Effect of Annealing Temperatures on the Properties of Cu2ZnSnS4 (CZTS) Thin Films for Solar Cell Application
Keywords:
Grain size; microstrain; absorbance; bandgap; efficiencyAbstract
In recent times, considerable attention has shifted to the application of Copper Zinc Tin Sulfide (CZTS) as absorber material in thin film solar cells. CZTS is a potential replacement for Copper Indium Gallium Selenide and Cadmium Telluride absorber-based solar cells because of its environmentally benign properties. It has a direct bandgap of 1.5 eV and high absorption coefficient (> 10-4 cm-1). In this paper, CZTS precursor solution was prepared using ethylene glycol and CZTS thin film was synthesized by spraying the solution on heated substrates. The effect of annealing temperatures on structural, optical and electrical properties of sprayed CZTS thin films were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-vis) spectrophotometry and four-point probe technique. XRD study revealed a wurzite structured CZTS thin film at 450oC annealing temperature and images obtained from SEM showed a homogenous and agglomerated surface at same temperature. UV-vis spectroscopic studies revealed increasing absorbance with increase in wavelength and a bandgap of 1.5 eV at 450oC. Electrical studies showed lowest resistivity at 450oC and a conversion efficiency of 0.12%.
References
X. Zhang, Y. Xu, J. Zhang, S. Dong, L. Shen, A. Gupta. and N. Bao. (2018) “Synthesis of wurzite Cu2ZnSnS4 nanosheets with exposed high-energy (002) facet for fabrication of Pt-free solar cell counter electrodes”, Scientific Reports, Vol. 8, No. 248, pp. 1-13.
R. Zhu, Z. Zhang, and Y. Li. (2019).“Advanced materials for flexible solar cell applications, Nanotechnology Reviews”, Vol. 8, No. 1, pp. 452-458, 2019.
A. Zappetini. Single crystals of electronic materials, Cadmium telluride and cadmium zinc telluride (pp. 273-301): Woodhead Publishing Series in Electronic and Optical Materials, 2019.
Pal, K., Singh, P., Bhaduri, A., Thapa K.B. “Current challenges and future prospects for a highly efficient (>20%) kesterite CZTS solar cell; A review”, Solar Energy Materials and Solar cells, Vol. 196, pp. 138-156 2019
Boersu, I., and Vasile, B.G. (2023). Cureent Status of the Open-Circuit voltage of kesteriste CZTS absorber layers for photovoltaic applications – Part I, A Review, Materials, 15 (23), 1-16.
Sah, M., Reddy, V.R.M, Kim, B., Patro, B., Kim, W.K., Sharma, P. (2022). Fabrication of Cu2ZnSnS4 light-absorber using cost-effective mechanochemical method for photovoltaic applications, 15(5), 6.
C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, L. Yang, J.M. Cairney, J. Ekins-Daukes, Z. Hameiri, J.A. Stride, S. Chen, M.A. Green, and X. Hao. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nature Energy, Vol. 3, pp. 764-772 2018
W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Advance Energy Materials, Vol. 4, No. 7, pp. 1-5 2014.
A.A. Faremi, A.T. Akindadelo, M.A. Adekoya, A.J. Adebayo, A.O. Salau, S.S. Oluyamo, P.A. Olubambi (2022). Engineering of window layer cadmium sulphide and zinc sulphide thin films for solar cell applications. Results in Engineering, Vol. 16, 100622. DOI: 10.1016/j.rineng.2022.100622
Patel, S.B., and Gohel, J.V. (2017). Effect of type of solvent on the sol-gel spin coated CZTS thin films, Physics & Astronomy International Journal, 1(4), 1-6.
Olga, M.A., Sarp, A.O., Seyhan, A., and Zan, R. (2021). Impact of stacking order and annealing temperature on properties of CZTS thin films and solar cell performance, Renewable Energy, 179, 1865-1874.
X. Lu, Z. Zhuang, Q. Penq, and Y. Li. Wurzite Cu2ZnSnS4 Nanocrystals: A novel quartenary semiconductor, Chemical Communication, Vol. 47, pp. 3141-3143 (2011).
R. Touati, M.B. Rabeh, and M. Kanzari. Structural and optical properties of the new absorber Cu2ZnSnS4 thin film grown by vacuum evaporation method, Energy Procedia, Vol. 44, pp.44-51 (2014).
U. Chalapathi, B. Poornaprakash, and S.H. Park. Effect of substrate surface on the growth of spray deposited Cu2ZnSnS4 thin films, Chalcogenide Letters, Vol. 15, No. 10, pp.475-481 (2018)
G. Rey, A. Redinger, T.P. Sendler, T.P. Weiss, M. Thevenin, M. Guennou, B. El Adhib, and S. Siebentritt. The band gap of Cu2ZnSnS4: Effect on order-disorder, Applied Physics Letters, Vol. 105, pp. 1-5 (2014).
H. Izadneshan, and G. Solookinejad,. Effect of annealing on physical proiperties of CZTS thin films for solar cell applications, Journal of Optoelectronical Nanostructures, Vol. 3, No. 2, pp. 20-28 (2018).
T. Singh, D.K. Pandya, and R. Singh. Annealing studies on the structural and optical properties of electrodeposited CdO thin films, Materials Chemistry and Physics, Vol. 130, No. 3, pp. 1366-1371 (2011).
J. Raiguru, B.V. Subramanyan, K. Sa, I. Alam, S. Das, J. Mutherjee, P.C. Mahakul, B. Subudhi, and Mahanadia, P. Impact annealing temperature on the phase of CZTS with the variation in surface morphological changes and extraction of optical bandgap, Materials Science and Engineering, Vol. 178, pp. 1-8 (2017).
L. Chen, and C. Park Effects of annealing temperature on CZTS films forms by electrospray technique, Korean Journal of Chemical Engineering, Vol. 34, No. 4, pp. 1187-1191 (2017).
S.B. Patel, and V.J. Gohel. Effect of type pf solvent on the sol-gel spin-coated CZTS thin film, Physics and Astronomy International Journal, Vol. 1, No. 4, pp. 126-129 (2017).
U. Syafiq, N. Ataolahhi, R. Maggio, and P. Scardi. Solution-Based synthesis and characterization of Cu2ZnSnS4 (CZTS) thin film, Molecules, Vol. 24, No.3454, pp. 1-24 (2019).
U. Chalapathi, B. Poornaprakash, and S. H. Park. Effect of substrate surface on the growth of spray deposited Cu2ZnSnS4 thin films, Chalcogenide Letters, Vol. 15, No. 10, 475-481 (2018).
S.B. Patel, and V.G. Gohel. Enhanced solar cell performance by optimization of spray-coated CZTS thin film using Taguchi and response surface method, Journal of Materials Science: Materials in Electronic, Vol. 29, pp. 5613-5623 (2018).
M.I. Fathima, A.M. Arulamantham, and K.S. Wilson. Effect of ZnS nanowire ARC on CZTS/CdS thin film solar cell by nebulizer spray pyrolysis technique, Materials Research Express, Vol. 7, pp. 1-12 (2020).
R.K. Tripathi, O.S. Panwar, I. Rawal, B.P. Singh, and B.C. Yadav. (2018). Study on nanocrystalline silicon thin films grown by the filtered cathodic vacuum arc technique using boron doped solid silicon for fast photo detectors, Journal of The Taiwan Institue of Chemical Engineers, Vol. 86, pp. 185-191. DOI: 10.1016/j.jtice.2018.01.051
M.A. Franco and S.N. Groesser. (2021). A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy, Sustainability, Vol. 13, No.17, pp 1-35.
I. Rawal, R.K. Tripathi, and O.S. Panwar (2016). Easy synthesis of organic–inorganic hybrid nanomaterials: study of DC conduction mechanism for light dependent resistors, RSC Advances, Vol. 6, No 37, pp 31540-31550. DOI: 10.1039/C5RA27774D
R.K. Tripathi, O.S. Panwar, A.K. Kesawarni, I. Rawal, B.P. Singh, , M.K. Dalai and S. Chockalingam, (2014). Investigations on phosphorous doped hydrogenated amorphous silicon carbide thin films deposited by a filtered cathodic vacuum arc technique for photo detecting applications, RSC Advances, Vol. 4, No. 97, pp 54388-54397. DOI: 10.1039/C4RA08343A
I. Rawal, Dwivedi, N., R.K. Tripathi, O.S. Panwar, H.K. Malik (2017). Organic-inorganic hybrid nanomaterials for advanced light dependent resistors, Materials Chemistry and Physics, Vol. 202, pp. 169-176. DOI: 10.1016/j.matchemphys.2017.09.026
A. Wang, J. Huang, J. Cong, X. Yuan, M. He, J. Li, C. Yan, X. Cui, N. Song, S. Zhoe, M.A. Green, K. Sun and X. Hao. (2024). Cd-Free Pure Sulfide Kesterite Cu2ZnSnS4 Solar Cell with Over 800 mV Open-Circuit Voltage Enabled by Phase Evolution Intervention, Advanced Materials, Vol. 36, pp. 1-9.
A.S. Najim, A. Al-Ghamdi, M.T. Amin, A. Al-Ghamdi, H. Moria, A.M. Holi, A.M. Abed, A.A. Al-Zharani, K. Sopian, B. Bais, and A.J. Sultan (2023). Towards a promising systematic approach to the synthesis of CZTS solar cells, Scientific Reports, Vol. 13, No. 1.
A.N. Orelusi, V.A. Owoeye, J.B. Dada, A.O. Salau, H.O. Boyo, S.A. Adewinbi (2023). Investigation of microstructure and optical characteristics of Ti-doped ZnO thin films as an effective solar collector in photovoltaic solar cell applications using digitally controlled spray pyrolysis. Journal of Materials Research, Vol. 38, pp. 4192–4200. DOI: 10.1557/s43578-023-01133-3
A.A. Faremi, P.A. Olubambi, A.O. Salau, A.A. Ibiyemi (2023). SCAPS 3201 simulation of tunable heterostructured p-CdTe and n-CdS thin films-based solar cells. Results in Engineering, Vol. 18, pp. 1-7. DOI: 10.1016/j.rineng.2023.101039
A.A. Faremi, O. Olubosede, A.O. Salau, S.O. Adigbo, P.A. Olubambi, E. Lawan (2023). Variability of temperature on the electrical properties of heterostructured CIS/Cds through SCAPS simulation for photovoltaic applications. Materials for Renewable and Sustainable Energy, Vol. 12(3), pp. 235–246. DOI: 10.1007/s40243-023-00244-5
A.O. Salau, A.S. Olufemi, G. Oluleye, V.A. Owoeye, I. Ismail (2022). Modeling and Performance Analysis of Dye-Sensitized Solar Cell Based on ZnO Compact Layer and TiO2 Photoanode. Materials Today, Vol. 51(1), pp. 502-507. DOI: 10.1016/j.matpr.2021.05.592