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Abstract: A fast and novel technique was developed to exclude obstacle data from a single 
Computed Tomography Angiography (CTA) data set. The data was minimally processed to 
preserve the majority of the CTA data in its original form, especially the vascular 
information. The technique was based on a newly developed adaptive composite mask which 
used multi-step image processing techniques. Excluding a structure like-bone from CTA data 
can improve several three dimensional (3-D) visualization techniques such as volume 
rendering, shaded surface display, or maximum intensity projection to better render the 
vascular data unveiling any aneurysms or calcifications in a clear manner. This enhancement 
in angiogram visualization is expected to increase the sensitivity of clinical diagnoses. The 
proposed technique demonstrated obstacle free 3-D vessel visualization in ten different CTA 
data sets. 
Keywords: CT angiography, Obstacle data exclusion, Segmentation, Visualization, Bone 
removal. 
 

 
Introduction 

Conventional X-ray angiography is the 
gold standard in terms of diagnostic accuracy, 
but it has risks associated with it [1, 2]. 
Therefore, non-invasive or minimally 
invasive techniques including computed 
tomography (CT) are of interest to 
radiologists evaluating the vascular system. 
In CT, multiple contiguous or partially 
overlapping sections of tissue are 
reconstructed. CT is known to provide 
tomographic high contrast between bony 
structures (i.e. skull) and soft tissue (i.e. 
brain). This high contrast is useful in many 
medical applications. However, visualization 
of blood vessels using conventional CT is 
currently a very difficult task due to the fact 
that CT Hounsfield numbers of vessels and 
their surrounding soft tissues (i.e. brain 
tissues of white and grey matters) are similar. 
In CTA however, the contrast of the vessels 
compared to the surrounding tissue is 
enhanced. This enhancement is due to the use 

of a contrast agent injected before the CT 
scan. Consequently this increases the vessels’ 
X-ray attenuation coefficients leading to an 
increase in the vessels’ CT number (CTN), 
thus enhancing the contrast with surrounding 
tissues [3]. Clinicians are then able to 
visualize vessels in 2-D tomographic views. 
Vessels, however, are 3-D tree-like 
structures, their visualization in 2-D is still a 
very tedious task. 

3-D visualization techniques, like 
maximum intensity projection (MIP), surface 
shaded display (SSD), or volume rendering 
(VR) are known techniques in visualizing 3-
D data [4,5,6,7,8]. However, the high CT 
numbers (CTNs) for bone create a major 
barrier in visualizing blood vessels. In 
addition, excluding these high CTNs cause 
difficulty in retaining vessel filled with 
contrast agent. This is due to the overlapping 
CTN distributions for bone and contrast filled 
vessels. This overlap in the CTN distributions 
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is mainly due to the following two conditions. 
First, part of the vessel CTN distribution falls 
in the bone CTN distribution. Some of this 
can be attributed to the vessel’s calcification 
and should not be ignored. Second, part of the 
bone CTN distribution also falls into the 
vessels CTN distribution. Most of this is due 
to partial volume averaging, where the boney 
volumes do not end abruptly but rather fall in 
a gradual fashion to the background region or 
surrounding tissues. 

Current techniques in CTA employ semi-
automatic editing techniques to eliminate 
bones [9]. The tracing is usually performed in 
two different modes [10]. In exclusive editing 
mode, experts trace regions selected for 
removal where as in the inclusive mode, they 
trace regions selected for inclusion. These 
approaches may introduce distortion of 
information when the connectivity algorithm 
uses a threshold which is too low to exclude 
bones physically touching the vessels [11]. 
Such editing also requires a lot of operator 
time (15 – 30 minutes). In most cases, the 
results are influenced by experience and 
personal bias of individual operators. 
Furthermore, the method was not good at 
depicting aneurysm. 

In an effort to reduce the operator time, 
investigators have developed hybrid semi 
automated editing programs [12]. In these 
techniques, an automated 2-D segmentation 
procedure is performed to produce a set of 
labeled images. Each segment becomes 
associated with a distinct label. The then user 
views a small number of labeled images and 
selects segments of interest by pointing and 
clicking with a mouse. This activity triggers a 
connectivity algorithm that collects related 
segments for inclusion in the edited sections. 
Selected segments are then used as a mask to 
exclude the corresponding voxel values from 
the raw images. This method is 
computationally very intensive and currently 
not suited for clinical practice. 

Another approach proposed in literature 
involves the use of warped matching for 
digital subtraction of data sets corresponding 
to pre- and post-contrast injection [13]. The 
authors have developed a 3-D flexible 
registration procedure which was inspired by 
a 2D technique introduced by Van Tran and 
Sklansky [14, 15]. This method not only 

requires the availability of two data sets 
which increases the radiation dose to the 
patient, but it is computationally too involved 
to be of use in routine clinical practice. 

Currently there is a need for a fast 
segmentation technique which would totally 
remove bone from a single CTA data set 
while preserving vessel information in its 
original form without adding any spurious 
image processing artifacts. The technique 
described here will show the feasibility of 
such a technique. It involves steps necessary 
for bone segmentation and the steps needed to 
speed up the computations using appropriate 
approximations. This paper is a continuation 
to an initial work that was presented at an 
SPIE conference [16]. 

Methods 
The proposed method consists of a few 

steps which lead to total exclusion of 
connected bone from a single CTA data set 
while preserving vessel data information. 
Fig.s 1 and 2 show flow charts of the 
algorithm’s main preparation steps and the 
image processing steps used in the developed 
technique, respectively. 

Image Data Acquisition 
Seven subjects were imaged once in the 

head and three subjects were scanned once in 
the abdomen using the G.E. Helical HiSpeed 
CT Scanner. The CT scanner was set to 140 
KVp and the mAs settings ranged from 180 
to 200 between subjects. The data was 
acquired post to a specified time delay from 
the time of the contrast agent injection. The 
time delay between imaging and injection 
was approximately 15 seconds. Isovue 
contrast agent was used. Its amount ranged 
between subjects from 300 to 370 cc. 

The acquired head data sets consisted of a 
series of CTA images covering the imaged 
volume which included the Circle of Willis 
region, and the abdomen data sets covered the 
kidneys and lungs. Slice thickness was 1 mm 
with 0.5 mm overlap. Between the subjects, 
the field of view ranged from 160 to 220 mm, 
the matrix size along x, y, and z was 
512x512xN where N ranged from 60 to 119 
slices, and the voxel aspect ratio ranged from 
4:4:1 to 2:2:1. 
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FIG. 1. Flowchart illustrating the preparation steps for the developed technique.  The equation number 

shown in each box refers to the equation used in processing the data. 

 
FIG. 2. Flowchart illustrating the connectivity of the main steps for the developed technique. The 

equation number shown in each box refers to the equation used in processing the data. The outputs of 
the dotted line box will feed as two of the three inputs shown in the final stage of Fig. 1. Note also the 
optional t1 and s1 thresholds for optimal results. 
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In this paper, I(x, y, z) will be used to 

represent the original input data of the imaged 
volume and V(x, y, z) will be used to 
represent the final output CTA data. The (x, y, 
z) point represents a voxel location in the 3-D 
data volume and I and V represent the CTN at 
(x, y, z) location. 

Data Down-Sampling 
I(x, y, z) data was down-sampled to a 

lower spatial resolution along x, y, and z. The 
lower resolution data is referred to here with 
a lower case i(x, y, z). I(x, y, z) data was 
down-sampled to an isotropic i(x, y, z) data 
where the i(x, y, z) voxel aspect ratio (VAR) 
was 1:1:1. For instance, if VAR was 4:4:1 in 
I(x, y, z), then a 4x4x1 kernel was used in the 
down-sampling process. Note that the output 
of this kernel was reduced to one voxel in i(x, 
y, z) with a value equal to the maximum CTN 
of the voxels in the kernel. 

Threshold Mask 
To estimate a threshold for bone removal, 

it was necessary to know the CTN 
distribution of other visible tissues in a CTA 
data. The main tissues that could be 
visualized in a CTA data of the head were the 
skull, the brain, vessels, calcifications, and air 
cavities or air surrounding the head. The 
average CTN for these tissues were 1748, 61, 
273, 826, and -954 respectively. These 
numbers were calculated from the acquired 
CTA data sets. For each specific tissue, a 
region of interest (ROI) was drawn in an area 
internal to the tissue. The average CTN value 
of the ROI was then calculated. This 
calculation was repeated on five different 
CTA data sets, and the mean value for these 
calculations was used to indicate the tissue’s 
CTN. A similar technique was done for the 
abdomen data sets. The main visualized 
tissues in the abdomen were cortical bone, 

spongy bone, liver, kidney, vessels, and air. 
The average CTNs for these tissues were 657, 
120, 107, 333, 483 and -954 respectively. 
Note that the skull cortical bone CTN was 
higher than the abdomen cortical bone CTN. 
This is due to the higher density of the 
cortical bone in the skull. Fig. 3 shows CTA 
images of head and abdomen and 
corresponding line profiles drawn on the 
images. 

A threshold mask mth(x, y, z) was 
generated using Eq. 1 on the down-sampled 
data i(x, y, z) with a default t1 = 400. For 
optimal results, however, the threshold value 
t1 ranged from 350- to 500 CTNs and can be 
set and adjusted by the user. The voxels that 
are set in this mask corresponded to voxels 
containing mainly cortical bone in i(x, y, z).  

( ) rzyx ∈ ,,  

where (x, y, z) is a location in the subsampled 
data spacer. 

( )     
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Eq. 1 marks every voxel having a CTN 
higher than t1. Although t1 was high enough 
to mark voxels containing mainly cortical 
bone, some voxels containing calcifications 
in the i(x, y, z) have CTNs high enough to 
also be set in the mth mask. 

Connectivity Mask 
A mco(x, y, z) mask was generated by 

applying a 26-neighbor connectivity 
technique on the mth mask [17]. This step un-
marks voxels that corresponded to non bony 
tissue (i.e. calcifications) and retains marked 
voxels corresponding to connected cortical 
bone in the mth mask as shown in the 
following pseudo-code. 
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FIG. 3.  Illustrates CTA images for the head and abdomen. Fig.s 3A and 3B show a CTA head image and 

the corresponding line profile respectively. Fig.s 3C and 3D show a CTA abdominal image and the 
corresponding line profile respectively. Note the t1 and s1 thresholds used in the technique. 
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Note that the connectivity technique 
requires seeds to grow the connected regions. 
Therefore, multiple seeds were used for this 
step. The coordinates (x, y, z) for these 
multiple seeds were identified using a 
threshold technique with a default (s1) value. 
The default threshold (s1) was equal to 90% 
of the maximum CTN in each data set but it 
may also be set and adjusted by the user. Fig. 
3 shows the relative t1 and s1 CTN values in 
line profiles. Any voxel having a CTN higher 
than s1 was used as a seed in the connectivity 
technique to grow the high CTN bone region. 

Exclusion of High CTN Obstacle Data  
CTA data i2(x, y, z) was generated using 

i(x, y, z) and mco mask as shown in Eq. 2, 

( ) ( ) ( )
( )


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=

=
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0,,m  if  ,,i
,,i
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co
2 zyx
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where to is the vessel surrounding tissue mean 
CTN as can be deduced from Fig. 3. In our 
case the t0 value had a CTN of 50. 

Transition Region and Composite 
Mask 

A transition region was generated by 
dilating the connectivity mco mask with B3x3x3 
kernel using its 26-neighbors [18], as shown 
in Eq. 3: 
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Where B represents the kernel and k 
represents its size. Fig. 4 illustrates a mockup 
2-D simulated image for the formation of a 
composite mask. Although, there are different 
techniques to perform dilation [19], the 
approach used to accomplish this dilation task 
is based on the center voxel value of the 
kernel B3x3x3. The kernel marches and shifts 
through the entire mco mask data. If the center 
voxel of the kernel B3x3x3 at one of the shifts 
is equal to 1 in mco, then any neighboring 
voxel (defined by the extent of the kernel) 
with a zero value would be replaced with 2 
(defining the transition region) and any other 
voxels equal to 1 is copied in the composite 
mask. However, if the center voxel of the 
kernel mask was not set (i.e. value = 0), then 
a zero value is copied to the composite mask 

and no other action would be taken and the 
technique would skip and march to the next 
voxel in mco mask.  

Once the dilation process is performed, a 
composite mask is generated and is defined in 
Eq. 4 and demonstrated in Fig. 4: 
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The region of the mcomposite mask that 
contains values equal to two corresponds to 
the transition region of the bone diffused into 
the surrounding tissue. This composite mask 
was used with the adaptive median filter to 
process the bone-vessel and bone-background 
transition regions which will be discussed in 
the next section. 

Filtered Transition Region Obstacle 
Data 

iaf(x, y, z) was generated using Eq.s 2, 3, 4 
and an adaptive median filter. An adaptive 
median filter was applied on i2(x, y, z) data set 
using mcomposite(x, y, z) mask with a 3x3x3 
kernel size as shown in Eq. 5: 
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Note that the adaptive median filter was 
only used where low CTN for bone residue 
exists. Voxel values which had low CTNs for 
bone were replaced by non bone neighboring 
voxel values. Although this step filters the 
data, note that it does not include any new 
values. The median filter then uses lower 
neighboring values to replace the remaining 
obstacle bone data. 

Once the composite mask and the filtered 
data are available, the up-sampling process 
will need to perform and to generate the final 
output CTA data as shown in Fig. 1. 
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B 
FIG. 4.  Illustrates a 2-D mockup example of a dilation technique with a 3x3 kernel outlined in dark lines.  

Fig. 4A shows the mockup bone region. Fig. 4B shows the outcome of the dilation. Regions with 
values of 2, 1, and 0 correspond to the transition region, bone region, and other tissue region 
respectively. 

 
Data Up-Sampling 

iaf(x, y, z) data and mcomposite masks were 
interpolated and up-sampled to the original 
spatial resolution 512x512xN (N is the 
original number of slices) and Iaf and 
Mcomposite were generated respectively. 
Adaptive Trilinear Interpolation using 
mcomposite mask was used to generate Iaf data 

set as shown in Eq. 6 and voxel replication 
was used to produce the high resolution 
composite mask Mcomposite. 
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The Final Output CTA with Total 
Obstacle Exclusion 

The final step in the developed technique 
was to generate the final output V(x, y, z) data 
set using the original high resolution CTA 
data I(x, y, z), composite mask Mcomposite, the 
processed data Iaf(x, y, z), and t0 as shown in 
Equation 7: 
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V(x, y, z) data set contains the original 
vascular data, the processed data, and t0 
which replaced the high CTN for bone. 

Results and Discussion 
Fig. 5 illustrates the outcome of the main 

steps for the developed technique. Fig. 5A 
shows a down-sampled CTA image. The 
outcome of the thresholding step (threshold t1 
= 400) is illustrated by Fig. 5B showing the 
values below the threshold and Fig. 5C 
showing the values above the threshold t1. 
Fig. 5D shows the connected bone region. 
The composite mask showing clearly the 
transition region as a bright line around the 
connected bone region is displayed in Fig. 
5E. Lastly, Fig. 5F shows the outcome of 
implementing the proposed technique using 
the composite mask (Eq. 7). 

The proposed technique was successful in 
excluding bone (obstacle data) from all ten 
acquired CTA data. The 3-D rendered images 
(MIP, SSD, VR) of the pre- and post-
processed data were compared visually and 
assessed by an expert medical physicist. 
Clearly the post-processed rendered images 
outperformed the pre-processed rendered 
images. An example of this performance was 
demonstrated in Fig. 6. It took approximately 

1 minute of CPU time on a low end 
workstation to segment bone, which makes 
the technique clinically feasible as well. 

The 3-D visualization MIP technique 
applied on a pre- and post-processed CTA 
Data is shown in Fig. 6. Note that bone was 
totally removed and a simple MIP would 
provide essential diagnostic information of 
vessels such as the aneurysm and the 
calcifications as shown in Fig.s 6B and 6F. 
Another 3D visualization technique, such as 
surface shaded display, is demonstrated in 
Fig.s 6C and 6D. It performed similarly on 
the processed data in comparison to the 
unprocessed data. 

The developed technique consists of two 
main ideas: the first idea explains the steps 
involved in the segmentation technique and 
the second idea consists of steps that make 
this technique fast and clinically feasible. The 
latter part involves the down-sampling and 
un-sampling steps of the CTA data. 

Threshold and Connectivity Masks 
To mark voxels that are fully filled with 

one specific tissue is an easy task if each 
tissue in an image has a separate distribution 
of CTNs. The difficulty arises when a voxel 
contains more than one tissue. This is referred 
to as a partial volume averaging (PVA). The 
spread of the CT value distribution of a tissue 
increases due to the PVA effect. This is most 
prominent between tissues with high contrast, 
such as the cortical bone and air filled 
cavities.  

To select a threshold for marking a 
specific tissue, it should have a value below 
most of the tissue of interest and above the 
other tissues. The default t1 threshold used in 
Equation 1 (400 CTN) was high enough to 
mark the bone (high CTNs) and to unmark 
air, soft tissue, and enhanced vessels in the 
mth(x, y, z) mask. Unfortunately, some vessels 
and calcification were also marked in mth 
mask because of their high CTNs. 
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FIG. 5A FIG. 5B 

 
FIG. 5C FIG. 5D 

 
FIG. 5E FIG. 5F 

FIG. 5. Output images of different steps of the proposed technique. Fig.s 5A-5F show the original CTA 
image, the threshold image with CT values below bone tissues, the threshold image with CT values 
above bone tissues, connectivity image, the composite mask image, the processed CTA data 
respectively. 
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FIG. 6A FIG. 6B 

        
FIG. 6C FIG. 6D 

         
  FIG. 6E FIG. 6F 

FIG. 6.  Illustrates maximum intensity projection images and surface shaded display images of CTA data. 
Fig.s 6A and 6B show MIP images of unprocessed and processed head CTA data respectively. Fig.s 
6C and 6D show surface shaded display images of unprocessed and processed head CTA data 
respectively. Fig.s 6E and 6F show MIP of unprocessed and processed abdomen CTA data 
respectively. 
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Note that t1 threshold can be adjusted by 
the user for optimal processing. Increasing t1 
beyond the proposed limit (350 – 500 CTN) 
would provide a higher probability of not 
masking vessels or calcifications. This would 
increase the transition region and thus the 
filtered data and the processing time. 
Decreasing t1 beyond the proposed limit 
reduces the transition region and thus the 
filtered data and processing time. This leads 
to a higher probability in removing vessels 
and calcifications. 

Calcifications however, were generally 
located internal to the vessels and were not 
connected to bone. Therefore, the 
connectivity mco mask was used to unmark 
voxels from the mth mask corresponding to 
high CTNs for calcifications in i(x, y, x) and 
to retain marked voxels corresponding to 
bone. Note that connected bone (i.e., 
fragment bone) would not be in the mco mask 
if a single seed was used. Fragmented bone 
was removed however by selecting multiple 
seeds, some of which were within the 
fragmented bone. Selecting multiple seeds 
was easily accomplished by using a high 
threshold (i.e. default threshold was equal to 
90% of the maximum in the data) applied on 
i(x, y, z) data. Voxels containing CTNs higher 
than this high threshold were all bone. Voxels 
containing calcification were still below this 
threshold. 

Note that the s1 threshold can also be 
adjusted by the user for optimal processing. 
Increasing s1 beyond the proposed limit (90% 
of maximum CTN) would provide higher 
accuracy of selecting seeds for the 
connectivity technique. This however would 
lead to the decrease in the number of seeds 
which may lead to non-removal of some 
fragmented bone. Decreasing s1 beyond the 
proposed limit reduces increases the number 
of seeds for the connectivity algorithm. This 
leads to a higher probability in marking seeds 
in the lower CTN region thus removing 
vessels and calcifications. 

For optimal results in excluding bone 
using the proposed technique, the threshold t1 
in the all CTA data sets ranged from 350- to 
500 CTN. This variation was related to the 
PVG effect and to the variation in the CTNs 
for enhanced vessels. This variation is related 
to the variation of the amount of contrast 

agents contained within the vessels. In 
addition, this can be attributed to inter-subject 
bloodstream variability.  

Note that thresholding and connectivity 
still do not guarantee that all bone is marked. 
Voxels with (low CTNs for bone) contained 
partially bone and partially other tissues 
which were not marked in either the mth or 
the mco mask. 

Exclusion of High CTN Obstacle Data 
This step retains the i(x, y, z) CTA data in 

i2(x, y, z) except for high CTNs of bone. High 
CTNs for bone were excluded based on the 
mco mask. Nevertheless, i2(x, y, z) still 
contains partial bone that has CT values 
lower that t1 (Eq. 1). Note that the 
thresholding step generated sharp edges 
between t0 region (where high CTN bone used 
to be) and low CTN bone. These false edges 
are removed by applying an adaptive 
smoothing filter as described later in this 
section. 

Transition Region and Composite 
Mask 

Some voxels containing partial bone still 
have higher CTNs than enhanced vessels, and 
would still provide obstacles in 3D 
visualization. The dilation step expands the 
bone region in the mco mask such that it 
covers voxels with partial bone in i(x, y, z) 
(Eq.s 3 and 4). 

Without the down-sampling step, the 
dilation kernel needs to be larger (i.e. 5x5x5 
or even 7x7x7) to mark the transition region 
in the original data. Because voxels 
containing partial bone in the high resolution 
original data fall off more gradually and 
cover larger voxel area. Although, a larger 
kernel even guarantees more mapping of 
partial bone, the heavy price to pay is the 
processing time which renders a technique 
with the current technology clinically 
challenging. Even though the resolution is 
reduced with down-sampling, but the benefits 
are two-fold. First, the amount of data is 
reduced which means less data to process, 
and second, the dilation kernel is smaller, a 
3x3x3 kernel size is sufficient to mark the 
transition region. The drawback of down-
sampling is that it may cause loss of some 
details or resolution in the transition region. 
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Filtered Transition Region Obstacle 
Data 

An image processing filter (i.e. mean, 
Gaussian, or any other smoothing filter) can 
be used in this step to replace the low CTNs 
for bone voxels. However, a median filter 
provides a more accurate representation or 
replacement. It removes speckles while 
preserving true edges in the data [19,20]. 

For voxels containing multiple tissues, a 
dominant structure (i.e. bone) tends to 
overshadow the other tissues. The role of the 
adaptive median filter here is to use the 
median dominant structure (i.e. soft tissues) 
instead of the dominant structure in the 
replacement process. The existence of partial 
bone in a voxel would give that voxel a high 
CTN, although there might be more volume 
from other tissue in that voxel bone. With the 
use of a median filter, the low CTN for bone 
is replaced with neighboring voxels which 
may be vessels, soft tissue, or air. A median 
filter would cause other tissues to grow into 
the bone transition region instead of having 
the bone grow into the other tissue. 

If this process was performed on the 
original data I(x, y, z) then a larger kernel size 
would be needed to filter out the low CTNs 
for bone. Therefore down-sampling is 
necessary to make this technique feasible for 
clinical use. 

Down-Sampling, Up-Sampling and 
Composite Data 

Down-sampling is done using the 
maximum CTN of the kernel instead of the 
minimum, the mean or any other voxel value 
within the kernel. If the minimum is used in 
the down-sampling process, some high CTNs 
for bone are removed by that process alone, 
but the surrounding voxels would still contain 
low CTNs for bone. The transition region 
next to the high CTN for bone voxels cannot 

be generated which leads to the inability of 
removing the low CNTs for bone. More 
importantly with a minimum value down-
sampling process, if vessels and air are in the 
down-sampling kernel, vessels will be 
replaced with air which would cause a loss of 
some vessel information as well.  

In addition, if the mean value is used in 
the down-sampling process, it would smooth 
the data and would contribute to changing the 
values of the vessels and other structures in 
the CTA data. Using the maximum CTNs in 
the down-sampling process guarantees that 
the high CTNs for bone will be in the low 
resolution data and the transition region can 
be generated to remove the low CTNs for 
bone. In addition, there will be no change to 
vessel information for reasons discussed in 
the previous paragraph. 

Since the original CTA data was not 
isotropic, another advantage to the down-
sampling step in the manner described in this 
paper is the generation of the down-sampled 
isotropic data. This makes the kernels, used in 
filtering the data, have equal weighting for 
filtering which leads to proper and easier 
processing. 

Current CT scanners can produce many 
more slices than processed in this paper. This 
leads to more CT slices to diagnose and 
process which increase the demand to make 
the technique faster. This emphasizes the use 
of the down-sampling idea presented in this 
paper. Displaying cine’ 2-D images or 
volume render a small volume of interest 
(VOI) with a linear transfer functions are 
currently clinically used to display the CTA 
data [21, 22, 23]. Clearly this requires time as 
well as experience in adjusting and 
understanding the transfer function used [24]. 
Fig. 7 shows a MIP rendered image of a small 
VOI of the original data (unprocessed data) 
which took approximately 10 minutes of 
preparation. 
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FIG. 7. illustrates MIP volume rendered images of the original CTA data.  Fig. 7A is a MIP image of the 
whole original data; and Fig. 7B is a MIP image of a volume of interest roughly shown as a dotted box 
on Fig. 7A 

 
Trilinear interpolation is a costly process 

in terms of time. Nevertheless it was needed 
to interpolate the processed data iaf(x, y, z) 
because of its superior output image quality. 
Voxel replication is a faster process than 
trilinear interpolation but it provides poorer 
output image quality. Voxel replication was 
used with the generated masks because 
interpolating binary data using a trilinear 
technique does not improve the output image 
quality unless the data is changed to have 
more than binary values. Voxel replication of 
the composite mask was a sufficient 
technique to provide overall acceptable image 
quality. 

The interpolation step prepares all the 
needed data sets for the composition of the 
final output data. This data set contains all the 
diagnostic information of vessels and 
calcification without the bone barrier. A 3-D 
Visualization technique can then be used to 
easily display the vascular content of this 
data. Note that the developed technique 
proposed here is to aid radiologists in the 
vessel visualization and diagnosis but by no 
means is intended to replace the original CTA 
data set.  

The developed technique may encounter 
few limitations. This technique may be 
sensitive to the amount of contrast agent 
injected into the patient. Increasing the 
contrast agent may lead to increase the 
vessels CTNs to the level of bone. This may 
lead to the removal of the bone and some of 
the vessels data. In addition, the technique 
may remove high CTN calcifications in 

vessels touching the bone region. However, 
this can be resolved by editing and removing 
any seed that falls in the calcifications region. 
Furthermore, the developed technique 
requires large amount of memory to process 
multiple inputs simultaneously. This demand 
on memory is emphasized with large size data 
set. However, the down-sampling process of 
the data should reduce the amount of memory 
for processing. 

Finally, we hypothesize that our technique 
can be used on CTA data for other regions of 
the body. This is currently under 
investigation. 

Summary 
In this paper we have described a 

technique that is useful in excluding barrier 
structure (i.e. bone) from CTA data to unveil 
important diagnostic vessel information. The 
novel aspects of this technique are its ability 
to retain the vasculature data in pristine form 
and the removal of bone leaving out very 
little residue. We have also described ways to 
expedite processing with very little 
compromise to the image accuracy. We have 
demonstrated the usefulness of the technique 
and its visual accuracy on clinical data 
examples for the Circle of Willis region as 
well as the abdominal region. We argue that 
our bone removal technique would improve 
the diagnostic quality of 3-D visualization 
techniques such as MIP, SSD, and VR. These 
3-D visualization techniques of the output 
data clearly show by visual inspection the 3-
D vessel information.  
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