Piezoelectric Contributions to Parametric Amplification of Acoustical Phonons in Magnetized n-InSb Crystal
DOI:
https://doi.org/10.47011/15.3.2Keywords:
Parametric amplification, Acoustical phonons, Piezoelectricity, Electrostriction, n-InSb crystal.Abstract
Cited by : Jordan J. Phys., 15 (3) (2022) 225-237
Using the hydrodynamic model of semiconductor-plasmas and following the coupled-mode approach, we develop a theoretical formulation to study piezoelectric contributions to parametric amplification of acoustical phonons in magnetized n-InSb crystal. The origin of nonlinear interaction is assumed to lie in effective second-order optical susceptibility arising due to nonlinear induced current density and electrostrictive polarization of the medium. Expressions are obtained for threshold pump amplitude for the onset of parametric process and parametric gain coefficient (well above the threshold pump field) in the presence and absence of piezoelectricity and/or externally applied magnetostatic field. Numerical analysis is made for n-InSb crystal irradiated by 10.6 m pulsed CO2 laser. The piezoelectric contributions to three-wave parametric amplification process are only in the presence of magnetostatic field. The parametric gain coefficient is independent of doping concentration for the cases when either/both piezoelectricity and magnetostatic field are absent. Around resonance (electron-cyclotron frequency ~ pump frequency), the parametric gain coefficient in the presence of piezoelectricity is 102 times higher than that in the absence of piezoelectricity. The analysis establishes the technological potentiality of transversely magnetized n-InSb as the host for parametric devices, like parametric amplifiers and oscillators.
PACS numbers: 42.65.-k, 78.55.Cr, 71.38.-k, 52.35.Mw.
References
Boyd, R.W., “Nonlinear optics”, 3rd edn. (Academic Press, New York, 2008).
Peter, J.H. and Andrekson, P.A., IEEE J. Select. Top. Quantum Electron., 8 (2002) 506.
Ciriolo, AG, Negro, M., Devetta, M., Cinquanta, E., Facciala, D., Pusala, A., Silvestri, SD, Stagira, S. and Vozzi, C., Appl. Sci., 7 (2017) 265.
Manzoni, C. and Cerullo, G., J. Opt., 18 (2016) 103501.
Sweeney, S.J. and Mukherjee, J., “Optoelectronic Devices and Materials”, Kasap, S. and Capper, P. (eds.), Springer Handbook of Electronic and Photonic Materials (Springer Handbooks, Springer, Cham, 2017).
New, G., “Introduction to Nonlinear Optics”, (Cambridge University Press, New York, 2011), p. 7.
Duncan, C., Perret, L., Palomba, S., Lapine, M., Kuhlmey, B.T. and Sterke, C.M. de, Sci. Rep., 5 (2015) 8983.
Sylvestre, T., Mussot, A., Vedadi, A., Provino, L., Lantz, E. and Maillotte, H., Fib. Integ. Opt., 27 (2008) 516.
Ooi, KJA, Ng, DKT, Chee, AKL, Ng, SK, Wang, Q., Ang, LK, Agarwal, AM, Kimerling, LC and Tan, DTH, Nat. Commun., 8(2017)13878.
Ravindra, NM, Ganapathy, P. and Chio, J., Infrared Phys. Technol., 50 (2007) 21.
Garmire, E., IEEE J. Selected Topics in Quantum Electron., 6 (2000) 1094.
Artemenko, O.L. and Sevruk, B.B., Phys. Stat. Sol. (b), 189 (1995) 257.
Agrawal, R., Dubey, S. and Ghosh, S., J. Phys. Conf. Series, 365 (2012) 012045.
Kumar, V., Sinha, A., Singh, B.P. and Chandra, S., Phys. Lett. A, 380 (2016) 3630.
Paliwal, A., Dubey, S. and Ghosh, S., IOSR-J. Appl. Phys., 9 (2017) 75.
Ghosh, S., Sharma, G. and Rishi, M.P., Physica B: Cond. Mat., 328 (2003) 255.
Jangra, S., Singh, H.P. and Kumar, V., Mod. Phys. Lett. B, 33 (2019) 1950271.
Singh, M., Aghamkar, P. and Bhaker, S.K., Opt. Laser Tech., 41 (2009) 64.
Biaggio, I., Appl. Phys. Lett., 78 (2001) 1861.
Singh, M., Aghamkar, P. and Duhan, S., Chin. Phys. Lett., 25 (2008) 3276.
Visvanathan, S., Phys. Rev., 120 (1960) 376.
Speras, DL, Phys. Rev. B, 2 (1970) 1931.
Aghamkar, P., Singh, M., Kishore, N., Duhan, S. and Sen, P.K., Semicond. Sci. Technol., 22 (2007) 749.
Yariv, A., “Quantum Electronics”, 3rd edn., (Wiley, New York, 1988), p. 477.
Bhan, S., Singh, H.P., Kumar, V. and Singh, M., Optik – Int. J. Light Elect. Opt., 184 (2019) 464.