n/N), which gives a
correlation coefficients ranged between (0.707-6)98/ultiple Regression Equation was
found between the mean monthly values of (Rn) dmedrhean monthly values of all the
following climatic elements [RH, i, Tmax RS] for Iraq which gives a highly correlation

coefficient reach (0.999).
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Paschen like Behavior in Argon RF Discharge

Yaser Al-Jwaady: Physics Department, College of Science, Mosul University, Mosul,
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Abstract: A 13.56 MHz radio frequency inductively coupleddtiarge system is used in
this work to study the relation between Argon gesspure in the discharge chamber and
the threshold breakdown RF power needed to créatelischarge. Experimental results
indicated that although the data involve some festuelated to the traditional Paschen
relation used in DC discharges, this relation camrovide a quantitative description of
experimental data. For such reason, a modified foirfRaschen relation is suggested. The
modified relation provides good agreement with expental data. Furthermore, it seems
that the Paschen relation will have significanieetfons on the behavior of the transit
process from capacitive to inductive dischargesThidemonstrated by studying the transit

region.
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Showing the Variation of the Hubble Constant for Different Lens
Models

M. A. Alobayde

Physics Department, College of Science, Mosul University, Irag.

Abstract: The aim of this work is to show the variation okthalues of the Hubble
constant which are obtained using different graiatel lens models for calculating the
time delay. The work involves a brief review of theactical and theoretical difficulties
encountered by researchers in this field, and aewewf the relation between the
gravitational potential and the time delay. Usidg tFermat principle, a formula for
calculating the time delay is suggested. This fdardepends upon the position of the
source in addition to the geometrical dimensiontheflens system, and the redshift of the

lens.
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