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1. Introduction  
The fractional derivatives are of significant 

importance in various disciplines such as 
science, engineering, and applied mathematics 
[1-5]. A new approach in mechanics that allows 
one to obtain the equations for non-conservative 
systems using fractional derivatives is presented 
elsewhere[6, 7]. 

This approach is used by others to construct 
the Lagrangian and Hamiltonian for non-
conservative systems [8, 9]. They obtained 
potentials through Laplace transform operators 
for fractional derivatives and demonstrated that 
the Hamiltonian equations of motion are in 
agreement with Euler-Lagrange equation for the 
non-conservative systems.  

Based on the Caputo fractional derivative, a 
fractional derivative operator for arbitrary 
fraction of order α  is defined. The Schrödinger 
wave equation by quantization of the classical 
nonrelativistic Hamiltonian is derived generating 
free particle solutions which are confined to a 
certain region of space. Therefore, confinement 
is a natural consequence of the use of the 
fractional wave equation[10].  

An investigation using a different approach of 
the traditional calculus of variations for systems 
containing Riemann-Louville fractional 
derivatives was carried out in references [11-14]. 

They presented generalized Euler-Lagrange 
equations and the transversality conditions for 
fractional variational problems that were defined 
in terms of both the Riemann-Louville and 
Caputo fractional derivatives. 

Recent investigations have shown that the 
Lagrangian and Hamiltonian formulation can be 
applied to fractional fields [15-19]. The 
Hamilton’s equations of motion are obtained in a 
similar manner to the usual mechanics; the 
results are found to be in exact agreement with 
the formalism available in references [11-13]. 
However, the fractional Hamiltonian systems 
with linearly dependent constraints within 
fractional Riemann–Liouville derivatives have 
been investigated in addition to a review of some 
new trends in the fractional variational principles 
area[14]. 

In this paper we develop the fractional 
Hamiltonian equations of motion for discrete and 
classical fields in terms of Caputo fractional 
derivatives. The present paper is organized as 
follows: In section 2 the Caputo fractional 
Lagrangian mechanics is discussed briefly. 
Section 3 is devoted to the Caputo fractional 
Hamiltonian of continuous systems. The 
conclusion is presented in section 4. 
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2. Caputo Fractional Lagrangian 
Mechanics 

The left Caputo fractional derivative reads as  
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which is denoted as the LCFD and the right 
Caputo fractional derivative reads as 
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which is denoted as the RCFD. Here α  is the 
order of the derivative such that 1n nα− ≤ <  
and is not equal to zero. If α  is an integer, these 
derivatives are defined in the usual sense, i.e.,  
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Consider now the action integral 
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The corresponding Euler-Lagrange equations 
are obtained as 
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Euler-Lagrange equation. 

The Euler-Lagrange equation has been 
extended to classical field systems [20, 21]. The 
action of the classical field containing fractional 
partial derivatives takes the form 
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The extremization of this action leads to the 
fractional Euler-Lagrange equation of the form  
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It is worth  mentioning that for , 1α β → , 
Eq.(7) reduces to the usual Euler-Lagrange 
equation for classical fields [22].  

3. Caputo Fractional Hamiltonian of 
Continuous Systems 

The Lagrangian of classical fields which 
contains fractional partial derivatives is a 
function of the form 
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We introduce the conjugate momenta as 
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Thus, the Hamiltonian reads as  
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Taking the total differential of both sides, we 
obtain  

.

C C C
a t a t t b

C C
t b a tC

a t

C C
t b a xC C

t b a x

C
x bC

x b

dH d D d D d D

L L
d D d d D

D

L L
d D d D

D D

L L
d D dt

tD

α α β
α α β

β α
β α

β α
β α

β
β

π φ π φ π φ

π φ φ φ
φ φ

φ φ
φ φ

φ

= + + +


∂ ∂ − − −∂ ∂

∂ ∂− − ∂ ∂ 
∂ ∂− ∂∂ 

  (11) 

Substituting the values of the conjugate 
momenta, we get 
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Using the Euler-Lagrange equation (7), we 
obtain 
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But the Hamiltonian is a function of the form 
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Thus, the total differential of the Hamiltonian 
takes the form 
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Comparing Eq. (13) and Eq. (15), we get 
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By using Eq. (17), Eq. (18) can be written as 
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As a first example of continuous systems let 
us consider the following Lagrangian 
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The conjugate momenta are calculated as 
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Thus, the Hamiltonian reads as  
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Substituting the Lagrangian, we get 
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If α  goes to 1, Eq. (25) and Eq. (26) lead to 
the Schrödinger equation and its complex 
conjugate [22].  

As a second example of continuous systems 
consider the Lagrangian 

*

2 * 2 2 *
0

C C
a t a t

C C
a x a x

L D D

c D D c

α α

α α

φ φ
φ φ µ φφ

= − 


− 
.       (27) 

The conjugate momenta are given by 
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* C
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Then the Hamiltonian is obtained as  
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Again one may obtain the same result using 
the Euler-Lagrange Equation given by Eq.(7). If 

1α → , Eq. (33) and Eq. (34) lead to the Klein-
Gordon equation and its complex conjugate.  

4. Conclusion 
In this paper we have constructed the 

Hamiltonian formulation of classical fields by 
using Caputo fractional derivatives. We 
observed that both fractional Euler-Lagrange 
equations and fractional Hamiltonian equations 
give the same results.  

In special cases, when the derivatives are of 
integral order ( 1α → ), the approach presented 
here and the resulting equations of motion are 
very similar to those obtained for ordinary 
calculus. This case is demonstrated by applying 
the approach for two continuous fields that lead 
to the Schrödinger and Klein-Gordon equations. 
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