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Abstract: The dispersion relation of electromagnetic surface plasmon bands is calculated 
in closed form for an infinite metallic superlattice of two alternating arbitrary metallic 
layers. The well known electrostatic dispersion relation of plasmon bands is recovered. 
Inclusion of retardation effects and conductivity contributions give rise to the effect that the 
bands do not start at the plasma frequencies for low wave numbers. Furthermore, 
conductivity gives rise to damping, i.e. the spectra acquire imaginary parts, and for very 
large conductivities the waves are proved to be overdamped. The special case of an Al-Mg 
superlattice is discussed and the spectra and group velocities are calculated for various 
conductivities and layer thicknesses. 
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Introduction 

One dimensional superlattices are 
periodic structures consisting of alternating 
layers of different materials with sharp 
boundaries and layer thicknesses ranging 
from few to tens of Angstroms. The 
structural and physical properties of such 
structures have been investigated previously 
[1-8]. The investigation of collective 
plasmon modes has shown that the presence 
of surfaces in the superlattice introduces 
new modes of plasma oscillations with 
strong dependence on the properties of the 
surfaces [9, 10]. The elementary excitations 
of the various layers of the superlattice are 
coupled by the long range electric fields 
excited in each layer. The continuity of the 
fields at the interfaces introduces a coupling 
mechanism of the elementary excitations 
across the layers. Due to the lattice 
periodicity in the direction normal to the 

interfaces, the Coulomb coupling of the 
elementary excitations results in a set of 
collective plasma excitations of the whole 
superlattice structure.  

Evolution and splitting of plasmon bands 
in metallic superlattices have been 
investigated theoretically [6]. The dispersion 
relation for the collective excitations of an 
infinite superlattice consisting of alternating 
layers of four different materials has been 
derived within the local theory 
approximation. It was found that the number 
of bands is equal to the number of materials 
that make up the superlattice and the band 
gaps were found to be sensitive to the 
relative thicknesses of the insulating layers 
separating the two metallic layers in the 
superlattice. The dispersion relations of 
metal–dielectric superlattices have been 
solved by Sheng and Lue [11, 12]. 
Reflection peaks are observed only at 
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incident light frequencies near the plasma 
frequency pω , whereas a reflection 

minimum can occur at ( )2/< pωω  for 
sufficiently small values of the insulator 
thickness.  

The electrodynamic properties of surface 
electromagnetic waves at the interface 
between two periodic dielectric superlattices 
have been studied by Bulgakov et.al. [13]. 
The interface was found to serve as a guide 
for electromagnetic waves with 
exponentially decaying fields on both sides 
of the plane of the interface. El Hassouani 
et.al. [14] investigated theoretically and 
experimentally the existence and behavior of 
the localized surface electromagnetic waves 
in Fibonacci superlattices. The experimental 
investigation was carried out by using 
coaxial cables in a frequency region of a few 
tens of MHz with the emphasis on the 
existence of various types of surface modes 
and their spatial localization. 

In this work we study theoretically the 
spectra of electromagnetic surface waves in 
an infinite superlattice of two alternating 
metallic layers. The dispersion relation of 
this system will be obtained in closed form 
by accounting for retardation effects and 
conduction losses. Since the splitting of 
plasmon bands is small when the thicknesses 
of the two layers are different, we consider 
mostly the case of equal layer thicknesses. 
This allows the observation of the effect of 
pure screening on the evolution of the 
plasmon bands. The paper is organized as 
follows: In Sec. 2, we present the model 

equations for the case of transverse magnetic 
modes (TM). In Sec. 3, we solve the wave 
equations and then obtain the dispersion 
relation of the electromagnetic surface 
waves. Here we make use of the lattice 
periodicity in the z-direction and of the 
Bloch wave nature of the solution. In Sec. 4, 
we use the general dispersion relation to 
discuss numerically the possible spectra of 
electromagnetic surface waves. Here we 
consider the special case in which the unit 
cell is assumed to be composed of two 
alternating layers of aluminum (Al) and 
magnesium (Mg). Finally, in Sec. 5, we 
present the main conclusions.  

Basic Equations 
The general wave equations satisfied by 

the magnetic induction B
r

, and electric field 
E
r

, in a source free conducting medium of 
conductivity S, permittivity ∈  and 
permeability 0µ  are obtained from Faradays 
and Amperes laws, namely,  
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Let the lattice be infinite in the x and y 
directions according to Fig. 1 with the 
surface wave propagation being in the xy-
plane. Then the scalar Maxwell’s equations 
in conducting media take the following 
form, 

 

 

 
FIG.1. Geometry of the thn  unit cell. 
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Without loss of generality, we consider 
TM surface wave modes ( 0. =Bk ) that are 
propagating along the x-axis. Upon setting 

0=yk  and 0=xB , the only non-vanishing 
electromagnetic field components are xE , 

zE  and yB  [1]. The corresponding scalar 
wave equations become,  
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where ∈  = 0∈  ε(ω) has been used with ε(ω) 
being the longitudinal dielectric function at 
frequency ω. Upon solving the Maxwell’s 
curl equations simultaneously for zE  and 

yB  in terms of xE , we obtain the following 
equations, 
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From equation (4) we see that it is 
sufficient to solve for the field component 

xE . For an infinite lattice of two alternating 
layers of thicknesses 1d  and 2d  the x 
component of the electric field xE  in each 
layer is,  
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where 2/−1=)( ωωωε α
2

a , and αω  is the 
corresponding bulk plasma frequency. 
  
Lattice Periodicity and Bloch 
Solutions 

Due to the lattice periodicity along z, the 
solution that satisfies the boundary 
conditions at each interface of the two layers 

IL  and IIL  represents Bloch waves with 
respect to the translations in the direction 
normal to the interfaces. We consider also a 
primitive unit cell of two layers of lengths 

1d  and 2d  such that 21 ddL +=  being the 
length of the primitive unit cell of the direct 
lattice, see Fig.1.  

In analogy to the Bloch theorem of 
electrons that move in periodic potentials 
and that have wavefunctions in the form of 
plane waves multiplied by a function that 
has the periodicity of the direct lattice, we 
require a solution of the form,  
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where n is an integer and q is a wavevector 
in the direction of the periodicity.  

Applying the boundary conditions at the 
interfaces at z = nL and 1dnLz += , namely 
the continuity of xE  and yB  at z = nL and 

1dnLz += , we obtain the following 
dispersion relation for the spectra of the 
electromagnetic surface waves in an infinite 
superlattice of two alternating metallic 
layers, 
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where ω in equation (7) represents the 
frequency of the electromagnetic collective 
excitation of the whole superlattice.  
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In the electrostatic limit such that 
0/ →cω  and 02,1 →Sω , we have 

κττ == 21 , and therefore, Eq. (7) reduces 
into the following electrostatic dispersion 
relation, 
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In order to reduce equation (8) into a well 
known form we rewrite it as follows, 
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Upon using θθθ −+= eecosh2  to 
rewrite ( )]cosh[ 21 ddk +  and 

( )]cosh[ 12 ddk − , and then by using 
θθθ −−= eesinh2 , the electrostatic 

dispersion relation (Eq. 9) takes the 
following familiar form [6, 15],  
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In the absence of retardation effects, the 
surface response is expressed in terms of the 
bulk longitudinal dielectric function )(ωεα . 
While equation (10) focuses on the surface 
wave electrostatic regime, it should be noted 
that electromagnetic surface waves are 
generally of hybrid character where both 
transverse and longitudinal parts do exist. 
An electrostatic treatment is valid for 
surface modes having phase velocities much 
less than the speed of light and the response 
of the medium is of continuum character and 
is local so that it is only valid in the long-
wavelength limit [16].  

Numerical Examples 
The implicit dispersion relation Eq. (7) is 

solved numerically by complex Newton's 
iteration scheme with carefully choosing the 
initial values [17-19]. In the electrostatic 
case and for 21 dd = , the dispersion relation 
has only two real solutions corresponding to 
qL = π in the region 0~1kd . This is due to 
the fact that for 0~1kd , the wavelength of 
the plasmon mode is much larger than the 
periodicity of the superlattice. In this case 
the effect of the interface is not observed 
and a continuum (band) extending from the 
characteristic plasmon energy of Mg to that 
of Al is expected. For more details, the 
reader is referred to refs. [6, 15]. As an 
example, we consider a superlattice 
consisting of Al and Mg, because each of 
these metals has a single, well defined 
plasmon, and the energies of the two 
plasmons are appreciably different 
( eV10,eV15 ,, == MgpAlp ωω ). Also, we 
consider the case of equal layer thicknesses 
of Al and Mg, since in the absence of 
retardation and conductivity, this choice 
leads to a single-unsplit plasmon bands. 
Consequently, we can associate any change 
with these effects when it is included. Fig. 2 
shows the plasmon spectra of superlattices 
consisting of alternating layers of aluminum 
and magnesium. 

In the electrostatic limit the spectra are 
identical, and we only show the 
representative spectrum for the cases 

12 10dd =  and 12 5.1 dd = . A broad unsplit 
band between the characteristic plasmon 
energies of the two metals appears at 

0~1kd , which subsequently narrows down 
with increasing 1kd  and converges to the 
characteristic value of the interface plasmon 
between Al and Mg layers given by 

2/][ ,
2

,
2

MgpAlpI ωωω += . This is due to 
the fact that for 11 >>kd , the hyperbolic 
terms in the dispersion relation become 
exponentially large, and thus the term 
containing qLcos  becomes negligible. 
Accordingly, all solutions converge. 
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FIG.2. Energy of electrostatic surface modes versus kd1 for qL=0 and qL=π. 

 
The long range Coulomb fields produced 

within the layers of the superlattice couple 
the elementary excitations of various layers 
with each other. The coupled layers of the 
whole superlattice produce collectively the 
plasmon modes described by the dispersion 
relation for qL = π for the bulk mode and qL 
= 0 for the surface mode. Due to the 
periodicity of the superlattice in the z–
direction and to the dependence of the 

collective modes on the vertical 
wavenumber q, energy can be transmitted 
normal to the interfaces by the excited 
surface modes. This explains the downward 
and upward shifting in Fig. 3 of the energies 
of the plasmon modes of Al (15 eV) and Mg 
(10 eV), respectively. In addition, they 
acquire imaginary parts by virtue of the 
finite conductivity. 
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FIG.3. Spectra of Al (15 eV)-Mg (10 eV) superlattices 

 
As shown in Fig. 4, this shift depends 

strongly on the thicknesses of the layers, in 
particular of the lower qL = π mode. Fig. 5 
shows that the splitting continues with 
increasing conductivity. At critical values, 
different for each branch, running waves 
cease to exist. For conductivities above 
threshold only overdamped and 
exponentially increasing modes exist. Due to 
the symmetries, 21 dd =  and 21 SS =  in 
Fig.5, in the underdamped region all 
branches have the same imaginary parts. 
Finally Fig.6 shows the spectrum of the 
group velocity ∂ω/∂k in units of the speed of 
light. The upper branch of Fig. 3 turns out to 
correspond to a backwards running wave 

whereas the lower branch is the forward 
wave.  

The branch qL = 0 can be forward or 
backward running depending on the layer 
thicknesses and the conductivities. A wave 
in which phase and group velocities have 
opposite signs is known as a backward wave 
[20]. Conditions for these waves are found 
in many periodic structures which support 
equal numbers of forward and backward 
space harmonics. As can be seen from Fig. 
3, the imaginary part of ω is constant; hence 
the imaginary part of the group velocity is 
zero. 
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FIG.4. Influence of different layer thicknesses on the spectra qL=π for S1=105/Wm and S2=2.5S1. 

 

 

 
FIG.5. Dependence of the spectra on the conductivity 21 SSS == .
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FIG.6. Spectra of the group velocity. 

 
 

Discussion and Conclusions 
We presented detailed calculations of a 

closed form dispersion relation of the 
electromagnetic surface modes in an 
infinite superlattice of two alternating 
metallic layers. The geometry of the 
system shown in Fig. 1 is a multilayer slab 
waveguide. The dispersion relation 
includes both retardation effects from the 
magnetic field and finite conductivities, 
and recovers the well known electrostatic 
dispersion relation [6, 15]. Since the 
splitting of plasmon bands is small when 
the thicknesses of the two layers are 
different, we consider mostly the case of 
equal layer thicknesses. This allows the 
observation of the effect of pure screening 
on the evolution of the plasmon bands. 
The special case of an Al-Mg superlattice 
is discussed and the spectra and group 
velocities are calculated for various 
conductivities and layer thicknesses. 

The electromagnetic surface wave 
spectra have been calculated numerically 
for the qL = 0 and qL = π modes. The 
main effect is that the spectra in the static 

limit do no longer start at the respective 
plasma frequencies of the layer materials 
as in the electrostatic case. The 
conductivity gives rise to damping, i.e. the 
spectra acquire imaginary parts. For very 
large conductivities, the waves are proved 
to be overdamped. As can be seen from 
Fig.1 and Fig. 3, the terminology of bands 
is still applicable when plotting frequency 
ω versus wavenumber k up to a threshold 
value of conductivity. Extensions of this 
work under way will include three or four 
layers because the interfaces between the 
double sheets experimentally are not well 
separated and behave as an extra sheet. 

Acknowledgments  
A.A. thanks the Arab Fund for 

Economic and Social Development 
(AFESD, State of Kuwait) for the financial 
support of his stay at GSI-Darmstadt via 
their Fellowship Award. All authors like to 
thank the Council of Scientific Research of 
Yarmouk University, Irbid, Jordan, for 
supporting this work with grant 6/2006. 



Spectra of Electromagnetic Plasmon Bands in an Infinite Superlattice Made of Lossless and Lossy Media 

 111

References 
[1] Boardman, A.D., "Electromagnetic 

Surface Modes". (John Wiley and Sons, 
New York, 1982).  

[2] Aliev, Yu.M., Schlüter, H. and 
Shivarova, A., "Guided-Wave-Produced 
Plasmas". (Springer, Berlin, 2000). 

[3] Gyorgy, E., Dillon, J., McWhan, D., 
Rupp, L., Testardi, Jr.L. and Flanders, P., 
Phys. Rev. Lett. 45 (1980) 57.  

[4] Schuller, I. and Grimsditch, M., J. Appl. 
Phys. 55 (1984) 2491. 

[5] Camley, R.E. and Mills, D.L., Phys. Rev. 
B, 29 (1984)1695. 

[6] Mahmood, S.H., Malkawi, A. and Abu-
Aljarayesh, I., Phys. Rev. B, 40 (1989) 
988.  

[7] Lamprecht, B., Krenn, J.R., Schider, G., 
Ditlbacher, H., Salerno, M., Felidj, N., 
Leitner, A., Aussenegg, F.R. and 
Weeber, J.C., Appl. Phys. Lett. 79 (2001) 
51.  

[8] Zaluzny, M., Zietkowski, W. and 
Nalewajko, C., Phys. Rev. B, 65 (2002) 
235409-1.  

[9] Pines, D., Rev. Mod. Phys. 28 (1956) 
184.  

[10] Räther, H., "Surface Science 8". 
(North Holland, Amsterdam, 1967), 
p233.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

[11] Sheng, J.S. and Lue, J.T., Appl. 
Phys. A, 55 (1992) 537.  

[12] Lue, J.T. and Sheng, J.S., Phys. Rev. 
B, 43 (1991) 14241.  

[13] Bulgakov, A.A., Meriutz, A.V. and 
OlÕkhovskii, E.A., Technical Physics, 49 
(2004) 1349.  

[14] El Hassouani, Y., Aynaou, H., El 
Boudouti, E.H., Djafari-Rouhani, B., 
Akjouj, A. and Velasco, V.R., Phy. Rev. 
B, 74 (2006) 035314-1. 

[15] El-Ali, A., Ershaidat, N., Al-Sharif, 
A.I., Al-Khateeb, A.M. and Mahmood, 
S.H., Arab. J. Sci. Eng. (AJSE), 30 
(2005) 229.  

[16] Kliewer, K.L. and Fuchs, R., Adv. 
Chem. Phys. 27 (1974) 355. 

[17] Proinov, P.D., Journal of 
Complexity, 25 (2009) 38.  

[18] Yakoubsohn (Jean-Claude), Journal 
of Complexity, 16 (2000) 603.  

[19] Hubbard, J., Schleicher, D. and 
Sutherland, S., Inventiones 
Mathematicae, 146 (2001) 1.  

[20] Ramo, S., Whinnery, J.R. and Van 
Duzer, T., "Fields and Waves in 
Communication Electronics". (John 
Wiley and Sons, New York, 1994). 

 


