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Abstract: A general nonlinear dispersion relation, for the spectra of electromagnetic surface 
waves on the interface separating an axially symmetric plasma and vacuum both enclosed in a 
resistive cylindrical pipe, have been derived and various limiting cases were discussed. The 
spectra were found to be similar to those of electrostatic surface wave modes existing at 
plasma–vacuum interface for cases such as thin plasma or a conducting wall far away from the 
plasma-vacuum interface. For moderate values of ka , where k   is the wave number and  a   is 
the width of plasma, appreciable modifications of spectral curves have been observed. By 
including the surface impedance mZ of the pipe–wall, the dispersion relation of the 
electromagnetic surface waves becomes a function of the dispersive properties of the wall. 
Investigating the surface impedance shows no observable effect on the real part of the surface 
wave spectra, but it introduces an imaginary part into the frequencyω . The corresponding peak 
values have been obtained for various representative situations. When coupled to an external 
driver such as particle beams, surface wave fields can be excited, causing beam energy losses, 
and thus affecting the beam dynamics 
Key Words: Electromagnetic Surface Waves, Surface Waves In Plasmas, Resistive Cylindrical 

Pipe. 
 

 
Introduction 

Surface waves (SW’s) are proper modes 
propagating along the interface between two 
media, and are characterized by having 
fields concentrated near the boundary 
interfaces. In order for a surface wave to 
exist, the corresponding wave fields must be 
evanescent in both regions. The presence of 
the bounding walls can alter the plasma 
behavior and then the spectra of waves and 
oscillations existing in such plasmas. Surface 
waves are of importance in laser –produced– 
plasmas fusion research [1, 2] and in all 
industrial applications of guided–wave–
produced plasmas [3]. These plasmas can 
be sharply bounded, inhomogeneous, and 
anisotropic so that they are capable of 
supporting surface waves [4]. 

Being periodic surface charges at 
boundary interfaces, amplitudes of the fields 
associated with SW’s reach their maximum 

values at the bounding surfaces and decay 
in both media by moving far away from the 
interface [5, 3, 6]. Study of electrostatic 
surface waves (ESW) on cylindrical cold 
plasmas was first carried out by Trivelpiece 
and Gould [7]. For semi–infinite plasma with 
planar vacuum boundary, surface waves 
exist with spectra ranging from 2Pωω =  
for plasma-vacuum interface, and 

dP εωω += 1  for plasma–dielectric 

interface, down to 0=ω , where  Pω  is the 

bulk plasma frequency, 221 ωωε PP −=  is 
the cold plasma dielectric constant, 

0∈∈= ddε is the relative dielectric 

constant of bounding dielectric, and 0∈  is 
the permittivity of free space.  

By adopting a plasma kinetic approach, 
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Guernsey investigated the effects of thermal 
motion on the ESW spectra [8]. It has been 
found that ESW are more strongly Landau 
damped than the corresponding bulk mode. 
For sufficiently large k  values, thermal 
effects may be modeled by replacing the 
cold plasma dielectric constant by 

( ) 22221 ωγωε kvthePP +−= , where eγ  is 
the ratio of specific heats for electrons and 

thv  is their average thermal speed. Exact 
treatment of surface waves shows that 

3=eγ  corresponds to the wave spectra 
correction when fluid theory is used for semi–
infinite plasma [8]. It has been shown in 
previous studies that the effect of electron 
thermal motion becomes important only in 
the quasi–static limit of small phase 
velocities of surface waves compared to the 
speed of light [9]. 

Electromagnetic treatment of surface 
waves in plasmas showed that SW’s are 
neither pure longitudinal nor pure transverse 
[10, 11, 12]. Since perturbations in wave 
fields are both longitudinal and transverse, 
surface modes are hybrid modes. Generally, 
they are mixture of both longitudinal space 
charge and transverse electromagnetic 
waves, and only in the frequency domain 
such that ( ) kc <<ωωε  where c is the 
speed of light, the magnetic field component 
of the wave field in a given medium can be 
neglected. This corresponds to the 
electrostatic limit in which SW’s may be 
treated as potential waves [7, 13, 14]. 

In the absence of a steady magnetic field 
there is no interior space charge bunching 
and the waves are surface waves. For a 
homogeneous plasma filling a conducting 
tube and in the presence of an axial dc 
magnetic field, the cases of strong and weak 
magnetic fields Pc ωω > , where cω  is the 

gyro-frequency, and cP ωω >   result in two 
propagating and two non–propagating 
(evanescent) bands corresponding to real 
and imaginary propagation constants, 
respectively [7, 15]. For a cold plasma 
partially filling the conducting tube, and as 
the magnetic field is  reduced to zero, only 
one circularly symmetric mode propagating 
at low frequency will survive with asymptotic 
frequency dP εωω += 1  for short 
wavelengths. 

Theoretical studies of surface waves in 
the presence of plasmas with sharp 
boundaries, neglecting transition layers with 
smooth density increase existing near the 
boundary, are valid to first approximation and 
can explain most properties of surface 
waves, as long as wavelengths of interest 
are much larger than the width of the 
transition layer [16]. Effects of gradients in 
plasma density, contrary to thermal and 
collisional effects which broaden the 
frequency domain of the surface waves, can 
lead to a significant modification of the 
dispersion curve of SW’s by forming a 
maximum in the dispersion curves and 
shifting it down to lower values [3, 10, 16]. 

In the present article, we investigate the 
spectra of electromagnetic surface waves 
(EMSW’s) at the surface of cold, 
unmagnetized and uniform plasma of finite 
width in the presence of a finite resistive wall 
of a cylindrical waveguide. In Sec.2, we 
derive the EMSW dispersion relation as a 
function of the dispersive properties of the 
pipe-wall and discuss some limiting cases 
such as the quasi–static limit of slow velocity 
surface waves and the long wavelength limit. 
In Sec.3, some representative numerical 
examples of the EMSW’s dispersion relation 
will be given for different plasma– waveguide 
parameters. Finally, the main conclusions will 
be presented in Sec.4. 

General Dispersion Relation of EMSW 

Consider a plasma column of width a  
surrounded by vacuum in a conducting 
cylindrical pipe of radius b . The wall of the 
pipe has a large, but finite conductivity ωσ . In 
the presence of a plasma, modes can no 
longer be separated into pure transverse 
magnetic (TM) and transverse electric (TE), 
except for the lowest azimuthal symmetric 
mode [16, 17, 18, 19]. For uniform plasma 
with azimuthal symmetry, we only consider 
transverse magnetic modes such that 

0=zH since transverse electric modes with 

0=zE   do not exist for the azimuthal 
symmetric mode. All other field components 
will be obtained from zE  using the Maxwell’s 
field equations. In frequency domain, we 
have the following Maxwell’s curl equations, 

,EH,HE 0 ∈−=×∇=×∇ ωωµ ii  (2.1) 

where ε0∈=∈  and ε  is the dielectric 
constant of the medium under consideration. 
Due to the azimuthal symmetry, the only 
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nonvanishing field components are zE , rE   

and θH  . For modes propagating along the 

positive z-axis such as ( )tkzie ω− , and upon 
using circular cylindrical coordinates, we 
obtain the following equations, 

( ) ( )2.200
2222 =∈−−′+′′ zzz EkrErEr µω

( )3.2,,
0

22
0

22 zrz E
k

kiEE
k

iH ′
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−=′
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∈
−=

µωµω
ω
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where the prime and double prime stand for 
differentiation with respect to the radial 
coordinate r . The wave equations for pzE  

in the plasma region from 0=r  to ar =  
and for vzE  in the vacuum between a  and 

b  become 
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The general solutions for zE  in both 
regions are as follows, 

( )
( ) ( ) )7.2(
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where 0I  and 0K  are the zero order 
modified Bessel’s functions of first and 
second kinds, respectively. The constants A, 
B and C are to be determined using 
appropriate boundary conditions at the 
plasma–vacuum and vacuum–metallic 
cylinder interfaces. 

To find the unknown constants, we apply 
the continuity of zE  at r = a and at r = b. On 
z the metallic surface r = b, we use the 
impedance (Leontovich) boundary condition 
to account for the finite resistivity of the 
surface [20, 21, 22, 23]. The surface 
impedance of the metallic surface mZ  is [21, 
22], 

( )8.22,1

0 ωσµ
δ

δσ w
s

sw
m

iZ =
−

=  

where wσ  is the wall conductivity and sδ  is 
the skin depth at frequency ω . The 
boundary conditions concerning the 
continuity of zE  at ar =  and the 
impedance boundary condition 

θvmvz HZE = at br =  results in the 
following expression for the longitudinal 
electric field zE , 

( )
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
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(2.9)

where 0I ′  and 0K ′  are the derivatives with 
respect to the argument. Imposing the 

continuity of 0H  at ar =  results in the 
following dispersion relation, 

( )
( )

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )10.2.

0000000000000000

0000000000000000

000
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bImZbIiaKbKmZbKiaI

bImZbIiaKbKmZbKiaI

aI

aI
P
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τωττττωτττ

ττ

ττ
ε

′∈−−′∈−

′∈−′−′∈−′

′
=

Equation (2.10) is the general dispersion 
relation for the TM electromagnetic surface 
waves on the interface between an axially 
symmetric plasma enclosed by vacuum in a 
resistive cylindrical pipe. Finite extent of 
plasma and bounding conductor in the 
transverse direction, and the finite surface 
impedance of the bounding wall are 

accounted for via a , b  and mZ , 
respectively. 

For a perfectly conducting wall at 
br = such that 0=mZ  and for a cold 

plasma, equation (2.10) reduces into the 
following dispersion relation [7, 14, 15, 16, 
17, 18], 
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With ( ) ( ) ( ) ( )xKxKandxIxI 1010 −=′=′ , 
equation (2.11) can be written as follows, 
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For a cold plasma column in free space 
such that ∞→b , the ratio 

( ) ( )bIbK 0000 ττ  varies with b as 

002 →− be τ . Accordingly, equation (2.12) 

takes on the following form, 
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For slow (electrostatic) wave conditions 
such that the phase velocity φυ  of the 
modes is much less than the speed of light 

,ck <<= ωυφ  eq.(2.13) takes the 

following form for  k== 0ττ [14], 
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Numerical Examples 

The dispersion relation of equation (2.14) 
is plotted in Fig. 1 for Pωω  versus ka .For 
the electrostatic surface waves in a cold 
plasma, and in the absence of the bounding 
conducting surface, typical characteristics of 
slow phase velocity SW’s are observed [7, 
3]. For a fixed plasma width a  and very 
small wave numbers k  the curve starts at 

0=ω , but for large k  values it approaches 
the cutoff frequency of the plasma–vacuum 
interface 2Pωω = . Low and large values 
of ω  for a fixed k correspond, respectively, 
to two different physical situations, namely, 
thin and thick plasmas. The dispersion curve 
is uniquely determined by the product of k  
and a , namely, kax = . 

 
Fig. 1: Spectra of electrostatic SW's according to equation (2.14) for plasma in free space with the pipe 

wall moved to infinity. 
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When the radius of the bounding pipe is 
finite, and for a perfectly conducting wall, 
spectra of SW’s for a cold plasma are 
described by equation (2.11). For the 
azimuthal symmetric mode with only TM 
modes being considered, characteristics of 
the dispersion curve are no longer 
determined by one parameter, as in the 
electrostatic case of equation (2.14). Plasma 
frequency and pipe radius, or the ratio (a/b) 
will affect the evolution of the curve. 
Presence of a good conducting bounding 
surface introduces additional dependence of 
the dispersion curve on the surface 
impedance mZ  of the metallic wall under 
consideration, as can be seen from 

dispersion relation of equation (2.10). 

Possible spectra of surface waves 
resulting from the numerical solutions of the 
nonlinear dispersion relation (2.10), together 
with equation (2.6), are shown in Figs. 2 to 4. 
Fig. 2 shows the real part of ω  versus ka  
for the representative parameters of wall 
conductivity of 6101.1 ×ωσ  S/m (siemens 
per meter), plasma frequency 

300=Pf MHz ( PP fπω 2= ), and inner 
pipe radius 10=b cm for different ratios 

ba . 

 
Fig. 2: Real part of the EMSW spectra according to equation (2.10) for pipe radius 10=b cm, 

conductivity of stainless steel 6101.1 ×=ωσ   S/m, plasma frequency 300=
P

f  MHz, and for plasma 

widths ba 5.0= , ba 7.0= , ba 8.0= , ba 9.0= , and ba 95.0= . 
 

Fig. 3 shows the imaginary part of the 
EMSW spectra according to equation (2.10) 
for pipe radius 10=b  cm, conductivity of 

stainless steel 6101.1 ×=
ω

σ   S/m, plasma 

frequency 300=Pf  MHz with a  values 
from low to high peaked curves ba 5.0= , 

ba 8.0= , ba 9.0= , and ba 95.0= . By 
changing the plasma frequency, the 

imaginary part of the EMSW spectra of 
equation (2.10) is shown in Fig. 4 for 10=b  
cm, plasma width ba 5.0= , wall 
conductivity of  6101.1 ×=ωσ  S/m, plasma 

frequencies Pf  in MHz with values from low 
to high peaked curves, respectively, 200 
MHz, 300 MHz, 2 GHz, and 3 GHz 
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Fig. 3: Imaginary part of the EMSW spectra according to equation (2.10) for pipe radius 10=b cm, 

conductivity of stainless steel 6101.1 ×=ωσ   S/m, plasma frequency 300=Pf  MHz, and for plasma 

widths  ba 5.0= , ba 8.0= , ba 9.0= , and ba 95.0= . 

 

For small ba  values corresponding to 
thin plasma or a plasma surface at large 
distance from the conducting wall of the pipe, 
we observe the same spectra characteristics 
of Fig. 1 of the electrostatic surface wave 
modes for plasma–vacuum interface. By 
bringing the conducting wall closer and 
closer to the surface of the plasma, Fig. 2 
shows for large ka  (or for short 
wavelengths) that all curves converge toward 
the plasma–vacuum cutoff frequency 

2Pωω = . However, for moderate ka  
values, we observe considerable 
modifications of spectra curves, namely, by 
increasing the ratio ba , surface wave 
frequencies shift down with the curves being 
shifted to the right. For small ka  values, the 
dispersion curve gives a non–vanishing 
group velocity of the SW’s indicating a 
transport of energy, while for large k  values 

surface waves become localized oscillations 
with a vanishing group velocity. 

The imaginary part of ω  in Fig. 3 shows 
the opposite behavior, namely, all curves of 
different ba  ratio tend toward zero for large 
ka , and they show peaks that shift slightly to 
the right and become wider by increasing the 
ratio ba . Including the finite, but large 
conductivity of the pipe wall, shows no 
observable effect on the real part of the 
surface wave spectra. Its effect manifests 
itself in introducing an imaginary part which 
has a peak value of 300 MHz for the 
parameters used to produce Fig. 3. For a 
fixed ratio 5.0=ba  and varying plasma 
frequency, Fig. 4 shows that the imaginary 
part of ω  can reach values of few tens of 
kilo Hz. 
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Fig. 4: Imaginary part of the EMSW spectra according to equation (2.10) for pipe radius 10=b cm, 

Plasma width ba 5.0= , conductivity of stainless steel 6101.1 ×=ωσ   S/m, plasma frequency      

=Pf  200 MHz, 300 MHz, 2GHz, and 3GHz. 

The observed characteristics of the 
surface oscillation is lower than that of the 
bulk oscillations Pωω =  because a part of 
the wave field is outside the plasma and the 
effective  force of interaction among the 
plasma particles is weaker [24]. Electric 
charges whose fluctuations give rise to 
surface waves are localized at the plasma–
dielectric interface. In the long wavelength 
limit, these charges interact with each other 
as if they were in a medium with an effective 
dielectric constant ( ) 2dPeff εεε += . The 

condition 0=effε  results in the surface 

wave spectra dP εωω += 1 , where 

1=dε  for vacuum [see Figs. 1 to 4]. 

Conclusions 

We have derived the general dispersion 
relation [equation (2.10)] for the TM 
electromagnetic surface waves on the 
interface separating an axially symmetric 
plasma and vacuum, both enclosed in a 
resistive cylindrical pipe. By assuming finite 
transverse width of a homogeneous cold 
plasma, whether in vacuum or in a resistive 
pipe, the spectra of surface waves resulting 
from the solution of the dispersion relation 
(2.10) have been found in terms 

.,, mP Zandba ω  

For the two equivalents physical 
situations of thin plasma or a conducting wall 
far away from the plasma surface, the 
observed spectra converge towards those of 
electrostatic surface wave modes existing at 
plasma–vacuum interface [see Fig. 1 and 2]. 
By bringing the conducting wall to a finite 
distance from the plasma–vacuum interface, 
large ka  (short wavelengths) are not 
affected and all curves of Fig. 2 converge 
toward the plasma–vacuum cutoff frequency 
( )Pωω 707.0= . On the other hand, for 
moderate values of ka , we observe 
appreciable modifications of spectra curves; 
by increasing the ratio ba , surface wave 
frequencies shift down with the curves being 
shifted to the right. 

For conducting pipe–walls that can be 
represented by a surface impedance mZ , 

and since mZ  is frequency dependent, the 
dispersion relation of waves existing in the 
structure under consideration becomes a 
function of the dispersive properties of the 
wall. Due to the large wall conductivity, the 
small value of surface impedance shows no 
observable effect on the real part of the 
surface wave spectra, and its effect is found 
to introduce an imaginary part of ω  having a 
peak value of 300 Hz [see Fig. 3]. By varying 
the plasma frequency and keeping the ratio 
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ba  fixed at 5.0 , the imaginary part of  ω  is 
found to reach values of few tens of kilo Hz 
[see Fig. 4].  

Including surface wave spectra in 
modeling beam dynamics, especially, in 
beam instability analysis and impedance 
calculations, can improve modeling of 
longitudinal and transverse beam dynamics. 
When coupled to an external driver such as 
particle beams [25, 26, 27, 28, 29, 30], 
surface wave fields may be amplified gaining 
energy at the expense of the beam energy, 
coupled to the beam fields, and finally 
affecting the beam dynamics. Contributions 
from including higher order waveguide 
modes resulting from medium asymmetries 
or off–axis motion of transversally kicked 
beams are at hand and are topics of future 
investigation. 
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