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Abstract: We propose a fractional differential equation for an undamped forced oscillator. 
A series solution is obtained for this equation by employing the Laplace transform 
technique for solving differential equations. The behavior of the system is discussed for 
various fractional orders of the differential equation ranging from first order to second 
order. 
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Introduction 

It is well known that differentiations and 
integrations of integral order have clear physical 
and geometrical interpretations which help in 
solving problems in various fields of science. 
However, when the order of differentiation or 
integration is not an integer, interpretations were 
not acceptable for more than 300 years. 
Nowadays, the field of fractional calculus is 
gaining more attention and researchers were able 
to employ this field to discuss real world 
problems such as electromagnetic theory, 
diffusion, viscosity and even finance problems.  

In a previous published work [1], a study of a 
fractional LC-RC electrical circuit showed that 
simple harmonic oscillations of an LC circuit 
(inductor-capacitor circuit) and a discharging RC 
circuit (resistor-capacitor circuit) can be 
combined in one fractional differential equation 
depending on the order of differentiation. This 
equation allows us to see how the system 
evolves from an oscillatory behavior to a 
damping behavior and suggests the idea of the 
evolution of a resistive property in the inductor. 
Another group of researchers employed 

fractional calculus to study gravitational fields 
[2]. They found that the uniform semi-infinite 
linear mass distribution and its potential are the 
integrals (differentiation of order -1) of a point 
mass distribution and its potential.  

Fractional calculus principles were applied to 
several electromagnetic problems by several 
researchers and results were promising [4]. Some 
of these problems include the concept of 
fractional multipoles in electromagnetism, 
electrostatic fractional image methods for 
perfectly conducting wedges and cones and 
fractional solution of the Helmholtz equation. 

In the field of classical mechanics, 
researchers tried to present a new Lagrangian 
and a new Lagrange equation of motion that 
includes the nonconservative forces by making 
use of the concept of fractional derivatives [5, 6]. 
Another branch of mechanics in which fractional 
calculus was of interest is the behavior of 
oscillatory systems such as the harmonic 
oscillator. For example, Rousan et al. studied the 
problem of a fractional harmonic oscillator with 
a damping term proportional to a fractional order 



Article  Alzoubi et al. 

 130

time derivative. A series solution of the 
fractional differential equation was obtained for 
both damped and undamped cases [7]. Using 
Laguerre integral formula, Yuan and Agrawal 
[8] applied numerical techniques to solve a 
fractionally damped single degree-of-freedom 
spring-mass-damper forced system of the order 
0.5. It was believed that this order of 
differentiation is the best representation of the 
damping materials. Therefore, many studies 
focused on investigating the behavior of physical 
systems that are represented by fractional 
differential equation of order 0.5 [9, 10]. 
However, one of the advantages of our proposed 
work is that the technique which will be used 
enables us to figure out the behavior of solutions 
of fractional differential equations for a variety 
of orders of differentiation. The results of the 
above - mentioned work motivated us to 
investigate the role of fractional calculus in 
understanding and analyzing some famous 
systems in classical mechanics. The forced 
oscillator is an example of such systems for 
which fractional calculus may provide further 
understanding of the nature of these oscillatory 
systems. 

Recently, a considerable interest was devoted 
to explore the behavior of oscillatory systems 
when they are represented by differential 
equations of fractional order. For example, 
Aguilar et al. analyzed the damped mass-spring 
system for different fractional orders of 
differentiation and their analytical solutions were 
written in terms of Mittag-Leffler functions [11]. 
Achar et al. studied the motion of the driven 
harmonic oscillator using integrals of fractional 
orders. They employed Laplace transform 
technique to provide solutions of the fractional 
equations in terms of Mittag-Leffler functions 
[12]. A recent review article was published to 
provide a detailed presentation of the Mittag-
Leffler functions and their applications in 
different areas of science and engineering [13]. 

In this work, we provide a series solution of a 
fractional undamped forced oscillator. The 
solution was plotted for different fractional 
orders of differentiation and the results are in 
agreement with the analytical solutions that are 
obtained in terms of the Mittag-Leffler functions.  

 

 

Theory 
In this proposed work, we intend to discuss 

some physical systems such as the forced spring-
mass oscillator. This system is usually 
represented by the ordinary differential equation: 
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where m is the mass, k is the spring constant and 
F(t) is the applied external force. The solution of 
this equation depends on the form of the external 
force.  

In our study, we will try different types of 
forces such as sinusoidal and step-functions. The 
above equation will be transformed into a 
fractional differential equation of arbitrary order 
of differentiation: 
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where mk /  is the frequency of the 
spring-mass system and c(α) is introduced for 
the equation to be dimensionally consistent. In 
other words: 
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Simply, we can express the function c(α) by 
  1)(c .  

There are different definitions of the 
fractional derivative which appeared in Eq. 2: 
Riemann-Liouville, Grünwald-Letnikov, Weyl, 
Riesz and Caputo representations. For example, 
in the Caputo representation the fractional 
derivative for a function of time is given by:  
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where 1, 2, ...n N   and nqn 1 . In 
this derivative, q is the order of differentiation 
and can have noninteger values [11]. 

As is clear, Eq. 2 can have any fractional 
order between 1 and 2 depending on the 
fractional parameter α which takes values 
between 0 and 1, respectively. The solution of 
this equation for different fractional orders will 
show how the system evolves. In each case, the 
solution will be plotted in order to figure out the 
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patterns of variations in the behavior of the 
proposed system as a function of the order of 
differentiation. It is well known that Eq. 2 has a 
solution of the homogenous part that is discussed 
thoroughly in terms of the Mittag-Leffler 
functions elsewhere [11, 12]. In this work, we 
use Laplace transform technique for solving 
differential equations that will result in the 
particular solution of the differential equation 
that is related to the type of the external applied 
force. One may seek analytical solution of Eq. 2 
in terms of Mittag-Leffler functions. For 
example, in our case the solution of the 
homogenous part of Eq. 2 in terms of Mittag-
Leffler functions can be written as [13]:  
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where 1E  is the Mittag-Leffler function. It is 
worth mentioning that most of the solutions of 
fractional oscillatory systems were discussed 
within the frame of Mittag-Leffler functions; 
while in our study we followed a different 
approach to obtain a series solution to the 
problem and the results of the two approaches 
are comparable.  

 Dividing Eq. 2 by c(α) and applying the 
Laplace transform to both sides result in: 
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In solving the above differential equation, 
Laplace transform and the inverse Laplace 
transform techniques will be applied making use 
of formula [3]: 

 
11

1
0

(0),

0 1,2,3,...

q

q

q kn
q k

q k
k

d f
L

dx

d f
s L f s

dx

q

 

 


 
  

  
 

 



 .          (6) 

As a result, applying the above formula to Eq. 
5, we end up with the following equation: 
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where X(s)=L{X(t)}, i.e., X(s) is the Laplace 
transform of x(t). In Eq. 7, we have two initial 
conditions which can take a variety of initial 
values. We will discuss the case when the two 
initial values are zeros and leave the other cases 
for further studies: 
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Therefore, Eq. 7 becomes: 
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Eq. 9 can be used to find the solution of the 
differential equation for different types of 
external applied force F(t). 

Results and discussion 
Based on Eq. 9, the solution of the 

differential equation depends on the form of the 
external force. We will choose first a force that 
varies sinusoidally as a function of time (i.e., 

tFtF 00 sin)(  ). Assuming that 
m
FA 0  is a 

constant, the solution of equation 9 is given by: 
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In this case, taking the highest power of s as a 
common factor from the denominator and then 
expanding the denominator in an alternating 
geometric series: 
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this equation can be written as: 
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Finally, applying the inverse Laplace 
transform to equation 12 results in the following 
solution of the differential equation: 
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Note that when α = 0, Eq. 13 is the solution 
of a first-order differential equation and when α 
= 1 the equation gives the solution of a second-
order differential equation. Fig. 1 shows the 
variation of the solution as a function of the 
order of differentiation α. The plot shows a 
resonance case where the frequency of the 
applied external force matches the natural 
frequency of the mass-spring system and this is 
clear from the gradual increase of the amplitude 
for the case of second-order differential equation 
(α = 1). When α = 0, we have the case of a first-
order nonhomogenous linear differential 
equation and the solution is a combination of 
sine and cosine functions as expected. In this 
case, the overall behavior is dominated by the 
external force. However, when α = 1, we have a 

second-order nonhomogenous linear differential 
equation and the amplitude is building up due to 
the resonance between the applied and natural 
frequencies. In this case, the effect of the elastic 
force is clear and both forces share the result. 
The figure shows also that the solution evolves 
smoothly between the two extremes. One may 
say that as the order of differentiation increases 
from 1 to 2, the elasticity of the spring is 
building up smoothly. It is worth mentioning that 
the concept of intermediate stages has been 
introduced by many authors [1, 4].  

A second case of interest is the step function 
as an external force. The force in this case can be 
represented by: 
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Following the same steps conducted for the 
case of sinusoidal function, the solution of the 
differential equation as a function of the order of 
differentiation will be: 
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FIG. 1. The variation of the solution as a function of the order of differentiation for the case of sinusoidal 
external force.
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This solution is plotted in Fig. 2. For the case 
of α = 0, the solution has a damping behavior 
and no oscillations are expected for the case of 
linear first-order equation. For α = 1, the solution 
is completely oscillatory, since the system is 
jerked by the external force and there are no 
damping terms in the equation. For the 
intermediate stages as α increases from 0 to 1, 

the system starts to develop an oscillatory 
behavior accompanied by an attenuation. This 
indicates that the elasticity of the spring evolves 
as the order of differentiation increases from 1 to 
2 and becomes completely oscillatory when α 
becomes exactly 2 and the motion is a simple 
harmonic one. 

 
 FIG. 2. The variation of the solution as a function of the order of differentiation for the case of step function. 

 
Conclusion 

A series solution of the fractional forced 
oscillator problem as a function of the order of 
differentiation is obtained. Intermediate stages 
between the first-order and second-order 
differential equation are plotted and discussed. 
The results show that the solution evolves 
smoothly between these two extremes. One may 
suggest that the elasticity of the spring in a 
spring mass system develops as the order of 
differentiation increases from 1 (first order) to 2 
(second order). The results for the case of 

second-order differential equation are in 
agreement with the exact solution obtained by 
other methods.  
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