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Introduction 

Although most physical systems can be 
described by regular and singular 
Lagrangians that depend at most on the first 
derivatives of the dynamical variables [1-3], 
there is a continuing interest in the so-called 
generalized dynamics; that is, the study of 
physical systems described by Lagrangians 
containing derivatives of order higher than 
the first. 

Theories associated with higher order 
regular Lagrangians were first developed by 
Ostrogradski [4]. These led to Euler's and 
Hamilton's equations of motion. However, in 
Ostrogradski's construction the structure of 
phase space and in particular of its local 
simplistic geometry is not immediately 
transparent which leads to confusion when 
considering canonical quantization or path 
integral quantization. 

This problem in Ostrogradski's 
construction can be resolved within the well-
established context of constrained systems 
[5] described by Lagrangians depending on 
coordinates and velocities only. Therefore, 
higher order systems can be set in the form 
of ordinary constrained systems [6]. These 
new systems will be functions only of first 

order time derivative of the degrees of 
freedom and coordinates. 

After reducing the higher order 
Lagrangian into first order Lagrangian, it 
will be singular and can be treated using the 
canonical method [7-12] of constrained 
systems. In this method, the equations of 
motion are written as total differential 
equations in terms of many variables and the 
relevant set of Hamilton-Jacobi partial 
differential equations has been set for these 
systems. 

The path integral quantization first 
developed by Feynman [13,14]. Faddeev 
[15] and Senjanovic [16] generalized 
Feynman path integral to first order singular 
Lagrangians.  

Recently Muslih and Guler [17] have 
constructed the desired path integral in the 
context of the canonical formalism. Here 
there is no need to distinguish between first 
and second-class constraints. As a result of 
their method, Muslih [18-21] was able to do 
a lot of applications for many different 
systems in physics in the area of path 
integral quantization. Further, Rabei [22] has 
shown that in this context the integrability 
conditions should be taken into account. He 
has also shown that the usual Hamiltonian 
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should be rewritten in terms of the canonical 
coordinates before applying the Weyl-
ordered transform.  

The aim of this paper is to study systems 
with higher order regular Lagrangians as 
first order singular Lagrangians using the 
canonical approach and then to quantize 
them using the canonical path integral 
method. 

The paper is organized as follows. In 
section 2, a review of the reduction of higher 
order regular Lagrangians to extended first 
order singular Lagrangians is introduced. 
In section 3, the path integral quantization of 
the extended first order singular Lagrangian 
has been discussed. An illustrative example 
is examined in section 4. The paper closes 
with some concluding remarks in section 5. 

Review of the Reduction of Higher 
Order Regular Lagrangians to 
Extended First Order Singular 
Lagrangians  

Given a system of degrees of freedom 
)(tqn  (n=1,…,N) with higher order regular 

Lagrangian: 
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variables ( inmn qq ,1, ,− ; 2,...,0 −= mi ) 
such that the following recursion relations 
would hold [5, 6]: 
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Equation (2) represent relations between 
the new variables. In order to enforce these 
relations for independent variables 

( inmn qq ,1, ,− ), additional Lagrange 
multipliers )(, tinλ  (i=0,…,m-2) are 
introduced [6]. The variables 
( ininmn qq ,,1, ,, λ− ), thus, determine the 
set of independent degrees of freedom of the 
extended Lagrangian system. The extended 
Lagrangian of this auxiliary description of 
the system is given by:  
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This extended-first order Lagrangian is 
equivalent to the above higher order 
Lagrangian [23]. On other hand, it is easy to 
show that the rank of the Hessian matrix for 
this system is only N; therefore, the new 
Lagrangian in equation (4) is a singular 
Lagrangian, and the standard methods of 
singular systems like Dirac's method, or the 
canonical approach can be used to 
investigate this Lagrangian. 

The canonical Hamiltonian for the new 
first order singular Lagrangian can be 
written as: 
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According to Dirac’s method [2], 
Equations (7) and (8) are primary 
constraints, so that the set of Hamilton-
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Jacobi partial differential equations can be 
written as:  
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Thus, the equations of motion can be 
obtained as total differential equations 
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2,...,1,0 −= mj . 

The Path Integral Quantization of 
the First Order Singular 
Lagrangians  

If the restricted coordinates appeared in 
(section 2) are denoted by αt , i.e.: 

ininqtt ,, ,, λα =                                          (18) 

Then the set of primary constraints in 
equations (9-11) can be written in a compact 
form as 

0=′αH                                                   (19) 

where  

inin ΦHHH ,,0 ,, ′′′=′α ,                            (20) 
.,...,1 Nn=  and 2,...,0 −= mi    

Following [17], the canonical path 
integral for the extended Lagrangians reads 
as: 
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n=1,…,N; i=0,…,m-2 

Note that equation (13) implies:  
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Therefore, equation (21) can be written as: 
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However, according to equations (7) and 
(8), we get: 

ininH ,, λ−= ;    0, =inΦ .                  (24) 

so, it was found that: 
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Then the transition amplitude can be 
written in the final form as: 
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This formula represents the canonical 
path integral quantization of higher order 
regular Lagrangians as first order singular 
Lagrangians. 

Illustrative Example 
To demonstrate the theory we will study 

the following two-dimensional third-order 
regular Lagrangian:  
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then the Lagrangian can be written as 
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So, the extended Lagrangian reads as: 
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This first order Lagrangian is singular 
because the extended Hessian matrix: 
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The corresponding momenta are 
calculated as  
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The canonical Hamiltonian takes the 
form 
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Then, the canonical path integral 
quantization for this system is: 
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Substituting Eq.(32) in Eq.(33), we get 
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By changing the integration over dt  to 
summation, we have 
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The 12p and 22p  can be performed using 
the Gaussian integral  
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Conclusion 
This work has aimed to find a clear 

expression for path integral quantization of 
higher order regular Lagrangians. Initially, 
the higher order regular Lagrangians are 
reduced to first order singular Lagrangians 
by considering the derivatives as coordinates 
(canonical variables), which are related with 
each other, This procedure leads to first 
order constrained systems which can be 
treated by the canonical method, and 
quantized by the canonical path integral 
approach. 

The path integral has been obtained, and 
illustrative example has been studied. We 
find that the probability amplitude is the 
integral of the exponential of the action that 
related to the extended Lagrangian. 
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