Proton Transmission through Magnetic Lenses for Characterizing Water and Human Tissues via Proton Radiography

Authors

  • Fatemhe Namdari Department of Physics, Shiraz Branch, Islamic Azad University, Shiraz, Iran
  • seyede nasrin hosseinimotlagh islamic azad university of Shiraz https://orcid.org/0000-0001-5381-2449

Abstract

Abstract: Proton radiography (PR) is a new imaging method that allows direct measurement of the proton energy dissipation in different tissues. Proton radiography enables fast and effective high-precision lateral alignment of the proton beam and target volume in human irradiation experiments with limited dose exposure. The benefits of PR can be summarized as: 1) high image resolution, 2) the complete field of view can be measured with one short proton spill, 3) short data acquisition time, and 4) simple data processing. Enhancing image contrast can be achieved by substituting cuts on the scattering angle with the use of a magnetic lens (ML) system, resulting in optimal images of objects. The current study is primarily focusing on proton acceleration via target normal sheath acceleration (TNSA) using nanowire-coated foils as targets, followed by an investigation of the LET, range, and dose of protons. In this work, simplified physical models of proton transport, including Bethe–Bloch energy loss, energy straggling, and multiple Coulomb scattering (MCS), are used in the 0–300 MeV energy range of interest to analytically quantify the tradeoffs and scaling relationships between dose, spatial resolution, density resolution, and voxel size.  We found that dose (D) is directly influenced by the size of voxel α and the necessary density resolution δ, which highlights a very strong dependence on voxel size. Our work shows that the average dose increases with increasing number of protons, while the average dose decreases with increasing proton beam energy, which is in good agreement with the other references. These studies demonstrate that the dose D of water, breast, brain, lung, and eye tissues is directly influenced by the size of voxel α and the necessary density resolution δ, adhering to the relationship , which highlights a very strong dependence on voxel size.

References

References

E.Engwall, et al. Partitioning of Discrete Proton Arcs into Interlaced Subplans Can Bring Proton Arc Advances to Existing Proton Facilities. Med Phys;50(2023). DOI: 10.1002/mp.16617

X.Li ,X.Ding ,W. Zheng, G.Liu, G.Janssens, K.Souris, et al. Linear Energy Transfer Incorporated Spot-Scanning Proton Arc Therapy Optimization: A Feasibility Study. Front Oncol;11(2021). DOI: 10.3389/fonc.2021.698537

S. Mein, B.Kopp, T.Tessonnier, J.Liermann , A.Abdollahi, J.Debus ,et al. Spot-Scanning Hadron Arc (SHArc) Therapy: A Proof of Concept Using Single- and Multi-Ion Strategies with Helium, Carbon, Oxygen, and Neon Ions. Med Phys; 49:6082(2022). • DOI: 10.1002/mp.15800

C.Klein, et al. Overcoming Hypoxia-Induced Tumor Radioresistance in Non-Small Cell Lung Cancer by Targeting DNA-Dependent Protein Kinase in Combination with Carbon Ion Irradiation. Radiat Oncol;12(2017). DOI: 10.1186/s13014-017-0939-0

E.Rorvik, L.F.Fjera, T.J.Dahle, J.E.Dale, G.M.Engeseth, C.H.Stokkevag, et al.Exploration and Application of Phenomenological RBE Models for Proton Therapy. Phys Med Biol;63(2018). DOI: 10.1088/1361-6560/aad9db

W. Gu, D.Ruan, Q.Lyu, W.Zou, L.Dong, K.Sheng. A Novel Energy Layer Optimization Framework for Spot-Scanning Proton Arc Therapy. Med Phys; 47:2072(2020). DOI: 10.1002/mp.14083

G.Zhang, H.Shen, Y.Lin , R.C.Chen, Y.Long , H.Gao. Energy Layer Optimization via Energy Matrix Regularization for Proton Spot-Scanning Arc Therapy. Med Phys; 49:5752 (2022). • DOI: 10.1002/mp.15836

S.Wuyckens, M.Saint-Guillain,G. Janssens, L.Zhao,X. Li, X.Ding, et al. Treatment Planning in Arc Proton Therapy: Comparison of Several Optimization Problem Statements and Their Corresponding Solvers. Comput Biol Med;148(2022). https://doi.org/10.1016/j.compbiomed.2022.105609

E.Engwall, C.Battinelli, V.Wase,O. Marthin,L. Glimelius, R.Bokrantz, et al. Fast Robust Optimization of Proton PBS Arc Therapy Plans Using Early Energy Layer Selection and Spot Assignment. Phys Med Biol (2022). • DOI: 10.1088/1361-6560/ac55a6

M.Janson, L.Glimelius, A.Fredriksson, E.Traneus, E.Engwall , Treatment Planning of Scanned PBs in RayStation. Med Dosim (2023). https://doi.org/10.1016/j.meddos.2023.10.009

M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino, F. Takahashi, Tanaka, K. Agashe, G. Aielli, C. Amsler et al., Review of Particle Physics, Phys. Rev. D 98, 030001(2018). https://doi.org/10.1103/PhysRevD.98.030001

S.Mein,et al.. Particle arc therapy: Status and potential, Radiotherapy and Oncology 199 110434 (2024). https://doi.org/10.1016/j.radonc.2024.110434

Scott N. Penfold ,et al.,Single high-energy arc proton therapy with Bragg peak

boost (SHARP), J Med Radiat Sci 71,27-36 (2024) . DOI: 10.1002/jmrs.769

G. Liu G, X.Li, L.Zhao, W.Zheng, A.Qin, et al, Novel Energy Sequence Optimization Algorithm for Efficient Spot-Scanning Proton Arc (SPArc) Treatment Delivery, Acta Oncol (Madr); (2020). DOI: 10.1080/0284186X.2020.1765415

W.Cao, et al. Intensity Modulated Proton Arc Therapy via Geometry-Based Energy Selection for Ependymoma. J Appl Clin Med Phys;24: e13954(2023). DOI: 10.1002/acm2.13954

H. Paganetti, P. Botas, G. C. Sharp, et al. “Adaptive proton therapy”. Physics in Medicine Biology 66.22 ,22TR01(2021). DOI: 10.1088/1361-6560/ac344f

V. Giacometti, A. R. Hounsell, and C. K. McGarry. “A review of dose calculation approaches with cone beam CT in photon and proton therapy”. Physica Medica 76,243-276 (2020). DOI: 10.1016/j.ejmp.2020.06.017

A. Thummerer, P. Zaffino, A. Meijers, et al. “Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy”. Physics in Medicine Biology 65.9, p. 095002(2020). DOI: 10.1088/1361-6560/ab7d54

A. Thummerer, C. Seller Oria, P. Zaffino, et al. “Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer”. Medical Physics 48.12 ,, pp. 7673–7684(2021). • DOI: 10.1002/mp.15333

C. J. O’Hara, D. Bird, B. Al-Qaisieh, et al. “Assessment of CBCT–based synthetic CT generation accuracy for adaptive radiotherapy planning”. Journal of Applied Clinical Medical Physics 23.11, e13737(2022). DOI: 10.1002/acm2.13737

C. Seller Oria, A. Thummerer, J. Free, et al. “Range probing as a quality control tool for CBCT-based synthetic CTs: In vivo application for head and neck cancer patients”. Medical Physics 48.8, pp. 4498–4505(2021). DOI: 10.1002/mp.15020

A. Thummerer, C. Seller Oria, P. Zaffino, et al. “Deep learning–based 4D-synthetic CTs from sparse-view CBCTs for dose calculations in adaptive proton therapy”. Medical Physics 49.11, pp. 6824–6839(2022). DOI: 10.1002/mp.15930

C. Seller Oria, A. Thummerer, J. Free, et al. “Range probing as a quality control tool for CBCT-based synthetic CTs: In vivo application for head and neck cancer patients”. Medical Physics 48.8, pp. 4498–4505(2021). https://doi.org/10.1002/mp.15020

P. T. Campbell, C. A. Walsh, B. K. Russell, J. P. Chitten-den, A. Crilly, G. Fiksel, P. M. Nilson, A. G. R. Thomas,K. Krushelnick, and L. Willingale, Magnetic Signatures of Radiation-Driven Double Ablation Fronts, Physical Review Letters 125, 145001 (2020). DOI: https://doi.org/10.1103/PhysRevLett.125.145001

J. Davies, P. Heuer, and A. Bott, Quantitative PR and shadowgraphy for arbitrary intensities,High Energy Density Physics 49, 101067 (2023). https://doi.org/10.1016/j.hedp.2023.101067

J. A. Pearcy, M. J. Rosenberg, T. M. Johnson, G. D.Sutcliffe, B. L. Reichelt, J. D. Hare, N. F. Loureiro, R. D.Petrasso, and C. K. Li, Experimental Evidence of Plasmoids in High-β Magnetic Reconnection ,Physical Review Letters 132,035101 (2024).DOI: 10.1103/PhysRevLett.132.035101

D. B. Schaeffer, W. Fox, R. K. Follett, G. Fiksel, C. K. Li,J. Matteucci, A. Bhattacharjee, and K. Germaschewski, Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas ,Physical Review Letters 122, 245001 (2019). DOI: https://doi.org/10.1103/PhysRevLett.122.245001

C. K. Li, V. T. Tikhonchuk, Q. Moreno, H. Sio,E. D’Humi`eres, X. Ribeyre, P. Korneev, S. Atzeni,R. Betti, A. Birkel, E. M. Campbell, R. K. Follett, J. A.Frenje, S. X. Hu, M. Koenig, Y. Sakawa, T. C. Sangster,F. H. Seguin, H. Takabe, S. Zhang, and R. D. Petrasso, Collisionless Shocks Driven by Supersonic Plasma Flows with Self-Generated Magnetic Fields,Physical Review Letters 123, 055002 (2019). DOI: 10.1103/PhysRevLett.123.055002

P. V. Heuer, L. S. Leal, J. R. Davies, E. C. Hansen,D. H. Barnak, J. L. Peebles, F. Garc´ıa-Rubio, B. Pollock, J. Moody, A. Birkel, and F. H. Seguin, Diagnosing magnetic fields in cylindrical implosions with oblique PR, Physics of Plasmas 29, 072708 (2022). https://doi.org/10.1063/5.0092652

E. R. Tubman, A. S. Joglekar, A. F. A. Bott, M. Borgh-esi, B. Coleman, G. Cooper, C. N. Danson, P. Durey,J. M. Foster, P. Graham, G. Gregori, E. T. Gum-brell, M. P. Hill, T. Hodge, S. Kar, R. J. Kingham,M. Read, C. P. Ridgers, J. Skidmore, C. Spindloe,A. G. R. Thomas, P. Treadwell, S. Wilson, L. Will-ingale, and N. C. Woolsey, Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles, Nature Communications 12,10.1038/s41467-020-20387-7 (2021). DOI: 10.1038/s41467-020-20387-7

S. Malko, C. Johnson, D. B. Schaeffer, W. Fox, and G. Fiksel, Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems, Applied Optics 61, C133 (2022). https://doi.org/10.1364/AO.448294

C. L. Johnson, S. Malko, W. Fox, D. B. Schaeffer, G. Fik-sel, P. J. Adrian, G. D. Sutcliffe, and A. Birkel, Proton deflectometry with in situ x-ray reference for absolute measurement of electromagnetic fields in high-energy-density plasmas ,Review of Scientific Instruments 93, 023502 (2022). https://doi.org/10.1063/5.0064263

P.Lysakovski, J.Besuglow , B.Kopp, S.Mein,T.Tessonnier,A. Ferrari, et al. Development and Benchmarking of the First Fast Monte Carlo Engine for Helium Ion Beam Dose Calculation: MonteRay. Med Phys; 50:2510(2023). DOI: 10.1002/mp.16178

Downloads

Published

2025-12-31

How to Cite

Namdari, F., & hosseinimotlagh, seyede nasrin. (2025). Proton Transmission through Magnetic Lenses for Characterizing Water and Human Tissues via Proton Radiography. Jordan Journal of Physics, 15(5), 705–724. Retrieved from https://jjp.yu.edu.jo/index.php/jjp/article/view/537

Issue

Section

Articles

Most read articles by the same author(s)