Kelvin-Helmholtz Instability of Cylindrical Geometry for Micro-dimensional Range of Wavelengths

Authors

  • V. D. Sarychev
  • S. A. Nevskii
  • М. А. Kuznetsov
  • S. А. Solodsky
  • D. P. Il'yashchenko
  • E. V. Verkhoturova

DOI:

https://doi.org/10.47011/15.3.3

Keywords:

Kelvin-Helmholtz instability, Cylindrical geometry, Wavelengths, Mathematical modeling.

Abstract

Cited by : Jordan J. Phys., 15 (3) (2022) 239-245

The goal of this research is to determine input parameters necessary for a micro-dimensional range of wavelengths of disturbances. Therefore, appropriate parameters, furthering generation of a micrometer range in wavelengths of disturbances can be determined with the help of a numerical solution. A simplified dispersion equation is given for shortwave disturbances on the boundary of two viscous-potential liquids in a cylindrical geometry; the ratio of decrement to wavenumber in shortwave range can be determined with the help of this equation. The study has established that this ratio has two maximums for the iron / argon system. The first maximum falls within the millimeter range wavelength, whereas the second maximum is registered in a micrometer range. Speeds of liquid and gas are determined, which provide a micrometer range of wavelength of disturbances on the surface of liquid.

 

PACS: 61.20.Ja, 61.20.Gy, 47.15.Fe, 47.15.Rq, 51,50.+V.

References

Eggers, J. and Villermaux, E., Rep. Prog. Phys., 71 (3) (2008) 036601.

Hornung, J., Zikin, A., Pichelbauer, K., Kalin, M. and Kirchgaßner, M., Mater. Sci. Eng. A, 576 (2013) 243.

Heath, G.R., Tremblay, A., Andersson, P. and Arizmendi Morquecho, A., Proceedings of the International Thermal Spray Conference, (2012) 98.

Katsich, C., Badisch, E., Roy, M., Heath, G.R. and Franek, F., Wear, 267 (11) (2009) 1856.

Zhang, T., Li, Z., Young, F., Jin Kim, H., Li, H., Jing, H. and Tillmann, W., ISIJ Int., 54 (7) (2014) 1472.

Gianetto, J.A., Goodall, G.R., Tyson, W.R., Fazeli, F., Quintana, M.A., Rajan, V.B. and Chen, Y., Proceedings of the Biennial International Pipeline Conference, IPC, 3 (2012) 515.

Narayanan, B.K., Kovarik, L., Sarosi, P.M., Quintana, M.A. and Mills, M.J., Acta. Mater., 58 (3) (2010) 781.

Rauosepp, H., Weld J., 93 (12) (2014) 46.

Karlsson, L. and Börjesson, J., Sci. Technol. Weld. Joining, 19 (4) (2014) 318.

Ramjaun, T., Stone, H.J., Karlsson, L., Kelleher, J., Moat, R.J., Kornmeier, J.R., Dalaei, K. and Bhadeshia, H.K., Sci. Technol. Weld. Joining, 19 (1) (2014) 44.

Heinemann, J., Tuchtfeld, J., Helmrich, A., Husemann, R.U., Maile, K. and Klenk, A., Welding in the World, 53 (2009) 493.

Heinemann, J. and Tuchtfeld, J., Welding in the World, 53 (1-2) (2009) 28.

Granovskii, A.Y., Sarychev, V.D. and Gromov, V.E., Tech. Phys., 58 (10) (2013) 1544.

Funada, T. and Joseph, D.D., Int. J. Multiphas. Flow, 28 (2002) 1459.

Awasthi, M.K. and Agrawal, G.S., International Journal of Applied Mathematics and Computation, 3 (2) (2011) 131.

Sarychev, V.D., Nevskii, S.A., Sarycheva, E.V., Konovalov, S.V. and Gromov, V.E., AIP Conf. Proc., 1783 (2016) 020198.

Solodsky, S.A., Sarychev, V.D. and Borisov, I.S., IOP Conf. Ser-Mat. Sci., 125 (2016) 012039.

Chinakhov, D.A. and Agrenich, E.P., Mater. Sci. Forum, 575-578 (2) (2008) 833.

Chinakhov, D.A., Appl. Mech. Mater., 379 (2013) 188.

Chandrasekhar, S., “Hydrodynamic and hydromagnetic stability”. (Dover, 1981).

Downloads

Published

2022-11-22

How to Cite

Sarychev, V. D., Nevskii, S. A., Kuznetsov М. А., Solodsky S. А., Il’yashchenko, D. P., & Verkhoturova, E. V. (2022). Kelvin-Helmholtz Instability of Cylindrical Geometry for Micro-dimensional Range of Wavelengths. Jordan Journal of Physics, 15(3), 239–245. https://doi.org/10.47011/15.3.3

Issue

Section

Articles