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Abstract: A detailed parametric investigation of the linear dispersion relation of electron-ion 
(e-i) and electron-electron-ion (e-e-i) in the hydrogen plasma fluid is carried out in order 
to determine the different current driven instabilities that can exist in each case. Equations 
governing the two-stream (e-i) and three-stream (e-e-i) instabilities in cold plasmas are 
solved numerically and solutions are thoroughly investigated. For the two-stream instability, 
numerical solutions of the corresponding dispersion relation show the appearance of an 
unstable mode for 0>ekv , where k  is the wave number and ev  is the electron drift speed. 
Results reported in some references in literature on the peak value of the instability growth 
rate, when compared with the numerical result, have been found to overestimate the 
instability maximum growth rate by 17%, while others' estimates coincide with our 
numerically obtained value. A three-stream instability regime, with two oppositely drifting 
electron streams with respect to a static ion stream, is also studied; the presence of the third 
stream has been found to modify the mode spectra by giving rise to a highly unstable mode 
compared to that observed in the two-stream case. By increasing the number of electrons in 
the third stream (and keeping a zero net current in the plasma), a red shift in the instability 
peak value of the growth rate has been observed with an insignificant change in its peak 
value. 
Keywords: Multistream instabilities; Three-species plasma; Kinetic theory. 
 
 

 
Introduction 

Instabilities which are dependent on the 
shape of the velocity distribution function are 
called velocity-space instabilities or micro-
instabilities [1, 2]. One example of velocity 
space instabilities that occur in plasmas is the 
two-stream instability [3-7], where two 
interpenetrating streams of a charged particle 
fluid with different parallel or antiparallel 
velocities are in many situations unstable.  

Heating of plasma with a high-current 
relativistic electron beam makes essential use 
of the plasma return current induced by the 
beam [8]. From overall energy conservation it 
is concluded that a large fraction of the beam 
energy is converted into plasma thermal 

energy. For reasonable parameters the heating 
occurs through ion sound turbulence 
generated by the plasma return current. 

Stabilization of the two-stream instability 
in weakly ionized plasma (equatorial electro-
jet) has been studied by Sato [9] using fluid 
equations. It is shown that a macroscopic 
quasi-linear process acts to reduce the 
electron flow to a threshold level (ion sound 
speed), thereby stabilizing the plasma. This 
result gives an explanation for constant 
Doppler shifts of radar echoes in the electro-
jet. It is further shown that the saturation level 
of the fluctuations agrees with that of 
observations. 
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A source of growth of the plasma micro-
instability is the change in the free energy 
density 0W  associated with the relative drifts 
of the plasma components. Current in plasma 
is a common source of free energy that leads 
to an increase in instabilities [10]. It has been 
pointed out by Hirosa [11] that the linear 
growth of the instability breaks down when 
the field energy is of the order of 

0
3/2)/( Wmm ie  and concluded that the 

anomalous resistivity associated with the 
instability scales as 3/2)/( ie mm , rather than 

3/1)/( ie mm , where em  and im  are the 
electron and ion masses, respectively.  

Instabilities that are driven by 
electron-ion relative drift in two-species 
Maxwellian plasmas are classified as acoustic 
instabilities. Such instabilities are most 
appropriately called two-stream instabilities 
in case of very high relative drifts (above 
some characteristic thermal speed) where 
modes become fluid-like [10]. Also, 
instabilities are two-stream for zero 
temperature limits of Maxwellian plasmas 
where zero-order distribution functions of 
different species become similar to those 
shown in Eqs. 3 and 4. S. P. Gary [10] 
showed instabilities for the two-stream 
Maxwellian plasma. His results are very 
similar to dispersion curves obtained for cold 
plasma especially for plasmas with relative 
drift velocities larger than thermal velocities. 
Such extreme situations occur in some 
regimes (for example in space plasmas [5, 
10]). In such regimes, some waves and 
instabilities have properties that are 
essentially independent of axial magnetic 
fields and are charge neutral and bear no 
steady-state electric fields. So, it is 
appropriate to investigate the instability of 
such regimes in non-magnetized quasi-neutral 
plasmas. Such modes, called ion 
acoustic-like fluctuations which are 
essentially electrostatic, are observed in many 
space plasma contexts such as the solar wind 
[12, 13, 14] and the earth's bow shock [15]. 

Ion-electron two-stream instability has 
been observed experimentally in high 
intensity accelerators and storage rings [16, 
17]. Theoretical studies suggest that the 
relative streaming motion of the high-
intensity particle beam through a background 

of charged particles provides the free energy 
to drive the two-stream instability [18, 19]. A 
background population of electrons can result 
by secondary emission when energetic beam 
particles strike the beam-pipe wall. At low 
energies and for high charge states the beam 
can very effectively ionize the residual gas. 
These secondary electrons can be trapped in 
the beam electrostatic potential in which 
electrons can accumulate up to a certain 
saturation level. Above a certain threshold the 
accumulated electrons induce two-stream-like 
instabilities in long bunches [18, 22]. 

V. Lapuerta and E. Ahedo have done 
extensive work on two-stream instability 
(see for example [23, 24, 25]) and on 
multi-stream instability (see for example 
[26]). The parametric regions where different 
types of such instabilities dominate as well as 
relationship between different instabilities are 
not very well understood and are being 
studied. For example, the evolution of the 
ion-acoustic to Buneman instabilities was 
studied in ref [24]. 

The study of multi-stream instabilities is, 
also, of great interest in beam physics [27, 
31]. Ronald C. Davidson and Hong Qin 
investigated the wall-impedance driven 
collective instability in intense bunched 
particle beams using the linearized Vlasov 
equation [27]. The study included a wide 
variety of applications ranging from the 
Harris-like instability driven by large 
temperature anisotropy to the dipole mode 
two-stream instability of an intense ion beam 
propagating through an electron background. 
Detailed stability properties were determined 
for dipole-mode perturbations for small axial 
momentum spread of the beam and for cold 
beam distribution function in the axial 
direction, a case that corresponds to the 
largest instability growth rate. R. Bosch 
investigated the suppression of two-stream 
hose instabilities at wavelengths shorter than 
the transverse length of the beam [28]. 
Calculations showed stabilization of the 
two-stream instability when the instability 
wavelength becomes smaller than the 
transverse beam length. The same 
suppression has been observed when a proton 
beam propagates through a channel that 
consists of electrons and positive ions. 
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In recent years, quantum effects have been 
proven to play an important rule in multi-
stream instabilities [32, 37]. Haas et al. [32] 
derived a dispersion relation for the one and 
two-stream instability by using nonlinear 
Schrödinger-Poisson system to describe the 
dynamics of the cold plasma. Anderson et al. 
[33] considered a statistical multi-stream 
description to prove that a Landau-like 
damping suppresses the two-stream 
instability. Ali et al. [34, 35] derived a 
general dielectric constant for a magnetized 
dusty plasma and finally Haijun et al. [36, 37] 
used quantum hydrodynamic equations to 
derive a general dispersion relation for one 
and two-stream plasma. 

The main objective of this work is to fill a 
gap in the detailed investigation of the 
general dispersion relation of the case of the 
three-stream instability. Numerical 
calculations presented in this paper for 
streaming instability in a cold, collision-less 
plasma account for two and three particle 
species. In case of three species we have one 
ion and two electron species. The ratio of the 
electrons of the second species to the total 
number of electrons is given by the ratio 
number r. The first electron species drifts 
with a velocity of ev1  with respect to the ion 
species, while the second electron species has 
a drift velocity of ev2  with respect to ions. 
The magnitude of ev2 is estimated such that 
the plasma is quasi-neutral, i.e. the net current 
is zero, which yields a second electron 
species drifting opposite to the first one. In 
section 2, model equations will be presented 
and applied to the case of two streams. In 
section 3, the nonlinear dispersion relation for 
the case of three-stream systems will be 
derived and solved numerically. In section 4, 
results and conclusions are given.  

Two – Stream Instability 
A stream of energetic electrons passing 

through cold plasma can excite ion waves 
which will grow rapidly in magnitude at the 
expense of the kinetic energy of the electrons. 
In cold, uniform and un-magnetized plasmas, 
where ions are stationary, electrons have a 
constant drift velocity v in a reference frame 
moving with the ion stream. In collision-less 
non-magnetized plasmas in which the 
electrostatic approximation is valid so that the 

fluctuating fields are described by Poisson's 
equation, the longitudinal dielectric function 
( ),( ωε k ) for multi-species plasmas is given 
by [10, 31, 32] 
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where 0ε  is the electric permittivity for 
vacuum, jχ  is the electric susceptibility of 
the jth species of the plasma, ω  and k are the 
frequency and wave number of a specified 
plasma mode, qj, mj are the single particle 
charge and mass, respectively and the 
function )(0 vf j  is the equilibrium velocity 
distribution function of the jth plasma species.  

Consider a static ion species, where ions 
are taken as an immobile neutralizing 
background of positive charges, and an 
electron species that drifts with a relative 
velocity of ev  with respect to the ions. The 
equilibrium distribution function for the cold 
ions is given by  

)()( 00 vnvf ii δ= ,       (3) 

where in0  is the equilibrium ion density. 
Equilibrium distribution function for the 
electron species drifting with ev  with respect 
to ions is given by 

)()( 00 eee vvnvf −= δ ,       (4) 

where en0  is the equilibrium electron density. 
The equilibrium distribution functions 
considered here are obtained from the zero 
temperature limit of the Maxwellian 
distribution function that best describes the 
individual plasma components with no in-
homogeneity or anisotropy in the distribution, 
namely, 
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Substituting for the distribution functions 
from Eqs. 3 and 4 and using Eq. 2, the plasma 
dielectric function of Eq.1 becomes  
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where ie Znn 00 =  is used, Z is the single ion 
charge state and peω  is the electron plasma 
frequency. Eq.6 is solved numerically for ω  
as a function of the wave number k  for 

0),( =ωε k  that yields the dispersion 
properties of the plasma. The number of roots 
of ),( ωε k  for given plasma is determined by 
the choice of the equilibrium distribution 
function as well as the number of species 
considered. For a Maxwellian plasma, 

),( ωε k  has, in general, an infinite number of 
roots. Most of such modes are acoustic-like 
( .~/ constkrω ), where rω  is the real part of 
the frequency [10]. Usually, the instability 
(the imaginary part of the frequency) of 
different modes is of most interest. 

In this section we obtain a numerical 
solution for the fourth order dispersion 
relation of the two stream instability in 

hydrogen plasma with an emphasis on the 
unstable modes. All figures shown represent 
the real and/or imaginary parts of the mode 
frequency ω  normalized to peω , versus the 
wave number k  normalized to epe v/ω , 

where ev  represents the electron drift 
velocity with respect to ions. 

Eq. 6 has four roots; the full solution for 
this equation is shown in Fig. 1, where it is 
obvious from the equation that ignoring the 
electron drift would leave us with the two real 
roots peωω ±= , which are the two roots 
starting in Fig. 1 with 1±  at 0=ekv . This 
can be verified analytically using Eq.6. Since 

piω  is much smaller than peω , the solutions 
of Eq. 6 in the limit of vanishing ion plasma 
frequency are epe kv+±= ωω . At k=0, both 
solutions starts at +1 and -1. With increasing 
k both are shifted upward. This confirms 
qualitatively the numerical results. 

 
FIG. 1. Real part of the four root solution of Eq.6. Solid line represents two unstable complex conjugate 

roots. Other lines correspond to real roots. 
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The presence of the electron drift results 
in the deviation these two roots as shown in 
the figure. Also, the presence of the electron 
drift has given rise to a complex root and its 
complex conjugate presented in Fig. 1 with 
the solid line. These unstable roots appear 
for )12.1,0(∈ekv , beyond which these 
complex roots disappear and two new real 
roots appear maintaining a four-root solution 
for Eq. 6. The unstable root of Fig. 1 (solid 
line) is plotted in more detail in Fig. 2 
together with its imaginary part shown in 
dashed line. The instability peaks at 

peekv ω=  as expected, with peωγ 055.0≈ , 
dropping after that to a cut-off wavelength, 
at peekv ω12.1= . Here, we can compare the 
value of the growth rate at peekv ω= , where 
the instability is maximum, with that known 

in literature; In ref. [31, 32], the maximum 
value is given by 

pe
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e

pe m
m
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ω
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while that in ref. [27] is given by 
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From Fig. 2, the numerical value of the 
maximum growth rate is about peω055.0 , 
which agrees with that maximum value 
shown in ref. [23] and shows an error of 17% 
in the formulae obtained in ref. [38, 39]. A 
similar mode was observed in ref. [10] for hot 
plasmas. 

 
FIG. 2. Real (solid line) and imaginary (dashed line) parts of the frequency versus wave number of the 

unstable mode for two stream instability. 
 
Three-Stream Instability 

In case of three-streams, we consider a 
system of one ion species and two electron 
species that drift, relative to ions, with two 
different speeds given by ev1  and ev2  in 
opposite directions. In this case the ion 
distribution function is still given by Eq.3, 
while the electron distribution function is 
given by 
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where r is the ratio of the number of electrons 
drifting with speed ev2  to the total number of 
electrons. Substituting the values of the 
distribution functions for the three species 
from Eqs. 3 and 9 in Eqs. 1 and 2, the 
dielectric function of the three-stream 
plasma becomes, 
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Note that Eq. 6 for the two-stream case 
can be obtained from Eq. 10 simply by setting 
the ratio number r to zero. For 0),( =ωε k , 
Eq. 10 is solved numerically for ω  as a 
function of the wave number k  using 
different values of ratio r. The speed ev2  is 
estimated relative to ev1  such that the net 
electric current is zero just to keep the quasi-
neutrality of the plasma [10].  

The configuration of the electron drifts 
shows two opposite Doppler shifts in the 
mode frequencies, namely, 2,12,1 ekv±= ωω . 
To investigate the instability of the 
three-stream system, we investigate the roots 
of the sixth order dispersion relation. Four of 
the six roots are those obtained in the 
two-stream case, namely roots shown in Fig. 

1, and 2 new complex conjugate roots are, 
also, obtained. Fig. 3 shows the real part of 
the two additional complex conjugate roots 
for the three r values 0.1, 0.2, 0.3, where in 
the case of 0=r  this mode vanishes. 
Considering the 1.0=r  case (solid line), one 
can see that two complex conjugate roots 
appear in the peekv ω/1  interval (0, 0.18), 
then these two roots disappear and two new 
real roots appear for peekv ω18.01 > . The 
corresponding imaginary parts for the modes 
appearing in Fig. 3 are shown in Fig. 4, where 
the solid line curve corresponds to the root 
that is presented in solid line in Fig. 3. The 
instability is about five times higher than that 
shown in Fig. 2 for the other unstable mode, 
and appears for values of k  much lower 
(higher wavelength) than those for the other 
unstable mode. Increasing the r-value 
enhances the instability and blue shifts the 
maximum value. 

 
FIG. 3. Real part of the two new roots resulting from the solution of Eq.10. Unstable complex conjugate 

roots split into two real roots beyond some peekv ω/1  value. Roots from left to right correspond to r 
= 0.1, 0.2, 0.3, respectively, where solid line corresponds to r = 0.1. 
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FIG. 4. Imaginary part of the unstable complex roots shown in Fig. 3, where complex roots have a 

cut-off at some peekv ω/1  value. Peaks from left to right correspond to r =0.1, 0.2, 0.3, respectively. 
 

In the rest of this section we will again 
consider hydrogen plasma and track the other 
modes of Eq. 10 shown in Fig. 1 and see the 
effect of introducing the new electron stream 
on this mode; the two real modes that start in 
Fig. 1 with 1±  values are shown in Figs. 5 
and 6 for values of r = 0, 0.1, 0.2, 0.3, where 
the solid line represents the case r = 0, i.e. the 
two-stream system. As can be seen, nothing 
much happens to the root starting with 

peωω +≈  at 01 =ekv , while the root that 
starts with peωω −≈  at 01 =ekv  changes 
from convergence to zero for higher ekv1  
values in case of 0=r  to divergence as r 
increases. This shift down in the curves of 
Figs. 5 and 6 as r increases may be explained 
as a result of larger negative ev2  leading to 
this down shift. 

 
FIG. 5. Stable mode appearing in Fig. 1 for two-stream case (solid line with r =0), but here for 

three-stream case with r-values given by 0, 0.1, 0.2, 0.3, respectively. 
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FIG. 6. Stable mode appearing in Fig. 1 for two-stream case (solid line with r = 0), but here for 

three-stream case with r-values given by 0, 0.1, 0.2, 0.3, respectively. 
 

Fig. 7 shows the two complex conjugate 
roots that disappear at around peekv ω≈1 , 
beyond which two new real roots appear 
instead (recall Fig. 1). The solid line 
represents the 0=r case, i.e. the two-stream 
case, while the other curves represent the 
cases of r = 0.1, 0.2, 0.3, respectively. The 

instabilities of these roots are shown in Fig. 8, 
where, as in Fig. 7, the solid line corresponds 
to 0=r . Other curves correspond to r = 0.1, 
0.2, 0.3, respectively. Different values of r 
don't affect the peak value of the growth rate 
but this peak does red shift as r increases. 
 

 
FIG. 7. Two roots appearing in Fig. 1 for two-stream case (solid line with r = 0), but here for the 

three-stream case with r-values given by 0, 0.1, 0.2, 0.3, respectively. Two unstable, complex 
conjugate roots split into two real roots beyond some peekv ω/1  value. 
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FIG. 8.. Imaginary part of the complex conjugate root of Fig. 7, where solid line represents the 

two-stream case, i.e. r = 0 and the rest of curves represent the r = 0.1, 0.2, 0.3 values, respectively. 
 

For diagnostic purposes one can have a 
look at the “red-shift” of the peak of 
instability for the two unstable modes ( mγ∆ ) 
versus the r-value, where mγ∆  is the 
difference in position of the peak value for 
some r-value and the position of the peak 
value for 0=r . Fig. 9 shows the result, 
where the solid line represents the red shift 

for the high instability mode. The relationship 
is not linear. For the first unstable mode 
appearing in both two and three stream cases, 
the red shift tends to a plateau as the r-value 
increases. For the highly unstable mode, 
appearing only in r ≠ 0, the red shift 
decreases as the r-value increases. 

  
FIG. 9. Shift in position of maximum growth rate mγ∆  versus r-value. Solid line represents unstable 

root appearing in two and three stream case. Dotted line represents the other, highly unstable mode 
appearing in the three-stream case, i.e. r ≠ 0. 
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Conclusions 
This paper summarizes our investigation 

on streaming plasma systems, namely e-i 
two-stream system and e-e-i three-stream 
system, where numerical solutions for the 
dispersion relations of the instabilities is 
considered. For 0),( =ωε k , Eqs. 6 and 10 
represent the dispersion relations for the two 
cases, respectively. In this work the two 
dispersion relations are solved numerically, 
where the unstable modes are looked at in 
detail.  

For the two-stream case, two complex 
conjugate roots corresponding to unstable 
modes were found. The peak value of the 
growth rate for this mode obtained from the 
numerical solution appears at peekv ω=1  as 
expected from Eq.6. It is compared with those 
approximate values reported in literature, 
namely Eqs. 7 and 8. The numerical estimates 
of Fig. 2 show a maximum growth rate 
of peωγ 055.0= , coinciding with that 
maximum of ref. [23] and showing an error of 
about 17% in the estimates of refs. [38, 39]. 
This is a good test for the validity of different 
approximate formulas widely used in 
literature. 

Introducing a third species of electrons, 
drifting opposite to the first electron species, 
the ratio r, that represents the percentage of 
electrons in the second species with respect to 
the total number of electrons, is found to 
modify the instability and to give rise to a 
much more unstable new mode. The drift 
velocity of the second electron stream with 
respect to that of the first stream has been 
estimated such that the net current is zero, i.e. 

the relative velocity of the second electron 
species depends on the percentage number r. 

The four modes, observed in the 
two-stream case, continue to appear in the 
three-stream case. For the unstable mode, 
seen in Fig. 2 of the two-stream case, the 
instability red shifts the peak slightly as the 
r-value increases, while its maximum doesn't 
change significantly. The most important 
result here is the appearance of a new 
unstable mode with a maximum growth rate 
of about five times that for the first unstable 
mode. This instability appears at much lower 
wavelengths compared to the unstable mode 
appearing in the two-stream case. 

The appearance of this mode can be 
understood by comparing its frequency 
appearing in Fig. 3 with that of the other 
unstable mode shown in the solid line of Fig. 
2 and in Fig. 7, where figures show a 
frequency of this mode close to the plasma 
frequency in the ion frame of reference. Such 
a high frequency/high phase speed wave can't 
interact easily with the heavy ions. In this 
case, neglecting the first term on the right 
hand side of Eq. 10, that represents ion 
contribution, leaves the system closely 
similar to a two-electron species system that 
gives a high frequency mode, like this one 
obtained in this work, with a maximum 
instability superior to that of the other mode 
appearing in the two stream and three-stream 
regime. The instability of such a two, counter 
streaming, electron gas can be referred to as 
the electron bi-stream instability. 
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