Heavy-light mesons and diatomic molecules with improved Eckart--Hellmann potential model in a deformation space-space background: New bound states and the effect on thermodynamic properties

Authors

  • Abdelmadjid Maireche University of M'sila-ALGERIA

Keywords:

Flat plat collector, Selective coating, Optical properties, Solar irradiance.

Abstract

In this research work, we investigate the 3D deformed Klien-Gordon and Schrödinger equation equations (DKGE and DSE) with the improved Eckart-Hellmann potential model (IEHP) model taking into consideration the effects of deformation space-space within the three-dimensional relativistic/non-relativistic noncommutative quantum mechanics (3D-(R/NR)NCQS) regime. The DKGE and DSE in the 3D-(R/NR) NCQS regime for this consideration are solved using the well-known Bopp's shifts method and standard perturbation theory.  The new relativistic and non-relativistic energy equation and eigenfunction for the IEHP in the presence of deformation space-space for the homogeneous (I2, N2, H2) and heterogeneous (CO, NO, VH, TiH, NiC, TiC, and CuLi) diatomic molecules are obtained to be sensitive to the atomic quantum numbers ( ), the mixed potential depths ( ), the screening parameter  and non-commutativity parameters. The non-relativistic limit of new energy spectra is analyzed. We examine the obtained new bound state eigenvalues of the DKGE and deformed Schrödinger equation with the IEHP in 3D-(R/NR) NCQS symmetries by suitable adjustment of the combined potential parameters and get the new modified Hellmann potential, new modified Eckart potential, new modified Coulomb potential, and new modified Yukawa potential. The homogeneous and heterogeneous composite systems under the IEHP model are investigated in the context of the 3D-NRNCQS regime. The effect of space-space deformation on the spin-averaged mass spectra of the heavy-light mesons such as (charmonium and bottomonium) under the IEHP model in 3D-NRNCQS symmetries was investigated. Furthermore, the thermal properties such as partition function, mean energy, free energy, specific heat, and entropy of the IHPMEP are duly investigated in both 3D-NRQM and 3D-NRNCQS symmetries. The present research finds many applications in various fields, such as molecular and atomic physics.

 

References

Hill, E.L., and Am. J. Phys. 22 (1954) 211. https://doi.org/10.1119/1.1933682

Pekeris, C.L., Phys Rev 45 (1934) 98. https://doi.org/10.1103/PhysRev.45.98

Greene, R.L., and Aldrich, C., Phys. Rev. A 14 (1976) 2363. https://doi.org/10.1103/PhysRevA.14.2363

Inyang, E., Obisung, E., William, E., and Okon, I. East European Journal of Physics, 2022 (3) (2022) 104. https://doi.org/10.26565/2312-4334-2022-3-14

Inyang, E.P., William, E.S., Omugbe, E., Inyang, E.P., Ibanga, E.A., Ayedun, F., Akpan, I.O., and Ntibi, J.E., Rev. Mex. Fís. 68 (2022) 020401. https://doi.org/10.31349/RevMexFis.68.020401

Inyang, E.P., William, E.S., Obu, J.A., Ita, B.I., Inyang, E.P., and Akpan, I.O., Molecular Physics 119(23) (2021) e1956615. https://doi.org/10.1080/00268976.2021.1956615

Eckart, C., Phys. Rev. 35 (1930) 1303. https://doi.org/10.1103/PhysRev.35.1303

Cooper, F., Khare, A., and Sukhatme, U., Physics Reports 251(5-6) (1995) 267. https://doi.org/10.1016/0370-1573(94)00080-M

Weiss, J.J., The Journal of Chemical Physics 41(4) (1964) 1120. https://doi.org/10.1063/1.1726015

Cimas, A., Aschi, M., Barrientos, C., Rayón, V.M., Sordo, J.A., and Largo, A., Chemical physics letters 374(5-6) (2003) 594. https://doi.org/10.1016/S0009-2614(03)00771-1

Diao, Y.F., Yi, L.Z., and Jia, C.S., Phys. Lett. A 332(3-4) (2004) 157. https://doi.org/10.1016/j.physleta.2004.09.051

Zou, X., Yi, L.Z., and Jia, C.S., Phys. Lett. A 346(1-3) (2005) 54. https://doi.org/10.1016/j.physleta.2005.07.075

Yahya, W.A., Oyewumi, K.J, Akoshile, C.O., Ibrahim, T.T., and Vect. J., Relativ 5 (2010) 1.

Dong, S.H., Qiang, W.C., Sun, G.H., and Bezerra, V.B., J. Phys. A: Math. Theor. 40 (34) (2007) 10535. https://doi.org/10.1088/1751-8113/40/34/010

Ikot, A.N., Maghsoodi, E., Zarrinkamar, S., et al., Few-Body Syst 55 (2014) 241. https://doi.org/10.1007/s00601-014-0862-y

Hellmann, H., The Journal of Chemical Physics 3(1) (1935) 61. https://doi.org/10.1063/1.1749559

Onate, C.A., Onyeaju, M.C., Ikot, A.N., and Ebomwonyi, O., Eur. Phys. J. Plus 132 (2017) 462. https://doi.org/10.1140/epjp/i2017-11729-8

Ikhdair, S.M., and Sever, R., Journal of Molecular Structure: THEOCHEM 809(1-3) (2007) 103. https://doi.org/10.1016/j.theochem.2007.01.019

Hall, R.L., and Katatbeh, Q.D., Physics Letters A 287(3-4) (2001) 183. https://doi.org/10.1016/S0375-9601(01)00497-2

Roy, A.K., Jalbout, A.F., and Proynov, E.I., J Math Chem 44 (2008) 260. https://doi.org/10.1007/s10910-007-9308-9

Nasser, I., and Abdelmonem, M.S., Phys. Scr. 83(5) (2011) 055004. https://doi.org/10.1088/0031-8949/83/05/055004

Hamzavi, M., Thylwe, K.E. and Rajabi, A.A., Commu. Theor. Phys. 60(1) (2013) 1. https://doi.org/10.1088/0253-6102/60/1/01

Roy, A.K, Jalbout, A.F. and Proynov, E.I., J Math Chem 44 (2008) 260. https://doi.org/10.1007/s10910-007-9308-9

M. Hamzavi, A. A. Rajabi, Canadian Journal of Physics 91(5), 411 (2013). https://doi.org/10.1139/cjp-2012-0542

Onate, C.A., Ojonubah, J.O., Adeoti, A., Eweh, J. E., and Ugboja, M.,Afr. Rev. Phys. 9(006), 497 (2014).

Douglas, M.R., and Nekrasov, N.A., Rev. Mod. Phys. 73(4) (2001) 977. https://doi.org/10.1103/RevModPhys.73.977

Moffat, J., Phys. Lett. B 493(1-2) (2000) 142. https://doi.org/10.1016/S0370-2693(00)01139-4

Connes, A., J. High Energ. Phys. 02 (1998) 003. https://doi.org/10.1088/1126-6708/1998/02/003

Hassanabadi, H., Hosseini, S.S., and Zarrinkamar, S., Int J Theor Phys. 54 (2015) 251. https://doi.org/10.1007/s10773-014-2219-1

Giri, S., Eur. Phys. J. Plus 137 (2022) 181. https://doi.org/10.1140/epjp/s13360-022-02403-5

Zeng, X.X., Eur. Phys. J. C 83 (2023) 129. https://doi.org/10.1140/epjc/s10052-023-11274-8

Trampetić, J., and You, J., Phys. Rev. D 105(7), 075016 (2022). https://doi.org/10.1103/PhysRevD.105.075016

Kan, N., Aoyama, T., Shiraishi, K., Class. Quantum Grav. 40(1) (2022) 015010. https://doi.org/10.1088/1361-6382/aca868

Rayimbaev, J., Bokhari, A.H., and Ahmedov, B., Class. Quantum Grav. 39(7), 075021 (2022). https://doi.org/10.1088/1361-6382/ac556a

Sokoliuk, O., Hassan, Z., Sahoo, P., and Baransky, A., Annals of Physics 443 (2022) 168968. https://doi.org/10.1016/j.aop.2022.168968

Gnatenko, K.P., and Tkachuk, V.M., Mod. Phys. Lett. A 31 No. 5 (2016) 1650026. https://doi.org/10.1142/S0217732316500267

Baruah, A., Goswami, P., and Deshamukhya, A., New Astronomy 99, 101956 (2023). https://doi.org/10.1016/j.newast.2022.101956

Maireche, A., Ukr. J. Phys. 67(7) (2022) 485. https://doi.org/10.15407/ujpe67.7.485

Kurkov, M., and Vitale, P., J. High Energ. Phys. 2022 (2022) 32. https://doi.org/10.1007/JHEP01(2022)032

Snyder, H.S., Phys. Rev. 71 (1947) 38. https://doi.org/10.1103/PhysRev.71.38

Connes, A., Nucl. Phys. Proc. Suppl. 18B (1991) 29. https://doi.org/10.1016/0920-5632(91)90120-4

Connes,Noncommutative Geometry (ISBN-9780121858605) 1994.

Connes, J. Math. Phys. 36 (11), 6194 (1995). https://doi.org/10.1063/1.531241

Seiberg, N., and Witten, E., J. High Energ. Phys. 1999 (09), 32 (1999). https://doi.org/10.1088/1126-6708/1999/09/032

Maireche, A., Ukr. J. Phys. 67(3) (2022) 183. https://doi.org/10.15407/ujpe67.3.183

Maireche, A., Jordan Journal of Physics 16(1) (2023) 31. https://doi.org/10.47011/16.1.4

Maireche, Few-Body Syst 63, 63 (2022). https://doi.org/10.1007/s00601-022-01766-w

Maireche, A., Int. J. Geo. Met. Mod. Phys. 19, No. 06 (2022) 2250085. https://doi.org/10.1142/S0219887822500852

Maireche, A., Rev. Mex. Fís. 68 (5) (2022) 050702 1. https://doi.org/10.31349/RevMexFis.68.050702.

Maireche, A., Rev. Mex. Fís., 68 (2) (2022.) 020801 1. https://doi.org/10. /RevMexFis.68.020801

Maireche, A., Mod. Phys. Lett. A 36(33) (2021) 2150232. https://doi.org/10.1142/S0217732321502321

Maireche, A., Ukr. J. Phys. 65(11) (2020) 987. https://doi.org/10.15407/ujpe65.11.987

Maireche, A., J Nanosci Curr Res 2 (2017) 1000115. https://doi.org/10.4172/2572-0813.1000115

Maireche, A., To Physics Journal 5, (2020) 51. http://www.purkh.com/index.php/tophy

Maireche, A., Rev. Mex. Fís. 69 (3) (2023) 030801. https://doi.org/10.31349/RevMexFis.69.030801

Terashima, S., Phys. Lett. B 482(1-3) (2000) 276. https://doi.org/10.1016/s0370-2693(00)00486-x

Maireche, A., Indian J Phys 97 (2023) 519. https://doi.org/10.1007/s12648-022-02433-w

Darroodi, M., Mehraban, H., and Hassanabadi, H., Mod. Phys. Lett. A 33 (35) (2018) 1850203. https://doi.org/10.1142/s0217732318502036

N'Dolo, E.E., Samary, D.O., Ezinvi, B., and Ounkonnou, M.N., Int. J. Geom. Met. Mod. Phys. 17(05) (2020) 2050078. https://doi.org/10.1142/s0219887820500784

Gnatenko, K.P., and Tkachuk, V.M., Int. J. Mod. Phys. A 33(07) (2018) 1850037. https://doi.org/10.1142/s0217751x18500379

Aghababaei, S., and Rezaei, G., Commun. Theor. Phys. 72 (2020) 125101. https://doi.org/10.1088/1572-9494/abb7cc

Santos, J.F.G., J. Mat. Phys. 61(12) (2020) 122101. https://doi.org/10.1063/5.0010076

Harko, T., and Liang, S.D., Eur. Phys. J. C 79(4) (2019) 300. https://doi.org/10.1140/epjc/s10052-019-6794-4

Solimanian, M., Naji, J., and Ghasemian, K., Eur. Phys. J. Plus 137 (2022) 331. https://doi.org/10.1140/epjp/s13360-022-02546-5

Oliveira, R.R.S., Alencar, G., and Landim, R.R., Gen Relativ Gravit 55 (2023) 15. https://doi.org/10.1007/s10714-022-03057-5

Kong, O.C., and Liu, W., Chin. J. Phys. 69 (2021) 70. https://doi.org/10.1016/j.cjph.2020.11.008

Mustafa, G., Hassan, Z., and Sahoo, P., Annals of Physics 437 (2022) 168751. https://doi.org/10.1016/j.aop.2021.168751

Dąbrowski, L., D'Andrea, F., and Sitarz, A., Lett Math Phys 108 (2018) 1323. https://doi.org/10.1007/s11005-017-1036-x

Gnatenko, K.P., and Shyiko, O.V., Mod. Phys. Lett. A 33(16) (2018) 1850091. https://doi.org/10.1142/S0217732318500918

Derakhshani, Z., and Ghominejad, M., Chin. J. Phys. 54(5) (2016) 761. https://doi.org/10.1016/j.cjph.2016.07.011

Chargui, Y., and Dhahbi, A., Eur. Phys. J. Plus 138 (2023) 26. https://doi.org/10.1140/epjp/s13360-023-03661-7

Wang, J., and Li, K., J. Phys. A Math. Theor. 40(9) (2007) 2197. https://doi.org/10.1088/1751-8113/40/9/021

Maireche, A., Molecular Physics (2023). https://doi.org/10.1080/00268976.2023.2205968

Maireche, A., Few-Body Syst 63 (2022) 54. https://doi.org/10.1007/s00601-022-01755-z

Maireche, A., Few-Body Syst 62 (2021) 66. https://doi.org/10.1007/s00601-021-01639-8

Maireche, A., J. Phys. Stud. 25(4) (2021) 4301. https://doi.org/10.30970/jps.25.4301

Alhaidari, D., Bahlouli, H., and Al-Hasan, A., Phys. Lett. A 349(1-4) (2006) 87. https://doi.org/10.1016/j.physleta.2005.09.008

Connes, A., J. Mat. Phys. 36(11) (1995) 6194. https://doi.org/10.1063/1.531241

Connes, A., Cuntz, J., Rieffel, M.A., and Yu, G., Oberwolfach Reports 10(3) (2013) 2553. https://doi.org/10.4171/OWR/2013/45

Ho, P. M., and Kao, H.C., Phys. Rev. Lett. 88 (15) (2002) 151602. https://doi.org/10.1103/physrevlett.88.151602

Dalabeeh, M.A., J. Phys. A: Math. Gen. 38(7) (2005) 1553. https://doi.org/10.1088/0305-4470/38/7/010

Motavalli, H., and Akbarieh, A.R., Mod. Phys. Lett. A 25(29) (2010) 2523. https://doi.org/10.1142/s0217732310033529

Mirza, M. Mohadesi, Commun. Theor. Phys. (Beijing, China) 42, 664 (2004). https://doi.org/10.1088/0253-6102/42/5/664

Bopp, F., Annales de l'institut Henri Poincaré 15 No. 2 (1956) 81.

Mezincescu, L., Star Operation in Quantum Mechanics (2000). https://arxiv.org/abs/hep-th/0007046.

Gamboa, J., Loewe, M., and Rojas, J.C., Phys. Rev. D 64 (2001) 067901. https://doi.org/10.1103/PhysRevD.64.067901

Gouba, L., Int. J. Mod. Phys. A 31(19) (2016) 1630025. https://doi.org/10.1142/s0217751x16300258

Curtright, T., Fairlie, D., and Zachos, C., Phys. Rev. D 58 (1998) 025002. https://doi.org/10.1103/PhysRevD.58.025002

Maireche, A., East European Journal of Physics 2023(1) (2023) 28. https://doi.org/10.26565/2312-4334-2023-1-03

Maireche, A., East European Journal of Physics 2022 (4) (2022) 200. https://doi.org/10.26565/2312-4334-2022-4-

Maireche, A., Bulg. J. Phys. 50(1 (2023) ) 054. https://doi.org/10.55318/bgjp.2023.50.1.054

Maireche, A., Int. J. Geom. Met. Mod. Phys. 18(13) (2021) 2150214. https://doi.org/10.1142/S0219887821502145

Maireche, A., Indian J Phys (2023). https://doi.org/10.1007/s12648-023-02681-4

Maireche, A., YJES. 19(2) (2022) 78. https://doi.org/10.53370/001c.39615

Abyaneh, M.Z. and Farhoudi, M., Eur. Phys. J. Plus 136 (2021) 863. https://doi.org/10.1140/epjp/s13360-021-01855-5

Cuzinatto, R.R., De Montigny, M., and Pompeia, P.J., Class. Quantum Grav. 39 (2022) 075007. https://doi.org/10.1088/1361-6382/ac51bc

Aounallah, H., and Boumali, A., Phys. Part. Nuclei Lett. 16 (2019) 195. https://doi.org/10.1134/S1547477119030038

Saidi, A., and Sedra, M.B., Mod. Phys. Lett. A 35(5) (2020) 2050014. https://doi.org/10.1142/s0217732320500145

Ahmadov, A., Demirci, M., Aslanova, S., and Mustamin, M., Phys. Lett. A 384(12) (2020) 126372. https://doi.org/10.1016/j.physleta.2020.126372

Tas, A., Aydogdu, O., and Salti, M., Annals of Physics 379 (2017) 67. https://doi.org/10.1016/j.aop.2017.02.010

Abramowitz, M., and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed., Dover Publications, Washington (1972).

Medjedel, S., and Bencheikh, K., Phys. Lett. A 383(16) (2019) 1915. https://doi.org/10.1016/j.physleta.2019.03.021

William, E.S., Inyang, E.P., and Thompson, E.A., Rev Mex Fis. 66 (2020) 730. https://doi.org/10.31349/revmexfis.66.730

Taskin, F., and Ko¸cak, G., Chin. Phys. B 19 (9) (2010) 090314. https://doi.org/10.1088/1674-1056/19/9/090314

Zhang, Y., Phys. Scr. 78(1) (2008) 015006.https://doi.org/10.1088/0031-8949/78/01/015006

Edet, O., Okorie, U. S., Ngiangia, A.T., and Ikot, A.N., Ind. J. Phys. 94 (2020) 425. https://doi.org/10.1007/s12648-019-01477-9

Onate, C.A., and Ojonubah, J.O., Int J Mod Phys E. 24 (2015) 1550.

Maireche, A., Int. J. Geom. Met. Mod. Phys. 17(5) (2020) 2050067. https://doi.org/10.1142/S021988782050067X

Maireche, A., Few-Body Syst 61 (2020) 30. https://doi.org/10.1007/s00601-020-01559-z

Maireche, A., Afr. Rev. Phys. 15 (2020) 1.

Hamzavi, M., Ikhdair, S.M., and Thylwe, K.E., Chin. Phys. B 22(4), 040301 (2013). https://doi.org/10.1088/1674-1056/22/4/040301

Maireche, A., J. Phys. Stud. 25(1) (2021) 1002. https://doi.org/10.30970/jps.25.1002

Gnatenko, K.P., Phys. Lett. A 377(43) (2013) 3061. https://doi.org/10.1016/j.physleta.2013.09.036

Abu-Shady, M., Abdel-Karim, T.A., and Ezz-Alarab, S.Y., J Egypt Math Soc 27 (2019) 14. https://doi.org/10.1186/s42787-019-0014-0

Rani, R., Bhardwaj, S.B., and Chand, F., Commun. Theor. Phys. 70 (2018) 179. https://doi.org/10.1088/0253-

Jia, S., Wang, C.W., Zhang, L.H., Peng, X.L., Zeng, R., and You, X.T., Chem. Phys. Lett. 676 (2017) 150. https://doi.org/10.10 16/j.cplett.2017.03.068

Song, X.Q., Wang, C.W., and Jia, C.S., Chem. Phys. Lett. 673 (2017) 50. https://doi.org/10.1016/j.cplett.2017.02.010

Onyenegecha, I.P., Oguzie, E.E., Njoku, I..J., Omame, A., Okereke, C.J., and Ukewuihe, U.M., Eur. Phys. J. Plus 136 (2021) 1153. https://doi.org/10.1140/epjp/s13360-021-02142-z

Downloads

Published

2024-12-31

How to Cite

Maireche, A. (2024). Heavy-light mesons and diatomic molecules with improved Eckart--Hellmann potential model in a deformation space-space background: New bound states and the effect on thermodynamic properties. Jordan Journal of Physics, 17(5), 587–611. Retrieved from https://jjp.yu.edu.jo/index.php/jjp/article/view/18