On the origin of cosmic microwave background radiation

Authors

  • Sergey Fedosin No affiliation

Keywords:

cosmic microwave background, infinite hierarchical nesting of matter, early Universe, cosmology: theory; matter evolution

Abstract

The alternative mechanism of the emergence of cosmic microwave background radiation (CMB), associated with the thermal radiation of primordial gas-dust clouds in the early Universe, is considered. The emergence of such clouds in the theory of infinite hierarchical nesting of matter is a natural stage in matter evolution. The mass, radius and spatial concentration of typical primordial gas-dust clouds; the distance between neighboring clouds; and the power of CMB energy generation per unit volume and per nucleon of the early Universe were calculated. The masses and radii of these clouds correspond to the masses and radii of the observed Bok globules. The presented mechanism is consistent with the cluster model describing the appearance of angular multipoles in the CMB power spectrum. In addition to CMB radiation, cosmic infrared background (CIB) radiation and cosmic optical background (COB) radiation are also considered.  According to the presented model, the sources of CIB are primordial protoplanetary clouds. As for the COB radiation, it is associated with the radiation of the first protostars. During evolution, each primordial cloud, with a mass of about 31 solar masses, first generates CMB radiation, and then CIB and COB radiations. Since protostars give rise to neutron stars, the concentration of primordial gas-dust clouds is also the concentration of observed neutron stars. In the course of the calculations, a new definition of the radiation intensity is used, associated with the vector of the surface energy flux density, and taking into account the angles of incidence of radiation on a flat receiver from all sides of the hemisphere. According to Poynting's theorem, the relationship between the intensity and energy density of black body radiation is derived in the concept of photons.

References

Flandern T.V. The Top 30 Problems with the Big Bang. Apeiron, Vol. 9 (2), pp. 72-90 (2002).

Narlikar J.V., Burbidge G. and Vishwakarma R.G. Cosmology and Cosmogony in a Cyclic Universe. Journal of Astrophysics and Astronomy, Vol. 28, pp. 67-99 (2007). http://dx.doi.org/10.1007/s12036-007-0007-5.

Gupta S.N.P. Uniformity of CMB in our Dynamic Universe. Journal of Astrophysics & Aerospace Technology, Vol. 4, Issue 1, 128 (2016). http://dx.doi.org/10.4172/2329-6542.1000128.

Fedosin S.G. Cosmic Red Shift, Microwave Background, and New Particles. Galilean Electrodynamics, Vol. 23, Special Issues No. 1, pp. 3-13 (2012). http://dx.doi.org/10.5281/zenodo.890806.

Millette P.A. On Eddington's Temperature of Interstellar Space and the Cosmic Microwave Background Radiation. Letters to Progress in Physics, Vol. 17, Issue 2, pp. 216-217 (2021).

Burbidge G. and Hoyle F. The Origin of Helium and the Other Light Elements. The Astrophysical Journal Letters, Vol. 509. L1-L3 (1998).

Hill R., Masui K.W., Scott D. The Spectrum of the Universe. Applied Spectroscopy, Vol. 72, Issue 5, pp. 663-688 (2018). https://doi.org/10.1177/0003702818767133. 1802.03694.pdf (arxiv.org)

Driver S.P. Measuring energy production in the Universe over all wavelengths and all time. Invited review for IAU Symposium 355, The Realm of the Low-Surface-brightness Universe, (eds: D. Valls-Gabaud, I. Trujillo & S. Okamoto) (2021). arXiv:2102.12089.

Fedosin S.G. The generalized Poynting theorem for the general field and solution of the 4/3 problem. International Frontier Science Letters, Vol. 14, pp. 19-40 (2019). https://doi.org/10.18052/www.scipress.com/IFSL.14.19.

Fedosin S.G. On the structure of the force field in electro gravitational vacuum. Canadian Journal of Pure and Applied Sciences, Vol. 15, No. 1, pp. 5125-5131 (2021). http://doi.org/10.5281/zenodo.4515206.

Ashmore L. Calculating the redshifts of distant galaxies from first principles by the new tired light theory (NTL). Vigier 11 conference in Liege, Belgium, August 2018. https://www.researchgate.net/publication/330005846_Calculating_the_redshifts_of_distant_galaxies_from_first_principles_by_the_new_tired_light_theory_NTL .

Ashmore L.A Relationship between Dispersion Measure and Redshift Derived in Terms of New Tired Light. Journal of High Energy Physics, Gravitation and Cosmology, Vol. 2, No. 4, Paper ID 70089, 19 pages (2016). https://doi.org/10.4236/jhepgc.2016.24045.

Lerner E.J. Observations contradict galaxy size and surface brightness predictions that are based on the expanding universe hypothesis. Monthly Notices of the Royal Astronomical Society, Vol. 477, pp. 3185-3196 (2018). https://doi.org/10.1093/mnras/sty728.

Lerner E.J., Falomo R., Scarpa R. UV surface brightness of galaxies from the local Universe to z ~ 5. International Journal of Modern Physics D, Vol. 23, No. 6, 1450058 (2014). https://doi.org/10.1142/S0218271814500588.

Sergey Fedosin (2014). The physical theories and infinite hierarchical nesting of matter. Volume 1, LAP LAMBERT Academic Publishing, pages: 580, ISBN 978-3-659-57301-9.

Hinshaw G.F., et al. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. ApJS., Vol. 208, No. 2 19H. (2013). https://doi.org/10.1088/0067-0049/208/2/19.

Oldershaw R.L. The Self-similar Cosmological Paradigm: A New Test and Two New Predictions. Astrophysical Journal, Vol. 322, pp. 34-36 (1987). https://doi.org/10.1086/165699.

Oldershaw R.L. Self-Similar Cosmological model: Introduction and empirical tests. International Journal of Theoretical Physics, Vol. 28 (6), pp. 669-694 (1989). https://doi.org/10.1007/BF00669984.

Oldershaw R.L. Self-similar cosmological model: Technical details, predictions, unresolved issues, and implications. International Journal of Theoretical Physics, Vol. 28 (12), pp. 1503-1532 (1989). https://doi.org/10.1007/BF00671591.

Oldershaw R.L. Hierarchical cosmology. Astrophysics and Space Science, Vol. 189, pp. 163-168 (1992). https://doi.org/10.1007/BF00642965.

Fedosin S.G. Scale dimension as the fifth dimension of spacetime. Turkish Journal of Physics, Vol. 36, No. 3, pp. 461-464 (2012). http://dx.doi.org/10.3906/fiz-1110-20.

Shklovsky I.S. Stars: Their Birth, Life, Death. San Francisco, 1978, ISBN 0-7167-0024-7.

Edward Kolb and Michael Turner (1988). The Early Universe. Addison-Wesley. ISBN 978-0-201-11604-5.

Fedosin S.G. The virial theorem and the kinetic energy of particles of a macroscopic system in the general field concept. Continuum Mechanics and Thermodynamics, Vol. 29, Issue 2, pp. 361-371 (2017). https://dx.doi.org/10.1007/s00161-016-0536-8.

Fedosin S.G. The integral theorem of generalized virial in the relativistic uniform model. Continuum Mechanics and Thermodynamics, Vol. 31, Issue 3, pp. 627-638 (2019). http://dx.doi.org/10.1007/s00161-018-0715-x.

Fedosin S.G. The binding energy and the total energy of a macroscopic body in the relativistic uniform model. Middle East Journal of Science, Vol. 5, Issue 1, pp. 46-62 (2019). http://dx.doi.org/10.23884/mejs.2019.5.1.06.

Sievers J.L. et al. Cosmological Parameters from Cosmic Background Imager Observations and Comparisons with BOOMERANG, DASI, and MAXIMA. Astrophysical Journal, Vol. 591, No. 2, pp. 599-622 (2003). http://dx.doi.org/10.1086/375510.

Hu W, and Dodelson S. Cosmic Microwave Background Anisotropies. Annu. Rev. Astron. and Astrophys. Vol. 40, pp. 1-50 (2002). https://doi.org/10.1146/annurev.astro.40.060401.093926.

P.A. Zyla et al. (Particle Data Group). Review of Particle Physics. Progress of Theoretical and Experimental Physics, Vol. 2020, Issue 8, 083C01 (2020). https://doi.org/10.1093%2Fptep%2Fptaa104. Cosmic Microwave Background review by Scott and Smoot.

Červinka L. Transformation of the Angular Power Spectrum of the Cosmic Microwave Background (CMB) Radiation into Reciprocal Spaces and Consequences of This Approach. Journal of Modern Physics, Vol. 2, No. 11, pp. 1331-1347 (2011). http://dx.doi.org/10.4236/jmp.2011.211165.

Jeans J.H. The Stability of a Spherical Nebula. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. Vol. 199, pp. 1-53 (1902).

Cabré A., Gaztañaga E., Manera M., Fosalba P., Castander F. Cross-correlation of Wilkinson Microwave Anisotropy Probe third-year data and the Sloan Digital Sky Survey DR4 galaxy survey: new evidence for dark energy. Monthly Notices of the Royal Astronomical Society: Letters, Vol. 372, Issue 1, pp L23–L27 (2006). https://doi.org/10.1111/j.1745-3933.2006.00218.x.

Pietrobon D., Balbi A., and Marinucci D. Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy. Phys. Rev. D, Vol. 74, 043524 (2006). https://doi.org/10.1103/PhysRevD.74.043524.

Cruz M., Martinez-Gonzalez E., Vielva P., Cayon L. Detection of a non-Gaussian spot in WMAP. Monthly Notices of the Royal Astronomical Society, Vol. 356, Issue 1, pp. 29-40 (2005). https://doi.org/10.1111/j.1365-2966.2004.08419.x2005.

Mackenzie, Ruari; et al. Evidence against a supervoid causing the CMB Cold Spot. Monthly Notices of the Royal Astronomical Society. Vol. 470 (2), pp. 2328-2338 (2017). https://doi.org/10.1093/mnras/stx931.

Kopylov A.I.; Kopylova F.G. Search for streaming motion of galaxy clusters around the Giant Void. Astronomy & Astrophysics, Vol. 382 (2), pp. 389-396(2002). https://doi.org/10.1051/0004-6361:20011500.

Dominik J. Schwarz et al. CMB anomalies after Planck. Class. Quantum Grav. Vol. 33, No. 18, 184001 (2016). https://doi.org/10.1088/0264-9381/33/18/184001.

Marov M.Y. The Structure of the Universe. The Fundamentals of Modern Astrophysics. pp. 279-294 (2015). https://doi.org/10.1007%2F978-1-4614-8730-2_10. ISBN 978-1-4614-8729-6.

Maniyar A.S., Lagache G., Béthermin M. and Ilić S. Constraining cosmology with the cosmic microwave and infrared backgrounds correlation. A&A. Vol. 621, A32 (2019). https://doi.org/10.1051/0004-6361/201833765.

Debono I. and Smoot G.F. General Relativity and Cosmology: Unsolved Questions and Future Directions. Universe, Vol, 2(4), pp. 23 (2016). https://doi.org/10.3390/universe2040023.

Eleonora Di Valentino et al. In the realm of the Hubble tension - a review of solutions. Classical and Quantum Gravity, Vol. 38, No 15, 153001 (2021). https://doi.org/10.1088/1361-6382/ac086d.

Fedosin S.G. The graviton field as the source of mass and gravitational force in the modernized Le Sage’s model. Physical Science International Journal, Vol. 8, Issue 4, pp. 1-18 (2015). http://dx.doi.org/10.9734/PSIJ/2015/22197.

Fedosin S.G. The force vacuum field as an alternative to the ether and quantum vacuum. WSEAS Transactions on Applied and Theoretical Mechanics, Vol. 10, Art. #3, pp. 31-38 (2015). http://dx.doi.org/10.5281/zenodo.888979.

Fedosin S.G. The charged component of the vacuum field as the source of electric force in the modernized Le Sage’s model. Journal of Fundamental and Applied Sciences, Vol. 8, No. 3, pp. 971-1020 (2016). http://dx.doi.org/10.4314/jfas.v8i3.18.

Fedosin S.G. The substantial model of the photon. Journal of Fundamental and Applied Sciences, Vol. 9, No. 1, pp. 411-467 (2017). http://dx.doi.org/10.4314/jfas.v9i1.25.

Fedosin S.G. The principle of operation of an engine that draws energy from the electrogravitational vacuum. Jordan Journal of Physics, Vol. 17, No 1, pp. 87-95 (2024). https://doi.org/10.47011/17.1.8.

Tomoko L Suzuki et al. Extended star-forming regions within galaxies in a dense proto-cluster core at z = 2.53. Publications of the Astronomical Society of Japan, Vol. 71, Issue 4, 69 (2019). https://doi.org/10.1093/pasj/psz047.

Douglas Clowe et al. A Direct Empirical Proof of the Existence of Dark Matter. The Astrophysical Journal, Vol. 648, No. 2, L109 (2006). https://doi.org/10.1086/508162.

Beichman C.A. et al. The formation of Solar-type stars: IRAS observations of the dark cloud Barnard 5. Astrophysical Journal letters, Vol. 278, pp. 145-148 (1984).

Beichman C.A. et al. Candidate Solar-type protostars in nearby molecular cloud cores. Astrophysical Journal, Vol. 307, pp. 337-349 (1986).

Keene J. et al. Far-infrared detection of low-luminosity star formation in the Bok globule B335. Astrophysical Journal letters, Vol. 274, pp. 143-147 (1983).

Clemens D.P., Yun J.L., Heyer M.H. Bok globules and small molecular clouds - Deep IRAS photometry and 12CO spectroscopy. Astrophysical Journal Supplement. Vol. 75, pp. 877-904 (1991). https://doi.org/10.1086/191552.

Riechers D. et al. Microwave Background Temperature at Redshift 6.34 from H2O Absorption. Nature, Vol. 602, pp. 58-62 (2022). https://doi.org/10.1038/s41586-021-04294-5.

Lineweaver C., Davis T.M. Misconceptions about the Big Bang. Scientific American. Vol. 292 (3): pp. 36-45 (2005). https://doi.org/10.1038/scientificamerican0305-36.

Oesch P.A., Brammer G., van Dokkum P. et al. A Remarkably Luminous Galaxy at z=11.1 Measured with Hubble Space Telescope Grism Spectroscopy. The Astrophysical Journal, Vol. 819 (2), pp.129 (2016). https://doi.org/10.3847/0004-637X/819/2/129.

Qadir A., Tahir N. and Sakhi M. Virial clouds explaining the observed rotational asymmetry in the galactic halos. Physical Review D, Vol.100, No. 4, 043028 (2019). http://dx.doi.org/10.1103/PhysRevD.100.043028.

Tahir N., Qadir A., Sakhi M. et al. Evolution of virial clouds-I: From the surface of last scattering up to the formation of population-III stars. Europ. Phys. J. C. Vol. 81, 827 (2021). https://doi.org/10.1140/epjc/s10052-021-09620-9.

Kogut A. et al. Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps. The Astrophysical Journal, Vol. 419, pp. 1-6 (1993). http://doi.org/10.1086/173453.

Fedosin S.G. The Pioneer Anomaly in Covariant Theory of Gravitation. Canadian Journal of Physics, Vol. 93, No. 11, pp. 1335-1342 (2015). http://dx.doi.org/10.1139/cjp-2015-0134.

Fedosin S.G. The Gravitational Field in the Relativistic Uniform Model within the Framework of the Covariant Theory of Gravitation. International Letters of Chemistry, Physics and Astronomy, Vol. 78, pp. 39-50 (2018). http://dx.doi.org/10.18052/www.scipress.com/ILCPA.78.39.

Baryshev Y. Conceptual Problems of the Standard Cosmological Model. AIP Conference Proceedings, Vol. 822, pp. 23 (2006); https://doi.org/10.1063/1.2189119.

Asencio E., Banik I., Kroupa P. A massive blow for ΛCDM − the high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology. Monthly Notices of the Royal Astronomical Society, Vol. 500, Issue 4, pp. 5249-5267 (2021). https://doi.org/10.1093/mnras/staa3441.

Joon Hyeop Lee et al. Mysterious Coherence in Several-megaparsec Scales between Galaxy Rotation and Neighbor Motion. The Astrophysical Journal, Vol. 884, No. 2, pp. 104-119 (2019). https://doi.org/10.3847/1538-4357/ab3fa3.

Salehi A., Yarahmadi M., Fathi S. The cosmological bulk flow in QCDM model: (In)consistency with ΛCDM. Monthly Notices of the Royal Astronomical Society, Volume 504, Issue 1, June 2021, Pages 1304–1319, https://doi.org/10.1093/mnras/stab909.

Wang P., Libeskind N.I., Tempel E. et al. Possible observational evidence for cosmic filament spin. Nature Astronomy, Vol. 5, pp. 839-845 (2021). https://doi.org/10.1038/s41550-021-01380-6.

Crawford D.F. A problem with the analysis of type Ia supernovae. Open Astronomy, Vol. 26, No. 1, pp. 111-119 (2017). https://doi.org/10.1515/astro-2017-0013.

Ward-Thompson D., Kirk J.M., Crutcher R.M., Greaves J.S., Holland W.S., Andre P. First observations of the magnetic field geometry in prestellar cores. The Astrophysical Journal, Vol. 537, L135 (2000). https://doi.org/10.1086/312764.

Matthews B.C., Wilson C.D. Magnetic fields in star-forming molecular clouds. V. Submillimeter polarization of the Barnard 1 dark cloud. The Astrophysical Journal, Vol. 574. pp. 822-833 (2002). https://doi.org/10.1086/341111.

Zielinski N., Wolf S. and Brunngräber R. Constraining the magnetic field properties of Bok globule B335 using SOFIA/HAWC+. A&A, Vol. 645, A125 (2021). https://doi.org/10.1051/0004-6361/202039126.

Downloads

Published

2025-10-31

How to Cite

Fedosin, S. (2025). On the origin of cosmic microwave background radiation. Jordan Journal of Physics, 18(4), 529–549. Retrieved from https://jjp.yu.edu.jo/index.php/jjp/article/view/323