I-V Characteristics Modeling of the Carbon Nanotube Field Effect Transistor (CNTFET)

Authors

  • Siham Kattar
  • SaadEddine Khemissi

DOI:

https://doi.org/10.47011/15.3.6

Keywords:

Carbon nanotube, Virtual source, CNTFET, Electron mobility, I-V characteristics.

Abstract

Cited by : Jordan J. Phys., 15 (3) (2022) 279-288

A simulation model of a zig-zag type (10.0) single-walled carbon-nanotube (SW-CNT) transistor based on virtual source (VS-CNTFET) approach is presented in this paper. This semi-empirical physics-based model allowed the study of current-voltage (I-V) characteristics of the transistor. Additionally, analytical modeling of reflection coefficient, electron mobility in the CNT with low and high electric field and parasitic resistances (Rs and Rd) were presented as well in this model. Then, the obtained I-V characteristics of this SW-CNTFET were explored and compared with literature data obtained experimentally. Results showed that this model was a different approach which is significant compared to the silicon model in terms of the carrier mobility, where µCNT = 104 cm2/Vs. Moreover, the impacts of some geometric parameters, such as CNT length and diameter as well as oxide permittivity on the I-V characteristics, were proved.

References

Iijima, S., Nature, 354 (1991) 56.

Yun, Y. H., Shanov, V., Schulz, M.J., Dong, Z., Jazieh, A., Heineman, W.R., Halsall, H.B., Wong, D.K.Y., Bange, A., Tu, Y. and Subramaniam, S., Sen. A. Chem. B, 120 (2006) 298.

Mousa, M.S., Al-Akhras, M.A.H. and Daradkeh, S.I., Jordan J. Phys., 11 (2018) 17.

Wang, J., Musameh, M. and Lin, Y., J. Am. Chem. Soc., 125 (2003) 2408.

Endo, M., Kim, Y.A., Muramatsu, H., Yanagisawa, T., Hayashi, T. and Dresselhaus, M.S., New Diamond and Frontier Carbon Tech., 14 (2004) 1.

Che, G.L., Lakshmi, B.B., Martin, C.R. and Fisher, E.R., Langmuir, 15 (1999) 750.

Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M. and Dekker, C., Science, 293 (2001) 76.

Bachtold, A., Hadley, P., Nakanishi, T. and Dekker, C., Science, 294 (2001) 1317.

Lim, S.H., Wei, J., Lin, J., Li, Q. and Kua You, J., Biosensors and Bioelectronics, 20 (2005) 2341.

Nasir, S., Hussein, M.Z., Zainal, Z. and Yusof, N.A., Materials, 11(2018) 295.

Mousa, M. S., Daradkeh, S.I. and Bani Ali, E.S., Jordan J. Phys., 12 (2019) 7.

Cao, J., Wang, Q. and Dai, H., Phys. Rev., 90 (2003) 157.

Shiraishi, M., Takenobu, T., Iwai, T., Iwasa, Y., Kataura, H. and Ata, M., Chem. Phys. Lett., 394 (2004) 110.

Marani, R. and Perri, A.G., I. J. Elec., 6 (2013) 1055.

Grado-Caffaro, M.A. and Grado-Caffaro, M., Optik, 115 (2004) 45.

Bandaru, P.R., J. N. N., 7 (2007) 1.

Wind, S.J., Appenzeller, J., Martel, R., Derycke, V. and Avouris, P., A. Phys. Lett., 80 (2002) 3817.

Sahoo, R. and Mishra, R.R., IJEE, 1 (2009) 117.

http://fortran.softwaresea.com/Linux-software-download/fortran-90.

Khakifirooz, A., Nayfeh, O.M. and Antoniadis, D., IEEE TED, 56 (2009)1674.

Dukovic, G., Wang, F., Song, D., Sfeir, M.Y., Heinz, T.F. and Brus, L.E., Nano-Lett., 5 (2005) 2314.

Luo, J., Wei, L., Lee, C.S., Franklin A.D., Guan, X., Pop, E., Antoniadis, D.A. and Wong, H.S., IEEE TED, 60 (2013) 1834.

Lee, C., Pop, E., Franklin, A.D., Haensch, W. and Wong, H.P., IEEE TED, 62 (2015) 3061.

Lundstrom, M.S. and Antoniadis, D.A., IEEE TED, 61 (2014) 225.

Saito, R., Dresselhaus, G. and Dresselhaus, M.S., "Physical Properties of Carbon Nanotubes", Edn. (2), (Imperial College Press, Tokyo, 1998), p.80.

Zhou, X., Park, J.Y., Huang, S., Liu, J. and McEuen, P.L., Phys. Rev. Lett., 95 (2005) 146805.

Suzuura, H. and Ando, T., Phys. Rev. B, 65 (2002) 235412.

Pennington, G. and Goldsman, N., Phys. Rev. B, 68 (2003) 045426.

Perebeinos, V., Tersoff, J. and Avouris, P., Phys. Rev. Lett., 94 (2005) 086802.

Greenberg, D.R. and del Alamo, J.A., IEEE TED, 41 (1994) 1334.

Chek, D.C.Y., Tan, M.L.P., Ahmadi, M.T., Ismail, R. and Arora, V.K., J. Micro-elec., 41 (2010) 579.

Dürkop, T., Getty, S.A., Cobas, E. and Fuhrer, M.S., Nano-Lett., 4 (2004) 35.

Martinie, J.S., Vedraine, S., Munteanu, D., Le Carval, G. and Barral, V., Proc. Fringe-ESSDERC, Edinburgh, Scotland (2008).

Martinie, D.S. and Anu, G., Proc. JNRDM (2007).

Lundstrom, M., "Fundamentals of Carrier Transport", Edn. (2), (Cambridge University Press, Cambridge, 2000), p.440.

Downloads

Published

2022-11-22

How to Cite

Kattar , S., & Khemissi, S. (2022). I-V Characteristics Modeling of the Carbon Nanotube Field Effect Transistor (CNTFET). Jordan Journal of Physics, 15(3), 279–288. https://doi.org/10.47011/15.3.6

Issue

Section

Articles