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Abstract: Computational condensed matter physics is nowadays a highly developed field 
of research, in terms of basic theory, algorithms and applications. Providing a 
comprehensive account of this subject is hence far beyond the scope of any review article. 
Therefore, I will introduce this subject through a set of examples taken from my recent 
research work, which touch upon some important developments in this field. These 
developments are the exact exchange formalism within Kohn-Sham density functional 
theory, combined exact exchange and many-body quasiparticle approach (for highly 
accurate band structure calculations), and maximally localized Wannier functions. The 
theoretical background of the above approaches in addition to the density functional 
perturbation theory (used to calculate the phonon spectra and other related physical 
properties of solids) will be briefly described, and representative results are shown to 
demonstrate the accuracy and predictive power of these theoretical approaches. 
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I. Introduction 
Direct application of standard quantum 

mechanics to condensed matter systems is a 
highly complicated many-body problem, 
which is simply impossible to solve both 
analytically or numerically. Thus, it is not 
surprising that in almost all practical quantum 
mechanical approaches the many-body 
problem is transformed to a single-body one. 
The magic of the Kohn-Sham (KS) formalism 

[1] of density functional theory (DFT) [2] 
arises from its proof that this transformation 
can be exactly performed. Thus, the problem 
of finding the system total energy, charge 
density and other ground state physical 
properties can be obtained by solving self-
consistently a set of single-particle 
Schrödinger like equations (known as KS 
equations). The corresponding effective 
potential which is functional of the charge 
density, ρ, is called KS potential. In this 

formalism, all the quantum short-ranged 
effects are rolled up in the exchange-
correlation (XC) energy term, EXC[ρ], which 
is the only part of the total energy that needs 
to be approximated. Moreover, the theory 
itself suggests some practical and well 
understood approximations for EXC[ρ]. The 
most widely used are the local density 
approximation (LDA) and generalized 
gradient approximation (GGA). These 
approximations are found to give very good 
results for various properties of a wide range 
of materials, and this approach is currently 
being used to tackle fundamental problems in 
physics, chemistry, geophysics, material 
science and biology. See Ref. 3 for an 
excellent review of the basic theory and 
applications of this theoretical approach. A 
brief description of the KS-DFT formalism 
and EXC is given in Sec. II.  
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In spite of their enormous successes, the 
KS-DFT calculations have also several 
limitations. Here, we focus on two major 
sources of errors in the KS-DFT calculations 
based on LDA or GGA: (i) the presence of 
spurious self-interaction (SI) arising form the 
use of approximate exchange energy 
functionals [4], and (ii) the absence of a 
derivative discontinuity in the exchange-
correlation potential with respect to changes 
in the particle number in both LDA and GGA 
functionals [5], which has a profound effect 
on the calculated band gaps of 
semiconductors and insulators. See Ref. [6] 
for a recent review of these limitations and 
their consequences, especially for transition 
metal and rare earth compounds. When 
applied to calculate the electronic structure of 
solids, two main problems are observed: (1) 
The band gap of semiconductors and 
insulators are highly underestimated (known 
as band gap problem), which is due to the 
above two deficiencies, and (2) the binding 
energies of the highly localized states are 
significantly lower than the corresponding 
experiment values, which is usually attributed 
to the spurious SI [7,8]. 

A recent important development is the 
exact exchange formalism within KS-DFT 
approach [9-11]. This is a major step forward, 
since the exchange energy is explicitly 
calculated, removing thus the spurious SI and 
leaving only the correlation energy to be 
approximated. It should be noted that the 
resulting local exact exchange potential is 
orbital dependent, which makes its 
computation very expensive in terms of both 
memory and CPU time, compared to LDA 
calculations. It has been recognized that this 
exact exchange potential is equivalent [12] to 
the optimized effective potential (OEP, Refs. 
13 and 14): the best local potential that 
approximates the non-local Hartree-Fock 
potential, which has long been used in atomic 
and molecular calculations. Thus, this 
approach when used together with LDA 
correlation, hereafter denoted as 
OEPx(cLDA), is found to yield significant 
opening of the band gap of a wide range of 
semiconductors and insulators, leading to 
improved effective masses and optical 
properties [11]. However, the OEPx(cLDA) 
method does not completely solve the band 
gap problem, and we have shown [15] that 

the removal of the SI, in this approach, does 
not improve the KS-DFT description of the 
binding energies of the highly localized 
states, contrary to the above common belief. 
The LDA, GGA and OEPx exchange-
correlation functionals will be introduced in 
Sec. III.  

For accurate band structure calculations, 
one thus needs to go beyond the KS-DFT 
formalism. The most widely used approach is 
the quasiparticle energy calculations [16,17] 
in Hedin’s GW approximation [18] for the 
many-body self-energy operator. The 
application of the GW approximation to 
calculate the electronic structure of solids is 
pioneered by Hybertsen and Louie [19] and 
Godby, Schlüter and Sham [20]. The formal 
relationship between the quasiparticle 
energies and the experimental valence and 
conduction band energies, obtained 
respectively using photoemission 
spectroscopy and inverse photoemission 
spectroscopy, is clearly described in Ref. 
[17]. Originally, the Green's function G0 and 
the screened potential W0 required in the GW 
approximation (henceforth denoted G0W0) are 
calculated from a set of LDA single particle-
energies and wave functions (LDA-G0W0). 
The LDA-G0W0 approach is found to 
accurately predict band gaps of sp-bonded 
semiconductors (with a typical error bar of 
0.1 eV). However, complications arise when 
the LDA-G0W0 approach is used to calculate 
the electronic structure of semiconductors 
with negative LDA band gaps [21, 22] or 
when occupied shallow semicore d bands are 
treated as valence in the pseudopotential GW 
framework [23-25]. 

The above complications in the LDA-
G0W0 calculations can be removed [17] by 
calculating G0 and W0 from OEPx(cLDA) 
single particle data [OEPx(cLDA)-G0W0]. 
This is another important development 
because of two reasons: (i) The quasiparticle 
corrections to the KS-DFT eigenvalues are 
commonly calculated by using first order 
perturbation theory. The opening of the band 
gaps within the OEPx(cLDA) makes these 
corrections smaller than those of LDA-G0W0, 
leading to a better validity and accuracy of 
these GW calculations. (ii) The OEPx(cLDA) 
method gives a much better description of the 
core states than LDA. This is especially 
important for the states whose wavefunctions 
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overlap strongly with those of the considered 
valence states, which allows the treatment of 
these highly localized states as part of the 
frozen core, contrary to the pseudopotential 
LDA-G0W0 approach [23-25]. Moreover, this 
also makes the generated OEPx(cLDA) 
pseudopotentials superior to those of LDA. 
We have found that the OEPx(cLDA)-G0W0 
approach reproduces very well the band gaps 
of a wide range of semiconductors, including 
group-III nitrides [15,17,26-28], II-V 
compounds [17,29] and transition metal 
nitrides [30,31]. The OEPx(cLDA)-G0W0 
approach will be introduced in Sec. IV.  

Many physical properties of solids are 
directly related to successive derivatives of 
the system total energy with respect to 
external perturbations. These properties can 
be most efficiently calculated using density 
functional perturbation theory (DFPT); an 
interesting merging of perturbation theory 
and DFT [32-36]. This approach is based on a 
variational principle that provides accurate 
expressions for the energy derivatives and 
gives even access to non-linear responses. 
The perturbations considered in this review 
are the atomic displacements [35], 
homogeneous electric field [35] and 
homogeneous strain [37, 38]. Appropriate 
combinations of these perturbations give 
access to physical properties of primary 
interest: the dynamical matrices, elastic 
constants, Born effective charge and 
dielectric permittivity tensors. We have 
recently used this approach to investigate the 
elastic, dielectric, phonon spectra and thermal 
properties of some semiconductors [39-41]. 
The thermal properties of solids are usually 
studied by employing the quasiharmonic 
approximation [42,43]. However, very 
recently, the anharmonic effects have 
received renewed interest [44,45]. The 
calculations of these properties using DFPT 
will be described in Sec. V.  

It is worth noting that the ab inito 
calculations of the phonon spectra have been 
started by Kunc and Martin [46], see also 
Ref. [47], using the so-called frozen-phonon 
approach. In this approach, the atoms are 
displaced according to a certain lattice 
vibrational mode, and the resulting lower 
symmetry structure is treated as a new crystal 
structure. Then, the phonon frequency of this 
mode is deduced from the difference in the 

total energy of the two structures (distorted 
and undistorted). A second technique is the 
interplanar force constant method [48]. In this 
approach, the force constants between the 
plans of atom normal to a high symmetry 
direction are determined by using the 
supercell method. A long enough unit cell is 
constructed along the considered high 
symmetry direction. The interplanar force 
constants are then extracted from the 
Hellmann-Feynman forces exerting on the 
atoms as a result of an appropriate 
displacement of central atom in an otherwise 
ground state structure (zero forces). This 
approach can be used to calculate the phonon 
modes along the high symmetry directions, 
and it is very useful in investigating the 
phonon dispersion relations of superlattices 
and heterostructures [49-51]. A third direct 
approach is the interatomic force constants 
(IFCs) method [52]. Here, the IFCs are 
calculated from the Hellmann-Feynman 
forces resulting from appropriate atomic 
displacements in a big enough supercell. This 
approach allows for the calculations of the 
phonon frequencies at a general k-point in the 
first Brillouin zone which, in turn, can be 
used to investigate the thermal properties of 
solids. On the other hand, the phonon 
frequencies and the free energy (including 
anharmonic effects) can be obtained using ab 
initio molecular dynamics, see for example 
Ref. [45]. However, the main disadvantage of 
the IFCs and molecular dynamic calculations 
lies in the relatively small size of the 
supercell considered. In the DFPT approach, 
on the other hand, the calculations are 
performed using the primitive unit cell.  

Finally, the electronic states in a periodic 
potential can be described by either the 
widely used extended Bloch orbitals or in 
terms of localized Wannier functions (WFs). 
The non-uniqueness property of the WFs has 
dramatically limited their applications. An 
important recent development is the elegant 
method of Marzari and Vanderbilt [53] to 
construct unique maximally localized WFs 
(MLWFs). Hence, the WF representation has 
recently received considerable interest. In 
addition to their relevance in several areas of 
physics, WFs have found new interesting 
applications due to their connections with the 
Berry-phase theory of bulk polarization [54-
56] and their potential use as basis in modern 
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electronic structure calculations to 
dramatically increase their efficiency [57,58]. 
We mention here the very recent highly 
efficient implementation of the GW 
calculations [58], in terms of MLWFs, which 
extends their applications to large systems 
(unit cells with hundreds of atoms). Other 
applications of the MLWFs include electrical 
and thermal transport [59,60], strongly 
correlated systems [61-63], photonic lattices 
[64], van der Waals interaction [65] and tight-
binding calculations [66]. We have 
introduced [67] a novel first-principle bond 
ionicity scale based on the centers of the 
MLWFs. Concepts such as valency, 
electronegativity and bond ionicity are still 
very useful in understanding the differences 
in the properties of different systems and in 
seeking trends of these properties. Both the 
MLWFs and the new ionicity scale will be 
briefly described in Sec. VI.  

II. The Kohn-Sham Formalism of 
Density Functional Theory and 
Exchange- Correlation Energy 

Most of the modern electronic structure 
calculations are based on density functional 
theory (DFT), introduced by Hohenberg and 
Kohn [2]. The DFT states that the electronic 
charge density, ρ, is a basic quantity as the 
many-body wavefunctions. This is achieved 
by proving two theorems: (i) There is a one-
to-one correspondence between ρ and the 
external potential, Vext, up to an additive 
constant. The Vext determines, in turn, the 
many-body wavefunctions from which all the 
physical properties of any electronic system 
can be extracted. Hence, the physical 
properties of any electronic system can be 
expressed as functionals of ρ. Of particular 
importance is the total energy, Etot[ρ]. (ii) A 
variational principle: the ground state total 
energy is the global minimum of Etot[ρ], and 
the ρ that minimizes this functional is the 
ground state ρ. The main difficulty here is 
that an explicit expression for Etot[ρ] is 
unknown. 

In a subsequent seminal paper, Kohn and 
Sham (KS) [1] have introduced the following 
highly intelligent separation of Etot[ρ]: 

[ ]tot o ext H XCE T E E Eρ = + + + ,            (1) 

where To is the kinetic energy of the system of 
non-interacting electrons; Eext is the 
interaction energy between the electrons and 
the external potential; EH is the classical 
electron – electron (e-e) interaction energy 
given as 

( ) ( )1
2H

p r p r
E dr dr

r r
′

′=
′−∫∫ ,                    (2) 

and EXC is the sum of the exchange (EX) and 
correlation (EC) energies. It is worth noting 
that the first three terms can be exactly 
calculated, leaving only the unknown or 
difficult to calculate term (EXC) to be 
approximated. Moreover, the use of To instead 
of kinetic energy of the system of interacting 
electrons, T, allows for an exact 
transformation from the many-body to single-
body problems [1]. Thus, the ground state Etot 
and ρ can be determined by solving self-
consistently a set of single particle 
Schrödinger like equations (note that atomic 
units are used) 

2

( ) ( ) ( ) ( )
2

( ).

ext H XC i

i i

V V V φ

ε φ

⎡ ⎤∇
− + + +⎢ ⎥
⎣ ⎦

=

r r r r

r
    (3)  

Here, Vext, VH and VXC are, respectively, the 
external potential, Hartree and XC potentials 
defined as  

( )   
( )

J
J

EV δ
δρ

=r
r

                                       (4) 

[with J stands for ext, H or XC].  

The electron charge density distribution, ρ, is 
defined in terms of single-particle orbitals, iφ , 
as  

2( ) ( )i i
i

fρ φ=∑r r ,                                (5) 

where fi denotes the occupation number of the 
ith state. Eqs. (1) to (5) have to be solved self-
consistently after an approximation for EXC[ρ] 
is adopted. Several practical methods are 
currently in use for such a purpose [3]. In our 
calculations, we employ a norm-conserving 
pseudopotential plane-wave method [68].  

The EXC[ρ] part of the e-e interaction 
energy deserves a brief description. Let us 
connect first with the single-particle approach 
introduced by Hartree in 1930, in which VXC 
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and EXC are completely neglected from the 
above equations, and the many-body 
wavefunction of an N particle system is given 
as 

1 2 3

1 1 1 2 2 2

( , , ,..., )
( , ) ( , )... ( , ).

N

N N Nψ σ ψ σ ψ σ
Ψ =r r r r

r r r        (6)  

Here, iψ  is the product of the single particle 
spatial wavefunctions { )(riφ } and spin 
wavefunctions { )(σα i }. This form of Ψ 
does not satisfy Pauli’s exclusion principle, 
which requires anti-symmetric wavefunction. 
In the Hartree-Fock (HF) [69] approach, this 
principle is satisfied by writing Ψ as a Slater 
determinant 

1/ 2

( , ) ( , ) ( , ) . . . . . 1 1 1 2 1 3
( , ( ) ( , ) ( , ) . . . . . 2 1 2 2 2 3

. . . . . . . .

. . . . . . . .

1
( !)N

ψ σ ψ σ ψ σ

ψ σ ψ σ ψ σ

Ψ =

×

r r r1 2 3
r r r1 2 3

.

 

                                                                     (7) 

This choice for Ψ leads to an additional 
orbital dependent exchange energy term  

(

)

* *

, ,

1 ( ) ( )
2

1                       ( ) ( ) .

X i j
i j

j i

E d d σ σ

σ

σ σ

φ φ

φ φ

= −

×
−

∑ ∫ r r' r r'

r r'
r r'

    (8)  

The corresponding exchange potential is non-
local and orbital dependent, and the 
differential-integral equations to solve in the 
HF approach take the form  

(

)

3 21d ( ) ( ) ( )
2
( ) ( ) ( , ) ( )

( ) ,

ext

HF
H X i

ij j
i j

V

V V

δ δ

δ φ

ε φ
≠

− ∇ +

+ +

=

∫

∑

x' x - x' x x - x'

x x - x' x x' x'

x

          

        (9) 

with x here comprises the spatial coordinates 
r and spin σ. The HF exchange potential, 

),( x'xHF
XV , leads to the spatial separation 

between two electrons with equal spin. The 
exchange energy, EX, is the reduction in the 
total energy resulting from the reduction of 
the Coulomb potential due to the above 

spatial separation. Note that only 
semiconductors will be considered in this 
review, and all state summations, therefore, 
include the spin variable implicitly. 

The correlation energy, EC, is defined as 
the difference between the energy of the 
many-particle system and that calculated 
using the HF approach. It can be thought of 
as the further reduction in the total energy 
due the spatial separation of electrons with 
different spin. EC is the most difficult term, 
and it is still an ongoing challenge in many-
body theory. 

III. Exchange - Correlation 
Functionals: LDA, GGA and Exact - 
Exchange 

The DFT framework described in the 
previous section provides a practical tool for 
calculating the ground state properties of 
many-electron systems. This is largely due to 
the existence of accurate and well understood 
approximations for EXC. The simplest and 
most widely used approximation is the LDA, 
proposed by Kohn and Sham [1]: 

))(()(][ hom rrr ρερρ XC
LDA
XC dE ∫= ,            (10)  

where, hom
XCε  is the XC energy per particle of 

a homogeneous electron gas of density ρ(r), 
which is known with a very high accuracy. 
Although it is supposed to be valid for slowly 
varying ρ(r), LDA is proved to be remarkably 
successful for various properties of a wide 
range of systems. The reasons behind the 
success of LDA are thoroughly investigated 
[70]. However, it has several drawbacks. For 
solids, the general understanding is that LDA 
slightly underestimates the lattice parameter 
and overestimates the cohesive energy and 
bulk modulus. However, as noted in the 
introduction, the most serious shortcoming is 
the so-called band-gap problem. 

The other widely used approximation is 
the generalized gradient approximation 
(GGA), where information about the local 
variation of ρ(r) is taken into account: 

))(),(()(][ rrrr ρρερρ ∇= ∫ dE GGA
XC  .   (11)  

Several GGA functionals have been devised, 
which try to satisfy as much as possible the 
properties and scaling rules of the exact EXC 



Review Article  Abdallah Qteish 

 136

[71]. The main success of the GGA is a 
definite improvement in the cohesive energy 
of solids and molecules. Its performance for 
other properties, such as lattice parameter and 
bulk modulus of solids, is not impressive: the 
GGA results may even be worse than the 
LDA ones. As for the electronic structure, the 
differences between those calculated using 
LDA and GGA are marginal. 

In principle, DFT is self-interaction free: 
for each electron the self-exchange energy 
[i.e, i = j in Eq. (8)] cancels completely its 
self-Hartree one [Eq. (2), with ρi(r) is used 
instead of ρ(r)]. Such a cancellation becomes 
incomplete when an approximation for EX is 
adopted (while treating EH exactly), leading 
to a spurious SI that is positive in nature [4]. 
The SI increases with the increase of the 
degree of localization of the electronic states. 
For example, the LDA eigenvalue of the 1s 
state of the H atom is about one half of the 
true value of 1 Ryd. Several methods have 
been introduced to remove or reduce the SI: 
(i) The self-interaction corrected LDA (SIC-
LDA) of Perdew and Zunger [4] and its 
subsequent variants [7, 8, 72-74]. This is 
simply done by subtracting the interaction of 
each electron with its own charge density 
from the LDA (or the local spin-density 
(LSD) approximation) total energy. (ii) The 
LDA+U method [75], where the adjustable 
state dependent Hubbard U parameter is 
added locally to reduce the energies of the 
highly localized states. (iii) The use of hybrid 
functionals [76], which approximates the 
exchange potential as a linear combination of 

the corresponding non-local HF and local 
GGA potentials. (iv) The exact-exchange 
scheme within the KS-DFT method [9-11], 
which is practically SI free.  

In the exact-exchange formalism within 
KS-DFT, EX is calculated explicitly according 
to Eq. (8). The major difficulty here lies in 
the orbital dependence of EX: note that VX is 
defined as the first order variation of EX with 
respect to ρ(r), Eq. (4). This difficulty can be 
solved by using the chain rule:  

' ''

' ''

( )
( )

[ ] ( ) ( ). . .
( ) ( ) ( )

OEP X
X

KS
X i

KS
i i

EV

E r V rc c
r V r

δ
δρ

δ ρ δϕ δ
δϕ δ δρ

= =

⎡ ⎤
+⎢ ⎥

⎣ ⎦
∑∫∫

r
r

r

(12) 

As noted in Sec. I, this local exchange 
potential is equivalent to the optimized 
effective potential (OEP): the best local 
approximation to the HF non-local exchange 
potential [77]. The first derivative of Eq. (12) 
can be directly obtained from Eq. (8); the 
second derivative can be calculated using first 
order perturbation theory, while the third 
derivative is nothing but the inverse of the 
independent particle susceptibility,  

( , ) ( ) ( )KS
o Vχ δρ δ=r r' r r' .                   (13) 

See Ref. 11 for other technical details. We 
note here that the calculation of OEP

XV  is quite 
involved and expensive in terms of both CPU 
time and memory, compared to LDA. More  

 

 
FIG.1. Effective Kohn–Sham potential for the neutral Zn (left panel) and Ga (right panel) atom: the 
OEPx(cLDA) potential (red line) reproduces the correct asymptotic decay−e2/r (black line), whereas the 
LDA (blue, dashed line) decays exponentially and thus underbinds the electrons. The atomic levels 
(shown as horizontal lines) are lowered in the OEPx(cLDA) approach compared to the LDA, resulting in 
good agreement with the experimentally measured ionization potential (green horizontal line). (Taken 
from Ref. 17). 
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efficient methods for calculating OEP
XV  have 

been recently introduced [78, 58].  
 
     The advantages of using the OEPx 
approach can be easily inferred from Fig. 1. 
First, the removal of the SI by this approach 
gives the correct asymptotic –e2/r behavior at 
large r. It is worth noting that, in this limit, 
the Coulomb potential of neutral atoms goes 
to zero, and the XC hole (which satisfies the 
sum rule: the XC hole density integrates to 
minus one electron) potential leads to the 
above asymptotic behavior. On the other 
hand, the LDA and GGA potentials go very 
rapidly to zero. Second, the removal of the SI 
by the OEOx(cLDA) approach improves 

dramatically the calculated valence 
eigenvalues. The difference between the LDA 
(blue lines) and OEOx(cLDA) (red lines) 
eigenvalues is due to the SI. The 
OEOx(cLDA) value of the highest valence 
state energy is very close to the negative of 
the experimental ionization energy, as 
expected. Third, The deeper OEOx(cLDA) 
potential increases the spatial localization of 
the valence states, compared to those of LDA, 
leading to a smaller overlap between them in 
the formation of solids. This leads, in turn, to 
larger band gaps and smaller band widths 
relative to those of LDA. This is shown in 
Fig. 2 for the band gaps of several 
semiconductors.  

_____________________________________________________ 

 
FIG. 2. Calculated versus experimental band gaps for selected II-VI compounds, group-III-nitrides and 

transition metal nitrides. The OEPx(cLDA)-G0W0 method consistently improves over LDA and 
OEPx(cLDA). For lack of experimental information on the band gap of YN and LaN, our predicted 
gaps have been placed on the diagonal. (Taken from Ref. 31). 

_________________________________________ 

 
IV. Quasiparticle GW Approach 
Based on Exact-Exchange KS-DFT 
Calculations  

Via the field operator formalism, the 
many-body Hamiltonian can be transformed 
into a single-particle Hamiltonian 
[79]: );,()();,( εε r'rrr'r Σ+= ohH . All 
electron-electron interaction terms are rolled 
up in the non-local, energy-dependent self-

energy operator (∑) and the remaining 
contributions are given by 

21( ) ( )
2o exth V= ∇ +r r . The single particle 

Green’s function 

*

0

( , ; )
( ), ( )Lim

( sgn( ))
s s

s s f s

G

i Eη

ε

ψ ψ
ε ε η ε+→

=

− + −∑

r r'
r r'          (14) 
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(where η is an infinitesimal positive energy) 
satisfies then the Dyson equation  

1

0

( , ; )

( ) (( ) ( , ; ).

G

h

ε

ε δ ε

− =

⎡ ⎤− − − Σ⎣ ⎦

r r'

r r r' r r'
      (15) 

By inserting Eq. (14) into (15), one 
immediately finds that εs and ψs(r) are 
solutions to 

0 s s

s

( ) ( ) d ( , ; ) ( )

( ).
s

s

h ψ ε ψ

ε ψ

+ Σ

=
∫r r r' r r' r'

r
         (16) 

The poles of the Green’s function therefore 
correspond to the real electron addition and 
removal energies εs and form a branch-cut 
infinitesimally above (below) the real energy 
axis for occupied (unoccupied) states. 

To establish a link to photoemission of 
delocalized valence states, it is helpful to 
introduce Landau’s concept of quasi-particles 
[80]. This new entity can be considered as a 
combination of an electron or a hole with its 
surrounding polarization cloud or, in other 
words, as the collective response of the 
interacting many-body system upon 
photoexcitation. Switching to the 
quasiparticle picture is consistent with 
analytically continuing the self-energy to the 
complex energy domain. Each of the quasi-
particle poles (now at complex energy) 
represents the effect of many of the 
infinitesimally closely spaced poles just 
above (below) the real axis. 

To solve the Dyson equation [Eq. (15)] for 
real systems, one typically applies Hedin’s 
GW approximation [18] for the self-energy. 
Assuming that the quasi-particles interact 
only weakly via the screened Coulomb 
interaction W, the self-energy in the GW 
approach is then given as 

'

( , ; )

d ' ( , ; ') ( , ; ') ,
2

GW
XC

ii e G Wε δ

ε

ε ε ε ε
π

∞

−∞

Σ =

+∫

r r'

r r' r r'
(17) 

where δ is an infinitesimal positive time. In 
practice, one starts from a system of non-
interacting particles with energies εi and 
wavefunctions φi(r). The non-interacting 
Green’s function is defined analogous to Eq. 
(14) as  

0
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( sgn( ))

i i

i i f i
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i Eη
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φ φ
ε ε η ε+→
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− + −∑

r r'
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The quantum state indices i and s are short for 
the composite of band index n and wave 
vector k. In the random-phase approximation, 
the dielectric function, 

0

( , ; )

( ) d ( ) ( , ; )V

ε ε

δ χ ε

=

− − −∫
r r'

r r' r'' r r'' r r'   (19) 

is connected to the independent-particle 
polarizability, 

0
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                    (20) 

and the bare Coulomb interaction, 

1( )V − =
−

r r'
r r'

,                                 (21) 

is screened by the inverse dielectric function 
-1

0 ( , ; ) d '' ( , ) ( )W Vε ε ε= −∫r r' r r r''; r'' r .

      (22) 

Separating the Hartree potential from the GW 
self-energy, and inserting GW

XCΣ  and the 
quasi-particle Green’s function [Eq. (14)] into 
Eq. (15), the Dyson equation becomes 

0 s

s s

( ) ( ) ( )

d ( , ; ) ( ) ( )

H

GW
XC s s

h V ψ

ε ψ ε ψ

⎡ ⎤+⎣ ⎦

+ Σ =∫

r r r

r' r r' r' r
   (23) 

This equation, also referred to as quasi-
particle equation, can be solved for the quasi- 
particle energies and wavefunctions. 

Most commonly, the quasiparticle 
energies { qp

sε } are determined using first 
order perturbation theory  

0 0| ( ) | .

qp DFT
n n

G W DFT
n XC n XC nV

ε ε

φ ε µ φ

=

+ < Σ − − ∆ >
k k

k k k

     (24) 

Here, G0 and W0 used to calculate 00WG
XCΣ  are 

computed from a set of KS-DFT single-
particle-energies and wave functions 
{ DFT

i
DFT
i φε , }, and the constant ∆µ is 
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introduced to align the Fermi energies before 
and after applying the GW self-energy 
corrections. Since G0 and W0 are not usually 
updated in a self-consistent manner, the so-
calculated quasiparticle energies depend on 
the XC approximation used to calculate the 
input data. In the LDA-G0W0 approach, G0 
and W0 are calculated from LDA data, while 
OEPx(cLDA) data are used in the 
OEPx(cLDA)-G0W0 method. As previously 
noted, the LDA-G0W0 results were found to 
accurately predict band gaps of sp-bonded 
semiconductors (with a typical error bar of 
0.1 eV) [81]. However, complications arise 
when the LDA-G0W0 approach is used to 
calculate the electronic structure of 
semiconductors with negative LDA band 
gaps [21, 22] or when occupied shallow 
semicore d bands are treated as valence in the 
pseudopotential LDA-G0W0 framework [23-
25]. We have found that OEPx(cLDA)-G0W0 
method provides a reliable tool for band 
structure calculations of a wide range of 
semiconductors, including group-III nitrides 
[15, 17, 26-28], II-VI compounds [17, 29] 
and transition metal nitrides [30, 31], as 
shown in Fig. 2 and Table I.  

      Table I shows that the quasiparticle band 
gaps calculated using the OEPx(cLDA)-G0W0 
approach are much superior than those of 
LDA-G0W0.  This    can be understood as 

TABLE I. DFT and quasiparticle band gaps in 
eV for ZnO, ZnS, CdS and GaN in the zinc-
blende structure compared to the experimental 
values. The calculations are performed using a 
pseudopotential plane-wave approach, with the 
semicore d electrons treated as valence. LDA 
calculations highly underestimate the band 
gap. The situation is improved by the 
quasiparticle LDA-G0W0 calculation, but the 
band gaps are still much smaller than the 
experimental values (see text). The 
OEPx(cLDA) approach leads to a significant 
opening of the band gap (relative to those of 
LDA), and OEPx(cLDA)-G0W0 results are in 
excellent agreement with experiment. (Taken 
from Ref. 29). 

Method ZnO ZnS CdS GaN
LDA 0.51 1.76 0.81 1.65 
LDA- G0W0 1.36 2.59 1.60 2.54 
OEPx(cLDA) 2.34 2.94 1.84 2.76 
OEPx(cLDA)-
G0W0 

3.11 3.70 2.39 3.09 

Experiment 3.44 3.80 2.48 3.30 

follows. It has been argued that 
wavefunctions of the semicore d electrons in 
the considered systems overlap strongly with 
those of the s and  p  electrons  of the same 
shell. To obtain accurate quasiparticle band 
gaps within the pseudopotential LDA-G0W0 
approach, the entire semicore shell should be 
included as part of the valence states [23-25], 
which makes these calculations highly 
expensive. Including instead only the 
semicore d electrons as valence results in 
large errors in the calculated band gaps, as is 
evident from Table I. On the other hand, 
these semicore s and p states are well 
described by the OEPx(cLDA) scheme, and 
hence they can be kept as part of the frozen 
core in the pseudopotential OEPx(cLDA)-
G0W0 calculations. The other main advantage 
of the OEPx(cLDA)-G0W0 approach is the 
significant opening of the band gap arising 
from the removal of the self-interaction, 
compared to those of LDA, see above. This 
means that )(cLDAOEPx

XCV  is closer to the self-

energy operator GW
XCΣ  than LDA

XCV , which leads 
to a better validity of the first order 
perturbation theory [Eq. (24)] used to 
calculate the quasiparticle energies.  

As an example, we focus here on the band 
gap (Eg) of wurtzite (wz) InN. 
Experimentally, the widely accepted band 
gap (of 1.9 eV) has been recently questioned 
[82-84], and a value of about 0.7 eV has been 
measured in new high quality samples (low 
carrier concentration resulting from n-type 
doping). Moreover, the conduction electrons 
effective mass (m*) of wz-InN is also found 
to depend strongly on the carrier 
concentration in the sample [27]. 

We show in Fig. 3 the calculated band 
structure of wz-InN in the vicinity of the band 
gap. The LDA calculations give incorrectly a 
negative band gap at the Γ point, which 
makes problematic the application of the 
LDA)-G0W0 method to this system [21,22]. 
On the other hand, the OEPx(cLDA) 
approach leads to sizable opening of the band 
gap, making wz-InN correctly a direct band 
gap semiconductor. The opening of the band 
gap in the latter approach is a direct 
consequence of the removal of the self-
interaction: the energy of the relatively more 
localized upper valence states is lowered 
more than that of the lower conduction band  
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FIG. 3. LDA Kohn-Sham calculations incorrectly predict wurtzite InN to be a metal with the wrong band 

ordering at the Γ point. In OEPx(cLDA), the band gap opens and InN correctly becomes a 
semiconductor, thus providing a more suitable starting point for subsequent quasiparticle energy 
calculations in the G0W0 approximation. (Taken from Ref. 27). 

 

 
FIG. 4. Conduction band of wurtzite InN and GaN aligned at the bottom of the conduction band: the 

circles are the OEPx(cLDA)-G0W0 results, the solid lines the k·p fit using Eq. (25), and the dashed 
lines the effective mass band (i.e, parabolic shape). The inset shows the band structure of wurtzite 
InN. (Taken from Ref. 27). 

 
states. Finally, the quasiparticle correction to 
the OEPx(cLDA) band gap (using the 
OEPx(cLDA)-G0W0 scheme) leads to a band 
gap that is in excellent agreement with the 
recent experimental results [82-86]. 

 
To explain the sizable dependence of the 

band gap and conduction electrons effective 
mass of wz-InN on the carrier concentration 
(n-type), we use an analytic expression for 
the conduction band around the Γ point 

  2 2 2 2
2

( )

1 ( ) 4
2 2 2

c

g g p
o o

E k

k kE E E
m m

+ −

=

⎛ ⎞
⎜ ⎟+ + +
⎜ ⎟
⎝ ⎠

 (25) 

derived from a four band k·p model, 
neglecting spin-orbit splitting. Here, mo is the 
free electron mass and 1∆±=±

gg EE , where 

1∆  is the crystal field splitting parameter of 
the upper three valence band states at the Γ 
point. The parameter Ep is related to the 
optical matrix elements between conduction 
and valence bands. Since it is the only 
unknown in Eq. (25), it has been determined 
by fitting to the OEPx(cLDA)-G0W0 
conduction band. The calculated and fitted 
conduction bands around the Γ point are 
shown in Fig. 4, for wz-InN and wz-GaN. 
Using the OEPx(cLDA)-G0W0 values for 1∆  
and Eg, we find that the quasiparticle 
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conduction band of InN is well described by 
Ep of 9.0 eV (red solid line in Fig. 4).  

Let us start first with the conduction 
electrons effective mass, m*. In the spherical 
band approximation, the momentum effective 
mass  

1
*

0
2

0

( )( )

F

cF

F k k

m dE km k
m k dk

−

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

              (26) 

can be translated into a carrier concentration 
dependent effective mass using the free 
electron relation 3/12 )3( ρπ=Fk , where ρ is 
the density of electrons in the conduction 
band. Fig. 5 shows the effective mass of wz-
InN as a function of the free carrier 
concentration. The ab initio prediction (red 
line) extracted from our OEPx(cLDA)-G0W0 
band structure by means of Eqs. (25) and (26) 
reproduces the experimental results very well 
and closely matches the curve obtained by 
Wu et al. with an experimentally deduced 
value of Ep =10 eV [Refs. 85 and 86 (black 
line)]. 

The n-type doping has also a direct 
consequence on the direct optical transitions 
[ ( ) ( ) ( )]g c vE E Eρ ρ ρ= −  of wz-InN, which 

are shifted towards higher energies due to 
conduction band filling as the free electron 
concentration increases — the so-called 
Burnstein-Moss effect. Contributions from 
the electron-ion and electron-electron 
repulsions at high electron concentrations are 
accounted for following Wu et al. [85, 86]. 
The Burnstein-Moss shift calculated in this 
way fits very well a wide range of 
experimentally reported measurements, as 
shown in Fig. 6, and agrees well with the 
curve deduced by Wu et al. from their 
experimentally determined values of Eg and 
Ep. Neglecting the non-parabolicity of the 
conduction band (blue dashed line) worsens 
the agreement with the experimental results. 

The excellent agreement between the 
OEPx(cLDA)-G0W0 results and experiment 
for the band gap of a wide range of 
semiconductors (Fig. 2) and in the delicate 
case of wz-InN (Figs. 5 and 6) reflects the 
high accuracy and predictive power of this 
method. This approach is nowadays one of 
the most advanced methods for band structure 
calculations. 

 

 
 
FIG. 5. The wz-InN effective mass as a function of carrier concentration, deduced from the 

OEPx(cLDA)-G0W0 calculations by means of Eqs. (25) and (26) [red line], agrees well with 
experimental measurements (symbols) and the k·p fit of Wu et al. (black line) based on the 
experimental data ([85, 86]). (Taken from Ref. 27). 
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FIG. 6. Burnstein-Moss effect deduced from the OEPx(cLDA)-G0W0 band structure (red line) for wz-InN 

reproduces the experimental trend (symbols) very well and is also close to the k·p curve of Wu et al. 
(black line) [85, 86]. Assuming parabolic bands (dashed line) overestimates the Burnstein-Moss shift. 
(Taken from Ref. 27). 

 
V. Elastic, Dielectric, Vibrational 
and Thermal Properties of 
Semiconductors from DFPT 
Calculations  

Many properties of solids are defined as a 
response to an external perturbation. Here, we 
will focus on the perturbations that can be 
handled by the ABINIT computer package 
[87]: the atomic displacements (um) that 
preserve the crystal periodicity, homogeneous 
electric fields (Eα, where α denotes a 
Cartesian direction) and homogeneous strains 
(ηj, where j = {1...6} in Voigt notation). The 
corresponding responses that are conjugate to 
these perturbations are (i) forces Fm, (ii) 
polarizations Pα and (iii) stresses σj, 
respectively. From a simultaneous application 
of a pair of these perturbations, one gets 
response functions of primary interest: Kmn = 
dFm / dun (interatomic force-constant matrix), 
εαβ = Pα / Eβ (dielectric susceptibility), Cjk = 
dσj / dηk (elastic constants), Z*mα = dPα / dum 
(Born effective charge), Λmj = dFm / dηj 
(internal strain) and eαj= dPα / dηj 
(piezoelectric response). These response 
tensors are nothing but second order 
derivatives of the total energy with respect to 
appropriate mixed perturbations. These 
energy derivatives can be efficiently 
calculated, within DFPT, by a variational 
technique similar to the one usually adopted 
to solve the KS equations. The force-constant 

matrices can then be used to find the phonon 
modes over the entire Brillouin zone, which 
are the basic ingredient needed to calculate 
the thermal properties of solids.  

V.A. Density functional perturbation 
theory 

In the usual formulation of DFPT, the 
dependence of the electronic part of the total 
energy (Eel) on a parameter λ is developed as 
a power series in λ [35]:  

(0) (1) 2 (2)( )  ......X X X Xλ λ λ= + + +        (27) 

This power series expansion applies to other 
exact perturbed physics quantities: {φ}, {ε}, 
ρ, Vext, T0, H, … etc. Now, the second order 
derivative of Eel (or )2(

elE ) is stationary 
relative to variations in the first order 
derivative of {φ}, thanks to the 2n+1 theorem 
[88], and is given as  

2 (0) (1) (1) (0) (0) (1)

(1) (1) (1) (0)
0

(0) (1) (1) (1)
0

(0) (2) (2) (0)
0

2
,

{ ; } | ( ) |

                ( | ( ) |

| ( ) | )

                | ( ) |

1                
2

occ

el i i i
i

i ext i

i ext i

i ext i

H XC

E H

T V

T V

T V

E

ϕ ϕ ϕ ε ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

δ
δ

⎡= < − >⎣

+ < + > +

< + >

+ < + >

+

∑

(0 )

(0 )

(1) (1)

, (1)

2
,
2

( ) ( )
( ) ( )

| ( )
( )

1 |
2

H XC

H XC

d d

dE
d

E

ρ

ρ

ρ ρ
ρ δρ

ρ
λ δρ

λ

∂
+

∂

∂
+

∂

∫∫

∫

r r' r r'
r r'

                  r r
r

                  

(28)

 



Computational Condensed Matter Physics: Progress and Prospects 

 143

where  EH,XC  is the sum of the Hartree and 
XC energies, and ρ(1) is given by  

(1) *(1) (0) *(0) (1)( ) ( ) ( ) ( ) ( )
occ

i i i i
i

ρ ϕ ϕ ϕ ϕ⎡ ⎤= +⎣ ⎦∑r r r r r .                 

      (29) 

Since }{ )0(ϕ  are already known from self-
consistent calculations of the unperturbed 
system, )2(

elE  is functional of only }{ )1(ϕ . 

The variation of }{ )1(ϕ  to minimize )2(
elE  

should be done subject to the constraint  

0| )0()1( >=< ji ϕϕ                                        (30) 

for all the occupied states i and j. Under such 
constraint, }{ )1(ϕ  satisfy the self-consistent 
Sternheimer equation [89], which is the 
Euler-Lagrange equation for this functional, 
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where Pc is the projector onto unoccupied 
states (conduction bands states) and  
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Now, Eqs. (28) to (32) can be solved self-
consistently, for example using the conjugate 
gradient technique, as nowadays usually done 
for solving the KS equations for )0(

elE  and ρ(0) 
[Eqs. (1) to (5)].  

The computation of response tensors 
described above involves mixed second 
derivatives of Eel with respect to two different 
perturbations, except the diagonal elements of 
the elastic tensor. In this case, Eq. (27) can be 
generalized as  

1
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While stationary expressions for such mixed 
derivatives of Eel can be derived, they are 

usually calculated using the simpler 
nonstationary expression 
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 (34)  

which requires the first-order wave functions 
for only one of the perturbations and just the 
non-self-consistent Hamiltonian terms for the 
other.  

In the following subsection, we will 
describe briefly only the case of periodicity-
preserving atomic displacement 
perturbations, which are used to calculate the 
interatomic force constant matrices. For 
homogeneous electric field and strain 
perturbations, interested readers may consult 
the original papers [35] and [37], 
respectively.  

V.B. Periodicity-Preserving Atomic 
Displacements Perturbations  

We start by noting that the unperturbed 
Vext of a crystalline solid is periodic: 

),(),( )0()0( r'rRr'Rr a extaext VV =++ , where Ra 

is a real space translation vector. To preserve 
this periodicity even for the perturbed 
potential, we consider a q-dependent 
perturbing potential operator of the form [35] 

),(),( )1(.)(!
, r'rRr'Rr Rq

aq ext
i

aext VeV a=++ . (35) 

It should be noted that such a perturbing 
potential is non-Hermitian and should be 
always used in conjunction with its Hermitian 
conjugate counterpart, written as )(!

, q−extV  
(since its wave vector is –q), as well as a 
complex expansion parameter λ, such that  
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and a similar form applies for Eel(λ): 
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Now, when q is not a vector of the reciprocal 
lattice, the requirement of invariance under 
translation of the whole system leads to [35]  

  0)1(
,

)1(
, == −qq elel EE ,                                   (38) 

and when 2q is not a vector of the reciprocal 
lattice, one gets  

  0)2(
,,

)2(
,, == −− qqqq elel EE .                             (39) 

Thanks to these equations, it can be shown 
that  )2(

,, qq −elE is a real quantity, variational 

with respect to }{ )1(ϕ . Thus,  )2(
,, qq −elE is 

calculated by applying the minimization 
technique of the preceding section, see Ref. 
35 for further details.  

V.C. Dynamical Matrix and Phonon 
Frequencies  

To construct the dynamical matrix, one 
considers unit displacements of atoms in 
sublattice κ, along the α axis, multiplied by 
the infinitesimal λ (eventually, a complex 
quantity) and by a phase varying with the cell 
to which the atoms belong; the α component 
of their vector position is changed from 

ακακτ ,, R+  to aieRτ Rq.
,, λακακ ++ , with q 

wave vectors restricted inside the Brillouin 
zone. Atoms in the other sublattices are not 
displaced. These collective displacements are 
consistent with the one considered above [Eq. 
(35)], and hence preserve the periodicity of 
the unperturbed potential. For such 
displacements, expressions for the first and 
second order changes in Vext are given in Ref. 
35 and then used to evaluate the second order 
changes of Eel for such perturbations, 

 '
*

,,
βκκαττ
qq−elE , as described above. Finally, the 

second order changes of ion-ion energy are 
added to  '

*

,,
βκκαττ
qq−elE to find the corresponding 

changes of the total energy,  '
*

,,
βκκαττ
qq−totE , which 

are the main ingredient of the dynamic matrix 
as we will show below.  

On the other hand, the total energy of a 
periodic crystal with small lattice distortions 
from the equilibrium positions can be 
expressed as 
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where a
κατ∆  is the displacement along 

direction α of the atom κ in the cell labeled a 
(with vector Ra), from its equilibrium position 

a
κτ .  

The matrix of the interatomic force 
constants (IFCs) is defined as 
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and its Fourier transform is 
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where N is the number of cells of the crystal. 
It should be noted that )(~

', qβκκαK  is 
connected to the second-order derivative of 
the total energy with respect to collective 
atomic displacements 

βκκα
βκκα

',
,,', 2)(~
qqq −= totEK                               (43)  

and it is the main ingredient of the dynamical 
matrix  

2/1
'',', )/()(~)(~

κκβκκαβκκα MMKD qq =    (44) 

where Mκ is the mass of the κth atom.  

The vibration frequencies [eκ(q|j)] and 
polarization vectors of the phonon modes 
with wave vector q are determined by solving 
the eigenvalue matrix equation 

)()()(~ 2
,'

'
' |je|jeD j qqq q καβκ

βκ
βκακ ω=∑ .      (45) 

For polar compounds, the macroscopic 
electric field, caused by the long-range 
character of the Coulomb forces, contributes 
to the longitudinal optical phonons in the long 
wavelength (q→0) limit. This effect is 
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included by calculating the nonanalytical part 
)~( naK  of the force constants, given by [35] 
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where, Z* and ∞ε  are, respectively, the Born 
effective charges and the macroscopic high-
frequency static dielectric tensors (see above) 
which are also calculated self-consistently 
using DFPT. 

For a nonpolar material, the dynamical 
matrix is analytic in reciprocal space and the 
real space IFCs are quite short ranged (i.e., 
negligible beyond a certain range Rmax). In 
this case, the IFCs can be obtained by Fourier 
transformation of )(~

', qβκκαK  computed on a 
regular discrete mesh in q space of spacing 

max/2 Rq π≤∆ . The so obtained IFCs can be 
used to compute the dynamical matrices at 
any arbitrary q point (i.e., a point not 
contained in the original grid). In case of a 
polar material, the dynamical matrix displays 
a nonanalytic behavior in the q→0 limit, see 
above. Therefore, the nonanalytic 
contribution [Eq. (46)] is subtracted from the 

, ' ( )Kκα κ β q  at each q point in the grid. Fourier 

transforming these modified )(~
', qβκκαK  

gives the short-ranged IFCs.  

We have used DFPT to investigate the 
phonon spectra of several semiconductors 
[39-41] under zero and high pressures. As an 
example, we will focus here on those of ZnSe 
(a wide band gap semiconductor) [40]. Fig. 7 
depicts the phonon spectra of ZnSe at zero 
and 9 GPa pressures. The most important 
feature to note here is the excellent agreement 
with experiment. The pressure variation of 
phonon spectra of ZnSe depicted by the mode 
Grüneisen parameter of ZnSe, defined as 

)ln/)(ln( ,, VdVd jj qq ωγ −= , is shown in 
Fig. 8. This figure shows that the optical and 
longitudinal acoustical (LA) branches are 
shifted up in frequency while the transverse 
acoustical (TA) branches experience a 
downward shift. We will show below that 
such a behavior has a direct impact on the 
thermal properties of ZnSe, especially in the 
case of thermal expansion.  

Also shown in Fig. 7 are the results 
obtained with the semicore 3d electrons of Zn 
treated as part of the frozen core and 
including the non-linear exchange-correlation 
corrections (NLCC) [91]. The relaxation of 
the semicore d electrons is clearly required 
for highly accurate theoretical determination 
of the phonon spectra of IIB-VI compounds. 
However, their effects are rather small, and 
hence these electrons can be treated as part of 
the frozen core for computing the phonon 
spectra of big systems (large unit cells) 
involving group-II elements. 

 
 
FIG. 7. Phonon spectra and density of states of ZnSe, at zero (solid lines) and 9 GPa (dotted lines) 

pressures. The calculated phonon spectra at zero pressure are in excellent agreement with the 
experimental data (triangles), obtained using inelastic neutron scattering [90]. NLCC calculations (see 
text) at zero pressure are shown with dashed lines. (Taken from Ref. 40). 
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FIG. 8. Mode Grüneisen parameter of ZnSe, along several high symmetry directions of the fcc lattice, 

with (crosses) and without (circles) including the semicore 3d electrons of Zn as valence electrons. 
(Taken from Ref. 40). 

 
For such a cubic material, the Born 

transverse effective charge tensor Z* is 
isotropic. Because of the charge neutrality, 
the effective charge Z* = Tr Z*/3 of the anions 
is minus that of the cations. The zero pressure 
value of Z* of the cations of ZnSe is 2.026 
(2.00) for 3d (NLCC) calculation, which is in 
excellent agreement with the experimental 
value of 2.03. On the other hand, the 
calculated zero pressure value of 

3/Tr ∞∞ = εε  of ZnSe is 7.53, which is 
considerably higher than the experimental 
value of 6.3. However, our NLCC value of 
6.59 is in good agreement with the 
experiment and other similar theoretical 
results.  

V.D. Equation of State, Thermal 
Expansion and Heat Capacity in the 
Quasiharmonic Approximation 

The knowledge of the entire phonon 
spectrum of a given system enables the 
calculation of its thermodynamic properties 
and the relative stability of its different 
phases as functions of T. The thermodynamic 
properties are usually determined by the 
appropriate thermodynamic potential relevant 
to the given ensemble. In the ensemble where 
the sample volume (V) and T are independent 
variables, the relevant potential is the 

Helmholtz free energy (F). In the adiabatic or 
Born-Oppenheimer approximation, F of a 
semiconductor can be written as 

,vibvibtotvibtot TSEEFEF −+=+=         (47) 

where Evib and Svib is the contribution of the 
lattice vibration to the internal energy and 
entropy (S), respectively. The electronic 
entropy contribution to S, vanishes identically 
for insulators, and thus, it is not included in 
Eq. (47). Even for metals, this contribution is 
usually neglected, although it is easy to 
calculate. Thus, the key quantity to calculate 
in order to have access to the thermal 
properties and to phase stability is Fvib. 

Fvib is usually calculated within the 
quasiharmonic approximation (QHA). This 
means calculating Fvib in the harmonic 
approximation, retaining only the implicit V 
dependence through the phonon frequencies, 
and it is given as  

,
,

( , ) ln(2sinh( ( ) / 2 )vib B j B
j

F T V k T V k Tω= ∑ q
q

            (48) 

The QHA accounts only partially for the 
effects of anharmonicity. However, QHA is 
found to be a very good approximation at 
temperatures not too close to the melting 
point. 
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FIG. 9. Linear thermal expansion coefficient of ZnSe as a function of temperature, at different pressures. 

Solid lines: semicore 3d electrons treated as valence. Dashed line: NLCC calculations. At zero 
pressure, our results are in excellent agreement with the recent experimental results (Triangles: Ref. 
94), which differ from previous experimental data (Circles: Ref. 95) at low temperatures. Inset: data in 
the temperature range of 0–80 K, at zero P. (Taken from Ref. 40). 

 
      For given T and V, the equilibrium state 
of a crystal is determined by minimizing F 
with respect to all possible degrees of 
freedom. The equation of state (P versus V) 
of the system is obtained by equating P to 
minus the derivative of F with respect to V at 
constant T, or  

TVFP )/( ∂∂−= .                                     (49) 
  
The thermal expansion can be directly 
obtained from the equation of state, and the 
volume thermal expansion coefficient is 
defined as 

P
V T

V
V

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
1α  .                                      (50) 

The linear thermal expansion coefficient for 
cubic crystals is given as  

Va αα
3
1

= .                                                (51)  

Due to anharmonicity effects, the heat 
capacity at constant P (CP) is different from 
that at constant volume (CV). The former, 
which is what experiments directly 
determine, is proportional to T at high T, 
while the latter goes to a constant which is 
given by the classical equipartition law: CV = 

3NkB, where N is the number of atoms in the 
system. The relation between CP and CV is 
[92] 

,)( 0
2 VTBTCC VVP α=−                           (52) 

where B0 is the bulk modulus. Within QHA, 
CV is given as [88] 
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where )(, TcV
jq  is the contribution to CV of the 

j,q phonon mode at a certain T. The linear 
thermal expansion can be expressed in terms 
of )(, TcV

jq  and j,qγ as [93] 

∑=
j

V
jja Tc

VB
T

,
,,

0

)(
3

1)(
q

qqγα .                 (54) 

We have calculated the thermal properties 
of some semiconductors [40, 41], under zero 
and high pressures, at the level of LDA. As 
an example, we show in Figs. 9 and 10 the 
thermal expansion and heat capacity of ZnSe 
[40], respectively. The success of LDA in 
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describing such properties is clearly evident. 
The most interesting feature to note here is 
the dramatic increase in the temperature 
range of negative thermal expansion of ZnSe 
under hydrostatic compression. The negative 
thermal expansion can be understood as 
follows. At low T, the excited phonon modes 
are predominantly of TA type with negative 
γj,q [see Eq. (54) and Fig. 8], giving negative 
values of αa. Moreover, as shown above, the 
hydrostatic pressure leads to a decrease in the 

frequency of the TA phonon modes and to an 
increase in that of the other modes. Thus, at 
high P and low T, the predominance of the 
TA phonon modes becomes increasingly 
more pronounced, leading to an increase in 
the range of T where αa is negative and to a 
reduction in its calculated values. The 
calculated CV (T) of ZnSe is also in excellent 
agreement with experiment, and it is much 
less sensitive to pressure than αa. 

____________________________________________________ 

 
 
FIG. 10. As in Fig. 9, but for heat capacity at constant pressure. Triangles: NLCC calculations. Circles: 

experimental data of Ref. 96. Squares: experimental data of Ref. 97. Inset: data in the temperature 
range of 0–25 K, at zero P. (Taken from Ref. 40). 

        __________________________________________ 
The presented phonon spectra and thermal 

properties of ZnSe can be considered as 
examples on the accuracy of the LDA 
calculations, described in Sec. III, for many 
physical and chemical properties of a wide 
range of systems. 

VI. Wannier Functions: Recent 
Developments and Applications 

As noted in Sec. I, the non-uniqueness 
property of the localized Wannier functions 
(WFs) has dramatically limited their 
applications. Thus, the most important 
development in this field is the introduction 
of unique maximally localized WFs 
(MLWFs), by Marzari and Vanderbilt [53]. 
The MLWFs have already found interesting 
applications [54-67]. In this section, we 
provide a brief description of MLWFs, and 

focus on the novel bond ionicity scale based 
on the center of the MLWFs [67].  

VI.A. Maximally localized Wannier 
functions 

The electronic states in periodic systems 
are usually described in terms of extended 
Bloch orbitals 

,)()( .rk
kk rr i

nn eu=ϕ                                  (55) 

where un,k(r) are periodic functions with the 
periodicity of the crystal. The Bloch orbitals 
are characterized by two quantum numbers: 
the wave vector inside the first Brillouin zone 
(BZ), k, and the band index n. An alternative 
representation is in terms of localized real-
space orbitals or Wannier functions (WFs), 
|Rn>, which are characterized by real-space 
translation vectors R and n. The WFs can be 
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constructed from the extended Bloch orbitals 
according to 

,|
)2(

| )(
,3 kR k.rk
k deVn ii

BZ
n

cell n −>>= ∫ ζϕ
π

     (56) 

where ζn(k) is an arbitrary periodic phase 
factor in the reciprocal lattice. Such phase 
factors, which do not affect the physical 
properties extracted from Bloch’s orbitals, 
lead to the non-uniqueness of the WFs.  

Marzari and Vanderbilt [53] have 
exploited the above non-uniqueness property 
to construct MLWFs. This has been done by 
writing 

,|
)2(

| ,
1

)(
3 kR k.R

k
k deUVn i

n
BZ

N

m
mn

cell −

=

>>= ∫∑ ϕ
π

(57) 

where )(k
mnU are unitary matrices of dimension 

N (number of occupied states). Then, the 
optimal set of )(k

mnU  is obtained by 
minimizing a spread function given as 

2 20 | | 0 0 | | 0
n

n r n n nΩ = < > − < >∑ r .  (58) 

The expectation value >=< nnn 0||0 rr  
defines the centers of the MLWFs. An 
elegant iterative scheme for minimizing Ω 
has been introduced by Marzari and 
Vanderbilt [53]. 

In our work [67], we followed the 
procedure of Ref. 53 to construct the MLWFs 
of 32 ANB8−N compounds, with N = 1, 2, 3 and 
4, in their ground-state structures [diamond, 
zincblende (ZB), or rocksalt (RS)]. The 
considered systems consist of 3 of group-IV 
elemental solids in the diamond structure, the 
cubic phase of SiC, 15 III–V compounds in 
the ZB structure, 4 IIB–VI compounds in the 
ZB structure, 4 IIA–VI compounds in the RS 
structure and 4 I–VII compounds in the RS 
structure.  

Let us first start with the elemental group-
IV solids (Si, Ge and α-Sn) in the diamond 
structure. For such systems, there are four 
bonding MLWFs per primitive unit cell since 
there are eight valence electrons filling 
completely four valence bands. This means 
that there is a symmetric MLWF associated 
with each bond, as shown in Fig. 11, in the 
case of Si. The center of the MLWF coincides 
with that of the corresponding bond. The 

relative position of the center of the MLWF is 
defined as β = rn / d, where rn is the distance 
between rn and the position of the cation of 
the associated bond and d is the bond length. 
Thus, for elemental group-IV solids, β = 0.5. 

For the ANB8−N compounds crystallizing in 
the ZB structure, the mean features of the 
MLWFs are quite similar to those of the 
elemental group-IV solids. However, in the 
ZB form, the two atoms at the ends of each 
bond have different electronegativities, which 
leads to a partial charge transfer from the 
cation to the anion regions. This, in turn, 
shifts the center of the MLWFs away from 
the center of the bond toward the anion, as 
illustrated in Fig. 12, in the case of GaN. 
Therefore, the values of β of these systems 
are larger than 0.5. We have demonstrated 
(see next subsection) that there is a strong 
correlation between (β − 0.5) and the bond 
ionicity [67], as expected. Based on this fact, 
an ionicity scale will be introduced in the 
next subsection.  

For the more ionic I–VII and IIA–VI 
compounds crystallizing in the sixfold 
coordinate RS phase, the situation is quite 
different; the one-to-one correspondence 
between the bonding MLWFs and bonds 
breaks down. In the RS structure, the four 
bonding MLWFs, per primitive unit cell, 
correspond to six bonds. Because of the large 
bond ionicity of these compounds, one 
expects the MLWFs to be centered near the 
anions. Our calculations have shown that the 
centers of the MLWFs lie along four of the 
eight [111] directions of the cubic crystals, 
very close to the anions, as shown in Fig. 13, 
in the case of NaCl. It is interesting to note 
that, with respect to the anions, the MLWFs 
in the RS phase have the same orientation as 
those in the ZB phase (along the bonds of the 
latter structure). Moreover, it is meaningful to 
consider that each MLWF is a superposition 
of three somehow “optimized” σ-bond 
orbitals of the three neighboring bonds (see 
Fig. 13). Thus, each bond yields two thirds of 
an MLWF, which is the same ratio between 
the number of MLWFs and the bonds in the 
RS structure. To find the value of β of the 
relevant compounds, we consider one of the 
above “optimized” σ-bond orbitals and take 
its center to be the component of the center of 
any of the two associated MLWFs along the 
corresponding bond. 
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FIG. 11. An isosurface of a maximally localized Wannier function of Si in the diamond. (Taken from Ref. 

67). 

 
FIG. 12. An isosurface of a maximally localized Wannier function of GaN in the zinc-blende structure. 

(Taken from Ref. 67). 
 

 
FIG. 13. An isosurface of a maximally localized Wannier function of NaCl in the rocksalt structure. 

(Taken from Ref. 67). 
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VI.B. A Novel Bond Ionicity Scale 
Based on the Centers of Mlwfs  

As noted in the previous subsection, there 
is a strong correlation between the deviation 
of rn from the bond center [expressed by (β − 
0.5)] and the bond ionicity (see Fig. 14). This, 
in turn, shows that (β − 0.5) can be used as a 
measure for the bond ionicity. To devise a 
bond ionicity scale based on (β − 0.5), it is 
important to realize that we are dealing with a 
bond property in the solid phase of the 
material. Therefore, the concept of resonant 
bonds of Pauling [98] also applies to the 
present case. This implies that such an 
ionicity scale should also depend on the 
valency N and coordination number M. After 
several attempts, we found that the best 
ionicity scale takes the form 

)/()12( MN
iw −= β  .                                (59) 

A remarkable feature of this ionicity scale is 
that it involves only physical constants.  

The previous ab initio ionicity scales are 
extracted from either the charge density (Ref. 
99), g, or band structure parameters (Ref. 
100), fi

*. It is worth noting that these are 
properties of the solid as a whole. The same 
can be said about the most famous empirical 
ionicity scale of Phillips [101], fi, which is 
based on the dielectric theory of Phillips and 
Van Vechten. Thus, a major advantage of our 
ionicity scale is that it is directly derived from 
a bond related, see above.  

A comparison between the present ionicity 
scale and previous empirical [101] and ab 
initio ones [99,100] is shown in Fig. 15. The 
important features to note from this figure 
are: (i) The quite large scattering of the 
previous values of bond ionicity. (ii) The wi 
provides almost a best fit to the previously 
available values. This reflects the accuracy 
and reliability of the wi bond ionicity scale. 
Moreover, we have shown [67] that the 
critical value of the bond ionicity that 
separates the fourfold (ZB or wurtzite) and 
sixfold (RS) coordinate structures is found to 
be of about 0.7. 

 
FIG. 14. The Phillips bond ionicity (fi) vs (β−0.5) 

for the considered ANB8−N compounds. Those 
of the elemental group-IV solids are not 
shown. (Taken from Ref. 67). 

 
Fig. 15. The present bond ionicity wi vs those of 
Phillips (Ref. 101), fi, Garcia and Cohen (Ref. 99), 
g, and Christensen et al. (Ref. 100), fi

*. (Taken 
from Ref. 67). 

VII. Summary  
Advances in modern computational 

electronic structure techniques, mainly based 
on Kohn-Sham density functional theory 
(KS-DFT), have made them the most 
attractive and widely used theoretical 
methods for investigating many properties of 
a wide range of systems. They are currently 
being used to tackle fundamental problems in 
physics, chemistry, geology, material science 
and biology. The great success of these 
theoretical approaches can be attributed to 
four main reasons.  

 



Review Article  Abdallah Qteish 

 152

(i) Their accuracy and high predictive power. 
This is demonstrated in this review article 
by presenting results in excellent 
agreement with experiment for the 
electronic structure, phonon spectra, 
dielectric and thermal properties of 
semiconductors. Moreover, these 
parameter free approaches enable us to get 
a deeper understanding and faithful 
explanation of the experimental results 
and allow us to study the properties of 
systems which are either unstable or not 
yet experimentally realized. This is 
particularly important when searching for 
new materials with specific properties and 
for investigating the behavior of the 
materials under extreme conditions which 
can’t be obtained in the laboratory, such as 
the high temperature and pressure in the 
Earth’s core.  

(ii) The continuous progress in both basic 
theory and algorithms which increases the 
accuracy and efficiency of these methods 
and open the door for new applications.  

(iii) The availability of a large variety of 
codes, which are rather easy to use and 
have many interesting and useful features. 

(iv) The huge progress in the computer 
performance.  

Providing a comprehensive account of 
these approaches and their developments and 
applications is far beyond the scope of any 
review article. Instead, this subject is 
introduced through a set of examples taken 
from my recent research work, which touch 
upon some important recent developments in 
this field, namely the exact-exchange 

formalism within KS-DFT, exact-exchange 
based quasi-particle GW calculations and 
maximally localized Wannier functions. This 
is in addition to the density functional 
perturbation theory. The basic theory behind 
these approaches is briefly described and 
some results are provided to demonstrate the 
accuracy and capabilities of these approaches. 
It should be noted that the presented results 
are obtained using programs to which we 
have added the new used features, namely the 
exact-exchange and maximally localized 
Wannier functions to the SPHINX code 
[102].  
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