Ab-initio and Monte Carlo Simulations of the New Half-Heusler Alloy NiCrGa
Keywords:
Half-Heusler alloy, NiCrGa, Slater pauling, DFT method, Monte Carlo study.Abstract
In this work, we are investigating the electronic and magnetic properties of the
new NiCrGa half-Heusler alloy (HHA), by using the ab-initio and Monte Carlo simulations
(MCSs). The ab-initio method is performed under the pseudo-potential method and the
generalized gradient approximation GGA. The density of states (DOS) and the band
structure calculations show that the alloy NiCrGa reveals a nearly half-metallic (HM)
behavior. In particular, the Slater-Pauling (SP) rule has been confirmed when using the
magnetic moments of the individual constituents of the NiCrGa compound. The Monte
Carlo simulations (MCSs) are accomplished using the Metropolis algorithm. In order to
determine the transition temperature, we are based on the behavior of the total
magnetization and susceptibility of this material. We also presented and discussed the
hysteresis loops of the half-Heusler compound, for fixed values of temperature, exchange
coupling interactions and crystal field. It is found that when increasing the crystal field, the
surface of the loops increases and vice versa.
References
Prinz, G.A., Phys. Today, 48 (1995) 58.
Kobayashi, K.I., Kimura, T., Sawada, H.,
Terakura, K. and Tokura, K., Nature, 395
(1998) 677.
Park, J.H., Vescovo, E., Kim, H.J., Kwon, C.,
Ramecsh, R. and Venkatesan, T., Nature, 392
(1998) 794.
Hashemifar, S.J., Kratzer, P. and Scheffler,
M., Phys. Rev. Lett., 94 (2005) 096402.
Idrissi, S., Labrim, H., Ziti, S. and Bahmad,
L., Journal of Superconductivity and Novel
Magnetism, 33 (2020) 3087.
Idrissi, S., Labrim, H. and Ziti, S., Appl.
Phys. A, 126, (2020) 190.
Idrissi, S., Labrim, H., Ziti, S. and Bahmad,
L., Physics Letters A, 384 (24) (2020)
Idrissi, S., Bahmad, L., Khalladi, R., El
Housni, I., El Mekkaoui, N., Mtougui, S.,
Labrim, H. and Ziti, S., Chinese Journal of
Physics, 60 (2019) 549.
Zhang, L., Wang, X. and Cheng, Z., J. Alloys
Compd., 718, (2017) 63.
Gao, G.Y., Hu, L., Yao, K.L., Luo, B. and
Liu, N., J. Alloys Compd., 551 (2013) 539.
de Groot, R.A., Mueller, F.M., van Engen,
P.G. and Buschow, K.H.J., Phys. Rev. Lett.,
(1983) 2024.
Kulatov, E. and Mazin, I.I., J. Phys.:
Condens. Matter, 2 (1990) 343.
Ebert, H. and Schutz, G., J. Appl. Phys.,
(1991) 4627.
Wang, X., Antropov, V.P. and Harmon,
B.N., IEEE Trans. Magn., 30 (1994) 4458.
Youn, S.J. and Min, B.I., Phys. Rev. B, 51
(1995) 10436.
Otto, M.J., van Woerden, R.A.M., van der
Valk, P.J., Wijngaard, J., van Bruggen, C.F.
and Haas, C., J. Phys.: Condens. Matter, 1
(1989) 2341.
Helmholdt, R.B., de Groot, R.A., Muller,
F.M., van Engen, P.G. and Buschow,
K.H.J., J. Magn. Magn. Mater., 43 (1984)
Kabani, R., Terada, M., Roshko, A. and
Moodera, J.S., J. Appl. Phys., 67 (1990)
Tanaka, C.T., Nowak, J. and Moodera,
J.S., J. Appl. Phys., 81 (1997) 5515.
Hordequin, C., Nozieres, J.P. and Pierre,
J., J. Magn. Magn. Mater., 183 (1998) 225.
Caballero, J.A., Park, Y.D., Childress,
J.R., Bass, J., Chiang, W.-C., Reilly, A.C.,
Pratt, W.P. and PetroffFero, J.A., J. Vac.
Sci. Technol. A, 16 (1998) 1801.
Moradi, M., Taheri, N. and Rostami, M.,
Phys. Lett. A, 382 (41) (2018) 3004.
Damewood, L., Busemeyer, B.,
Shaughnessy, M., Fong, C.Y., Yang, L.H.
and Felser, C., Phys. Rev. B, 91 (2015)
Umamaheswari, R., Yogeswari, M. and
Kalpana, G., J. Magn. Magn. Mater., 350
(2014) 167.
Dehghan, A. and Davatolhagh, S., J.
Alloys Compd., 772 (2019) 132.
Montag, B.W., Reichenberger, M.A.,
Arpin, K.R., Sunder, M., Nelson, K.A.,
Ugorowski, P.B. and McGregor, D.S., J.
Cryst. Growth, 412 (15) (2015) 103.
Zhang, R.L., Damewood, L., Fong, C.Y.,
Yang, L.H., Peng, R.W. and Felser, C., AIP
Adv., 6 (2016) 115209.
Luo, H., Zhu, Z., Liu, G., Xu, S., Wu, G.,
Liu, H., Qu, J. and Li, Y., Physica B:
Condensed Matter, 403 (1) (2008) 200.
Harmening, T., Eckert, H. and Pöttgen, R.,
Solid State Sci., 11 (2009) 900.
Roy, A., Bennett, J.W., Rabe, K.M. and
Vanderbilt, D., Phys. Rev. Lett., 109 (2012)
Chadov, S., Qi, X., Kübler, J., Fecher, G.H.,
Felser, C. and Zhang, S.C., Nat. Matters, 9
(2010) 541.
Amudhavalli, A., Rajeswarapalanichamy,
R. and Iyakutti, K., Computational Materials
Science, 148 (2018) 87.
Article Idrissi et al.
Baral, M., Chattopadhyay, M.K., Jangir, R.,
Chakrabarti, A. and Ganguli, T., Journal of
Magnetism and Magnetic Materials, 475
(2019) 675.
Idrissi, S., Ziti, S., Labrim, H. and Bahmad,
L., Materials Science in Semiconductor
Processing, 122 (2021) 105484.
Idrissi, S., Ziti, S., Labrim, H. and Bahmad,
L., Journal of Materials Engineering and
Performance, 29 (11) (2020) 7361.
Giannouzzi, P. et al., J. Phys.: Condens.
Matter, 21 (2009) 395502.
Vanderbilt, D., Phys. Rev. B, 41 (1990),
Perdew, J.P., Burke, K. and Ernzerhof, M.,
Phys. Rev. Lett., 77 (1996) 3865.
Perdew, J.P., Chevary, J.A., Vosko, S.H.,
Jackson, K.A., Pederson, M.R., Singh, D.J.
and Fiolhais, C., Phys. Rev. B, 46 (1992)
Momma, K. and Izumi, F., J. Appl.
Crystallogr., 44 (2011) 1272.
Özdoğan, K., Şaşıoğlu, E. and Galanakis, I.,
Journal of Applied Physics, 113 (19) (2013)
Skaftouros, S., Ozdoğan, K., Şaşıoglu, E.
and Galanakis, I., Phys. Rev. B., 87 (2013)
Boumia, L., Dahmane, F., Doumi, B., Rai,
D.P., Shakeel, A., Khandy, H., Khachai H.
and Meradji, A.H., Chinese. J. Phys., 59
(2019) 281.