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Abstract: An iteration calculation has been carried out to study electron transport 

properties in AlxGa1-xN lattice-matched to GaN. The two-mode nature of the polar optic 

phonons is considered jointly with deformation potential acoustic, piezoelectric, ionized 

impurity and alloy scattering. Band non-parabolicity, admixture of p-functions, arbitrary 

degeneracy of the electron distribution and the screening effects of the free carriers on the 

scattering probabilities are incorporated. Electron drift mobility and thermoelectric power 

are calculated for different temperature and doping dependencies. It is found that the 

electron drift mobility decreases monotonically as the temperature increases from 100 K to 

400 K. The low temperature value of electron mobility is also found to decreases 

significantly with increasing doping concentration. The agreement of iterative results with 

the available experimental data is found to be satisfactory. 

Keywords: Iteration method; Thermoelectric power; Piezoelectric; Electron drift mobility. 

 

 

1. Introduction 

Gallium nitride has long been considered 

promising material for electronic and 

optoelectronic device applications [1-4]. The 

wide and direct energy gap, large breakdown 

field, high thermal conductivity and favorable 

electron-transport characteristics, make the GaN 

ideally suited for high-power and high-speed 

applications. While initial efforts to study this 

material were hindered by growth difficulties, 

recent improvements in the material quality have 

made the realization of a number of GaN-based 

devices possible. In particular, lasers [5], 

transistors and photodetectors [6] have been 

fabricated with these materials. These 

developments have fueled considerable interest 

in the GaN material. 

In order to analyze and improve the design of 

GaN-based devices, an understanding of the 

electron transport that occurs within this material 

is necessary. While electron transport in bulk 

GaN has been extensively examined [7-9], the 

sensitivity of these results to variations in the 

material parameters has yet to be considered. 

Electron mobility in the ternary alloy has been 

measured; Monte Carlo calculations of mobility 

have also been performed [10]. In the mean time 

our knowledge of the basic parameters and of the 

scattering mechanisms for the alloy has 

improved. Particularly, it is now known that the 

polar-phonon scattering which is the dominant 

lattice scattering mechanism in the ternary alloy, 

has a two-mode character [11]. It is important to 

calculate the transport coefficients using such 

currently available information on scattering 

mechanisms and material parameters. We use 

such information in the present paper to calculate 

electron mobility and thermoelectric power in 

the AlxGa1-xN alloy. We consider band non-

parabolicity, admixture of p-type valence-band 

wave functions, degeneracy of the electron 

distribution to any arbitrary degree and the 

screening effects of free carriers on the scattering 

probabilities. Electrons in bulk material suffer 

intravalley scattering by polar optical, non-polar 
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optical, alloy, acoustic phonons, piezoelectric, 

plasmon and ionized impurity scattering.  

Acoustic and piezoelectric scattering are 

assumed elastic and the absorption and emission 

rates are combined under the equipartition 

approximation which is valid for lattice 

temperatures above 77 K. Elastic ionized 

impurity scattering is described using the 

screened Coulomb potential of the Brooks-

Herring model [12]. The Boltzmann equation is 

solved iteratively for our purpose, jointly 

incorporating the effects of all the scattering 

mechanisms. Our calculated results are 

compared with the available experimental data 

on both the temperature and the compensation 

dependence of mobility.  

This paper is organized as follows. Details of 

the iterative model and the electron mobility and 

thermoelectric power calculations are presented 

in section 2 and the results of iterative 

calculations carried out on AlxGa1-xN structures 

are interpreted in section 3 and finally 

conclusions are drawn in section 4. 

2. Theoretical model  

In principle the iterative technique gives 

exact numerical prediction of electron mobility 

in bulk semiconductors. To calculate mobility, 

we have to solve the Boltzmann equation to get 

the modified probability distribution function 

under the action of a steady electric field. Here, 

we have adopted the iterative technique for 

solving the Boltzmann transport equation. Under 

application of a uniform electric field the 

Boltzmann equation can be written as 

( ) . [ ' '(1 ) (1 ')]k

e
E f s f f sf f dk        (1)  

where )(kff   and ( )f f k   are the probability 

distribution functions and )',( kkss   and 

),'(' kkss   are the differential scattering rates. If 

the electric field is small, we can treat the change 

from the equilibrium distribution function as a 

perturbation which is first order in the electric 

field. The distribution in the presence of a 

sufficiently small field can be written quite 

generally as  

cos)()()( 0 kgkfkf             (2) 

where, )(0 kf  is the equilibrium distribution 

function,  is the angle between k and E and 

)(kg  is an isotropic function of k, which is 

proportional to the magnitude of the electric 

field. In general, contributions to the differential 

scattering rates come from two types of 

scattering processes, elastic scattering, els , due to 

acoustic, impurity, plasmon and piezoelectric 

phonons, and inelastic scattering, inels , due to 

polar optic phonons  

)',()',()',( kkskkskks inelel            (3)  

The polar phonon energy is quite high (~92 

mev) in case of GaN. Hence, this scattering 

process cannot be treated within the framework 

of the relaxation time approximation (RTA) 

because of the possibility of the significant 

energy exchange between the electron and the 

polar optic modes. In this case, inels  represents 

transitions from the state characterized by k to k, 

either by emission )]',([ kksem  or by absorption 

)]',([ kksab  of a phonon. The total elastic scattering 

rate will be the sum of all the different scattering 

rates which are considered as elastic processes, 

i.e. acoustic, piezoelectric, ionized impurity, and 

electron-plasmon scattering. In the case of polar 

optic phonon scattering, we have to consider 

scattering-in rates by phonon emission and 

absorption as well as scattering-out rates by 

phonon absorption and emission. Using 

Boltzmann equation and considering all 

differential scattering rates, the factor )(kg  in 

the perturbed part of the distribution function 

)(kf  can be given by  

0 'cos [ '(1 ) )]

( )
(1 cos ) [ (1 ') ' ']

inel inel

el inel inel

feE
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kg k
s dk s f s f dk






  


   



  
    (4)

 

Note, the first term in the denominator is 

simply the momentum relaxation rate for elastic 

scattering. It is interesting to note that if the 

initial distribution is chosen to be the equilibrium 

distribution, for which )(kg  is equal to zero, we 

get the relaxation time approximation result after 

the first iteration. We have found that 

convergence can normally be achieved after only 
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a few iterations for small electric fields. Once 

)(kg  has been evaluated to the required 

accuracy, it is possible to calculate quantities 

such as the drift mobility which is given by 

3

0

2

0

( )

3

( )

d

g k
k dk

Ed

m

k f k dk












           (5)  

where d is defined as kEmd k

2//1  . Here, we 

have calculated low field drift mobility in 

AlxGa1-xN structure using the iterative technique. 

In the following sections electron-phonon, 

electron-impurity, electron-plasmon and alloy 

scattering mechanisms will be discussed.  

A. Deformation potential scattering 

The acoustic modes modulate the inter-

atomic spacing. Consequently, the position of 

the conduction and valence band edges and the 

energy band gap will vary with position because 

of the sensitivity of the band structure to the 

lattice spacing. The energy change of a band 

edge due to this mechanism is defined by a 

deformation potential and the resultant scattering 

of carriers is called deformation potential 

scattering. The energy range involved in the case 

of scattering by acoustic phonons is from zero 

to kvs2 , where vs is the velocity of sound, since 

momentum conservation restricts the change of 

phonon wave-vector to between zero and 2k, 

where k is the electron wave-vector. Typically, 

the average value of k is of the order of 107 cm-1 

and the velocity of sound in the medium, is of 

the order of 105 cms-1. Hence, kvs2 1 meV, 

which is small compared to the thermal energy at 

room temperature. Therefore, the deformation 

potential scattering by acoustic modes can be 

considered as an elastic process except at very 

low temperature. The deformation potential 

scattering rate with either phonon emission or 

absorption for an electron of energy E in a non-

parabolic band is given by Fermi's golden rule as 

[13-14] 
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  (6) 

where Dac is the acoustic deformation potential, 

 is the material density and  is the non-

parabolicity coefficient. This formula clearly 

shows that the acoustic scattering increases with 

temperature. 

B. Piezoelectric scattering 

The second type of electron scattering by 

acoustic modes occurs when the displacements 

of the atoms create an electric field through the 

piezoelectric effect. This can occur in the 

compound semiconductors such as the III-V and 

II-VI materials including GaN, which in fact has 

a relatively large piezoelectric constant. The 

piezoelectric scattering rate for an electron of 

energy E in an isotropic, parabolic band has been 

discussed by Ridley [15] who included the 

modification of the Coulomb potential due to 

free carrier screening. The screened Coulomb 

potential is written as 

2

0

0

exp( )
( ) .

4 s

q re
V r

r 


            (7) 

where s is the relative dielectric constant of the 

material and q0 is the inverse screening length, 

which under non-degenerate conditions is given 

by  

2
2

0

0 s B

ne
q

k T 
              (8) 

where n is the electron density. The expression 

for the scattering rate of an electron in a non-

parabolic band structure retaining only the 

important terms can be written as [13-14] 
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    (9) 

where Kac is the dimensionless so called average electromechanical coupling constant.
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C. Polar optical phonon scattering 

The dipolar electric field arising from the 

opposite displacement of the negatively and 

positively charged atoms provides a coupling 

between the electrons and the lattice which 

results in electron scattering. This type of 

scattering is called polar optical phonon 

scattering and at room temperature is generally 

the most important scattering mechanism for 

electrons in III-V semiconductors. This is also 

the case in GaN despite the fact that the optical 

phonon energy is particularly high at 92 meV 

which suppresses the phonon population and 

also electrons must reach that energy before 

phonon emission is possible. The scattering rate 

due to this process for an electron of energy E in 

an isotropic, non-parabolic band is [13-14] 

 
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where 
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(11) 

where Nop is the phonon occupation number and 

the upper and lower cases refer to absorption and 

emission, respectively. For small electric fields, 

the phonon population will be very close to 

equilibrium so that the average number of 

phonons is given by the Bose-Einstein 

distribution 

1)exp(

1





TK

N

B

op

op 
          (12) 

where 
op is the polar optical phonon energy. 

D. Non-polar optical phonon scattering 

Non-polar optical phonon scattering is similar 

to deformation potential scattering, in that the 

deformation of the lattice produces a perturbing 

potential but in this case the deformation is 

carried by optical vibrations. The non-polar 

optical phonon scattering rate in non-parabolic 

bands is given by [13-14]  

2 *2 * 1/ 2
1/ 2

3

( )
( ) (1 2 ) ( ) , 1

2

od t l
npo op op

op

D m m
R k E E N N 

 
      (13) 

where Dod is the optical deformation potential 

and opEE  ' is the final state energy 

phonon absorption (upper case) and emission 

(lower case).  

E. Intravalley impurity scattering 

The standard technique for dealing with 

ionized impurity scattering in semiconductors is 

the Brook-Herring (BH) technique [15], which is 

based on two inherent approximations. First, is 

the first order Born approximation and second is 

the single ion screening approximation. These 

two approximations essentially lead to a poor fit 

to the experimental mobility data [16]. Several 

attempts have been made to modify the BH 

technique phenomenologically [17]. It has been 

shown that phase-shift analysis of electron-

impurity scattering is the best way to overcome 

the Born approximation. Departure from the BH 

predictions of electron mobility is evident at 

higher electron concentrations. Meyer and 

Bartoli [18-19] have provided an analytic 

treatment based on phase-shift analysis taking 

into account the multi-ion screening effect and 

finally been able to overcome both the 

approximations. All the previous techniques of 

impurity screening by free electrons in 

semiconductors were based on the Thomas-

Fermi (TF) approximation which assures that a 

given impurity should be fully screened. The 

breakdown of the single-ion screening formalism 

becomes prominent in the strong screening 

regime, where the screening length calculated 

through TF theory becomes much shorter than 

the average distance between the impurities and 

hence neighboring potentials do not overlap 

significantly. This essentially leads to a 

physically unreasonable result. In the case of 

high compensation, the single-ion screening 

formalism becomes less relevant, because in 

order to maintain the charge neutrality condition, 

it would be more difficult for a given number of 

electrons to screen all the ionized donors 

separately. In the case of GaN, the compensation 

ratio is usually quite large, and the ratio nND /
 is 

also temperature dependent. Hence the multi-ion 

screening correction is very essential in GaN. 

The effective potential of an ionized impurity 

scattering center is spherically symmetric in 

nature, so one can use phase-shift analysis to 
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find the differential scattering rate )',( kks  more 

accurately. The effective potential )(rV due to an 

ionized impurity can be expressed as: 
2 /

0 0( ) ( ) /(4 ) r

lV r Z e r e      , where lZ  is the 

charge of the ionized impurity in units of e and  

is the screening length. The standard technique 

to find out the screening length is the TF 

approach which is based on single ion screening 

approximation. In TF one can calculate the 

charge contribution q i to the screening of a 

single ionized donor by an electron of energy Ei 

and is given by )/2( 00

23 VEeq ii  . In the 

case of multi-ion problem, the TF approach can 

be generalized to find out the effective charge 

contribution due to an electron to screen all 

ionized donors and can be given by: 
3 2

0 0(2 / )i D iQ e N E    . Total screening charge 

exactly neutralizes the ionized donors, when Qi is 

summed over all electronic states 

0 ( )i
i D

i

Q
f E N

e

            (14) 

For the sufficiently low energy electrons, Qi 

can be greater than the electronic charge, which is 

physically unreasonable. One way to tackle this 

problem is to introduce a factor Si such that  



i
ii

E
ES )(            (15) 

where ),/2( 00

22 kcND    Qi will be modified to 

iii SQQ '
 in equation 14. For the low energy 

electrons the contribution will be –e. Since the 

total contribution to the screening by the low 

energy electrons has been effectively decreased, 

equation 14 no longer holds. However, if the 

screening length  is more than the average 

distance between the donors, it is not necessary to 

insist that each donor be fully screened, only it is 

required that overall charge neutrality should be 

preserved. Electrons in the overlap region can 

provide screening to both the ionized donors. 

Here we can define a factor p, which would be the 

fraction of the total charge, which is contained 

within a sphere of radius R surrounding the donor. 

Hence equation 14 will be modified as  




i

Di

i pNEf
e

Q
)(0

"

          (16) 

where 
"

i i iQ p Q S . The screening charge 

requirement will be fulfilled by adjusting the 

screening length until equation 16 is satisfied and 

is given by:  

2

0

2  m            (17) 

where m is multi-ion screening length and 0 is 

TF screening length. The differential scattering 

rate for ionized impurity can be given as  

)]()'([)(
8

)',(
2

22*

33

kEkEXf
Vm

kkSii  
 

     (18) 

Where the scattering amplitude )(Xf  depends on 

the phase shift l and Legendre polynomial Pl 

and is given by 







0

2
)()1)(12(

2

1
)(

l

l

i
XPel

ik
Xf l        (19) 

It has already been mentioned that in n-type 

GaN the activation energy of the donors is quite 

large, which keeps a large number of donors 

neutral at low temperatures. Neutral impurity 

scattering has been dealt with previously using the 

Erginsoy expression [20] which is based on 

electron scattering by a hydrogen atom and a 

scaling of the material parameters. It has been 

shown that an error as high as 45% results in the 

neutral impurity scattering cross section with this 

simple model. Meyer and Bartoli [18-19] have 

given a phase shift analysis treatment based on the 

variation results of Schwartz [21] to calculate the 

neutral impurity cross section, which is applicable 

for a larger range of electron energy.  

F. Intravalley alloy scattering 

Alloy scattering refers to the scattering due to 

the random distribution of the component atoms 

of the alloy among the available lattice sites. 

Harrison et al. [22] assumed that the alloy crystal 

potential can be described as a perfectly periodic 

potential which is then perturbed by the local 

deviations from this potential, due to the 

disordering effects in the alloy. Using the 

Harrison model [22], the scattering rate due to 

the chemical disorder in a ternary alloy of 

electrons in a non-parabolic band is given by 

[13-14] 

*3/ 2 6 2
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4 2

1/ 2

4 2 (1 )( )
( )

9

( )(1 2 )

alloy

m r x x U
R k

E E


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 

 
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       (20) 

where x denotes the molar fraction of one of the 

binary components of the alloy,  is the volume 
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of the primitive cell and U is the spherical 

scattering potential. 

G. Intravalley scattering due to optical 

phonons 

The constant energy surfaces for the 

conduction band of GaN derive from several 

valleys. Thus, under the application of high 

electric field, electrons can be scattered from an 

initial state in a certain valley to a final state in a 

non-equivalent valley. For example, in wurtzite 

GaN this process occurs when an electron in the 

 valley is heated and is able to transfer to the 

higher U and K valleys. In the case of  to zone 

edge valley scattering the process involves a 

substantial change of electron wave-vector. 

Acoustic and optical phonons of sufficiently 

large wave-vector can effect the transition but in 

view of the large wave-vectors involved it is 

normal to treat all processes like deformation 

scattering by optical phonons. Then the total 

nonequivalent intervalley scattering rate from a 

state k in a certain valley to a set of Zf different 

valleys is given by [13-14] 

  1)(21)(
2

)()(
)( ,

2/1

3

2/1*2*2

 opopfiopfiop

op

ltfit

equiv NN
mmZKD

kR 





 

(21)

where op  is the optical phonon energy and 

fi  is the difference between the energies of 

the bottoms of the final and initial valleys. (DtK)i 

is the coupling constant, which depends on the 

initial and final valleys and the branch of 

phonons involved in the transition. Nop is the 

phonon occupation number, with the upper and 

lower cases corresponding to phonon absorption 

and emission, respectively. 

H. Electron-plasmon scattering 

The electron-plasmon interaction 

Hamiltonian can be written in random phase 

approximation as [23] 

)(int kqkqkqkqq ccaccaMH 









          (22) 

Here 


qa , qa  and 


kc , kc  are the creation and 

annihilation operators for plasmons and 

electrons, respectively. The matrix element 

qqqk
qm

e
M

p

q /)2(.
)(8

2

2*

32





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

 (23) 

where )(qp  is the dispersion relation for 

plasmons, q and k are the plasmon and electron 

momenta, respectively, e and m* are the charge 

and effective mass of an electron,  the 

background dielectric constant, and  the real-

space volume. The first term in parentheses in 

equation 22 describes the plasmon absorption 

process which obeys the energy conservation 

law as 

0)(  qpkqk             (24) 

where k is the energy of electron with 

momentum k. In a similar manner, the plasmon 

emission process, in accordance with the second 

term in parentheses in equation 22, is governed 

by the energy conservation law which can be 

written as 

0)(   qpqkk            (25) 

Note that equation 24 describes the emission 

of plasmon with momentum -q. To impart a 

more conventional form to the energy 

conservation law, replace the variable of 

summation q in terms governing the plasmon 

emission in equation 1 by -q. Then we can 

rewrite equation 22 as 

 









  )(int kqkqqkqkqq ccaMccaMH         (26) 

The notation of equation 22 leads to the 

following form of the energy conservation law 

for the emission processes 

0)(   qpqkk            (27) 

From the Fermi Golden rule, we can calculate 

the electron-plasmon scattering rates for 

emission We and absorption Wa 
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, int3
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dq
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        (28) 

where k and k' are electron momenta in an initial 

state i  and a final state f , respectively. Here 

and further the upper signs in formulae 

correspond to the plasmon emission, whereas the 

lower ones do to the plasmon absorption. By 

using equation 22 and the energy conservation 
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requirements in the forms of equations 24 and 26 

which are consistent with this notation of Hint, 

equation 28 becomes 

 2

, 3

2
( ) ( ) ( 1) ;( )

8
e a q k q k p q em q ab

dq
W k M q N N


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
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                                                   (29)

where Nq is the Bose-Einstein distribution 

function for plasmons. The integration bounds 

with respect to q are defined from the following 

conditions 
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p f

q kq m q m

q k q m q m
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                    (30) 

where kf is the electron momentum at the Fermi 

surface. 

I. Thermoelectric power 

The thermoelectric power Q, is the ratio of 

electric field E to temperature gradient T across 

an open-circuited crystal, i.e., the electron 

current density J is set equal to zero. 

Theoretically, the current density in the presence 

of electric field E and temperature gradient T in 

an isotropic crystal is 

 QeEEJ F  )/(          (31) 

where  is the conductivity and EF is the Fermi 

energy. Equation 31 is valid for the small driving 

forces considered here, for which  and Q are 

independent of the field strengths. When J = 0, 

as in the open-circuit measurement of Q, the 

crystal maintains equilibrium so that EF = 0 

and  

)//( zTEQ            (32) 

which is the defining equation for Q. The 

temperature gradient is taken parallel to the z-

axis. Since all driving forces are small, the 

transport coefficients  and Q are constant and 

equation 32 yields Q also in the short-circuit 

case when E = 0 
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Substitution Poisson's equation and Fermi-

Dirac distribution function in equation 33, the 

thermoelectric power is 
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Important parameters used throughout the simulations are listed in Table 1. 

Table 1: Valley and material parameters of energy band structure for wurtzite structure of GaN and 

Al0.2Ga0.8N used in the present model [5-11]. 

   

 GaN Al0.2Ga0.8N 

Density  (kgm-3) 6150 6810 

Longitudinal sound velocity vs (ms-1) 6560 6240 

Low-frequency dielectric constant s 9.5 15.3 

High-frequency dielectric constant  5.35 8.4 

Acoustic deformation potential (eV) 8.3 7.1 

Polar optical phonon energy (eV) 0.0995 0.089 

Γ-valley effective mass (m*) 0.2 0.11 

U-valley effective mass (m*) 0.4 0.4 

K–valley effective mass (m*) 0.3 0.3 

Γ-valley nonparabolicity (eV-1) 0.189 0.419 

U-valley nonparabolicity (eV-1) 0.065 0.065 

K-valley nonparabolicity (eV-1) 0.7 0.7 
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3. Calculation results 

Low field electron mobility in AlxGa1-xN as a 

function of temperature and doping 

concentration has been performed by Morkoc 

[24] and Udayan et al. [25]. Their calculations 

show that an electron mobility as high as 900 

cm2V-1s-1 could be achieved in case of 

uncompensated AlxGa1-xN at room temperature. 

In the case of high quality samples with very low 

compensation, a mobility of more than 800 

cm2V-1s-1 , at room temperature, with a similar 

doping concentration has been reported. On the 

other hand, there has been very little work on the 

calculation of low field electron mobility in 

AlxGa1-xN. Wang et al. [26] have used the 

variational principle to calculate low field 

electron mobilities and compared their results 

with fairly old experimental data. They have 

tried to fit the experimental data with an 

overestimated compensation ratio. In old 

samples, low electron mobility was due to poor 

substrate and buffer quality and other growth 

related problems. The iterative technique has 

been used by Rode and Gaskill [2] for low field 

electron mobility in GaN for the dependence of 

mobility on electron concentration, but not on 

temperature, and ionized impurity scattering has 

been estimated within the Born approximation, 

which might be the reason for poor fitting at high 

electron concentrations. 

Here we have performed a series of low-field 

electron mobility calculations in AlxGa1-xN 

structure. Low field mobilities have been derived 

using iteration method. Fig. 1 shows the 

temperature dependence of electron drift 

mobility in AlxGa1-xN for x = 0.2, 0.4 and 0.5. In 

curve 1, the carrier concentration is taken to be n 

= 1017 cm-3. The ionized impurity concentration 

is put equal to the electron concentration. In 

curve 2, n is taken to be n = 5×1017 cm-3 and in 

curve 3, n is given the value of 1018 cm-3. The 

results plotted in figure 1 indicate that the 

electron drift mobility decrease with increasing 

temperature due to increasing optical phonon 

scattering rate. Also it can be seen that with 

increasing compensation from 0.2 to 0.5 the 

calculated electron drift mobility is decreased 

due to a higher impurity scattering rate. This is 

also largely due to the higher  valley effective 

mass in the higher compensation ratio. 
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FIG.1. Variation of electron drift mobility with temperature for AlxGa1-xN lattice-matched to GaN, for 

x = 0.2 (curve 1), x = 0.4 (curve 2) and x = 0.5 (curve 3). In curve 1, n = 1017 cm-3, in curve 2, n = 

5×1017cm-3 and in curve 3, n = 1018 cm-3. 

 

Fig. 2 shows the calculated variation of the 

electron mobility as a function of the donor 

concentration for different compensation ratio. 

The mobility does not vary monotonically 

between donor concentrations of 1017 and 1018 

cm-3 due to the dependence of electron scattering 

on donor concentration, but reaches to a value of 

850 and 550 cm2V-1s-1 for donor concentrations 

of 1017 and 1018 cm-3, respectively. 
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FIG.2. Variation of electron drift mobility with different compensation ratio for AlxGa1-xN lattice-

matched to GaN at room temperature. Calculated curves are for n = 1017 cm-3, n = 5×1017cm-3 and n 

= 1018 cm-3. 

 In order to understand the scattering 

mechanisms which limit the mobility of    

AlxGa1-xN under various conditions, we have 

performed calculations of the electron drift 

mobility when particular scattering processes are 

ignored. The solid curve in Fig. 3 shows the 

calculated mobility for including all scattering 

mechanisms whereas the dashed, dotted, and 

open circle curves show the calculated mobility 

without ionized impurity, piezoelectric and polar 

optical scattering, respectively. It can be seen 

that below 300 K the ionized impurity scattering 

is dominant while at the higher temperatures 

electron scattering is predominantly by optical 

modes.  

 

FIG.3. Comparison of electron drift mobility in wurtzite AlxGa1-xN with donor concentration of n = 

1017 cm-3 and when individual scattering processes are ignored. The effect of -valley non-

parabolicity is also shown. 

Thus the marked reduction in mobility at low 

temperatures seen in Fig. 3 can be ascribed to 

impurity scattering and that at high temperatures 

to polar optical phonon scattering. In figure 3 the 

mobility in the absence of band non-parabolicity 

is plotted as a dash-dot curve. Non-parabolicity 
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leads to approximately a 8% reduction relative to 

the mobility for parabolic band at room 

temperature. This is because non-parabolicity 

increases the electron effective mass and also the 

scattering rates through the density of states. 

The temperature variation of thermoelectric 

power Q for x = 0.2 is shown in Fig. 4. The 

magnitude of Q increases with temperature 

mainly because the material becomes more non-

degenerate with a rise in temperature. Also, 

assuming that the material is uncompensated, the 

thermoelectric power for n = 1018 (curve 3) is 

larger in magnitude than for n = 1017 (curve 1) 

since the Fermi level is higher in the latter case. 

Considering curves 1 and 3, we find that the 

magnitude of Q for a compensated sample is 

larger. This is due to the enhancement of ionized 

impurity scattering. 

The room temperature values of Q for an 

uncompensated material are plotted as a function 

of x in figure 5. The effective mass decreases 

with x, causing an upward movement of the 

Fermi level with a rise in x. This results in the 

decrease of Q with increasing x. It is clear from 

Fig. 5 that inclusion of ionized impurity 

scattering enhances Q while that of alloy 

scattering reduces Q. Our calculated results on 

thermoelectric power could not be compared 

with experiments since no such data could be 

traced in the literature. 
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FIG.4. Temperature dependence of thermoelectric power of AlxGa1-xN lattice-matched to GaN for x = 

0.2. In curve 1, n = 1017, in curve 2, 5×1017 and in curve 3, n = 1018 cm-3. 
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FIG.5. Compensation dependence of room temperature values of thermoelectric power of AlxGa1-xN 

lattice-matched to GaN. In curve 1, n = 1017, in curve 2, 5×1017 and in curve 3, n = 1018 cm-3. 
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4. Conclusions 

In conclusion, we have studied the electron 

transport characteristic associated with wurtzite 

AlxGa1-xN lattice-matched to GaN. Temperature 

dependent and free electron concentration 

dependent of the electron drift mobility have 

been calculated. It has been found that the low-

field electron mobility is significantly higher for 

the AlxGa1-xN structure with lower compensation 

ratio due to the lower  electron effective mass. 

Several scattering mechanisms have been 

included in the calculation. Ionized impurities 

have been treated beyond the Born 

approximation using a phase shift analysis. 

Screening of ionized impurities has been treated 

more realistically using a multi-ion screening 

formalism, which is more relevant in the case of 

highly compensated III-V semiconductors like 

GaN. 
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