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Abstract: The effective capacitance between two arbitrary lattice points in a finite or 
infinite network of identical capacitors is investigated for a perturbed lattice, by 
substituting a single capacitor, using lattice Green's function. The relation between the 
capacitance and the lattice Green's function for the perturbed lattice is derived. Solving 
Dyson's equation, the Green's function and the capacitance of the perturbed lattice are 
expressed in terms of those of the perfect lattice. Numerical results for a square lattice are 
presented. 
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Introduction 

The central problem in electric circuit theory 
is calculating the resistance between two 
arbitrary nodes in an infinite square lattice of 
identical resistors [1, 2]. Over many years, 
numerous authors have studied this problem and 
its extension to several infinite lattice structures 
such as d-dimensional hypercubic, rectangular, 
triangular and honeycomb lattices of resistors [3, 
4, 5]. 

Recently, Cserti demonstrated how the 
Green's function method can be applied to find 
the resistance of an infinite resistor network [5]. 
Excellent introductions to Green’s functions can 
be found in [6-8]. A great deal of research has 
been conducted on lattice Green's function over 
the last fifty years or so and other introductions 
do exist, see for example [9], and for more works 
on this topic, see references in [5]. The Green's 
function method can be a very efficient way to 
study the resistance in a perturbed lattice in 
which one of the bonds is missing in the lattice 
[10]. The theory of perturbed lattices developed 
in [10] can be extended to other perturbations 
such as replacing one resistor with another one 
[11] or introducing an extra resistor in the 
perfect lattice [12].  

The problem of a capacitor network is equally 
interesting in circuit theory. The behavior of the 
impedance of a standard ladder network of 
capacitors and inductors is studied in [13]. Wu 
has developed a theory to compute two-point 
resistances for a finite network of resistors [14], 
[15] for impedance networks. Recently, the two- 
point capacitance is evaluated in an infinite 
perfect network of identical capacitances using 
Green's function method [16].  

In references [17, 18], this method is also 
used for calculating the capacitance of an infinite 
network when it is perturbed by removing one 
bond and by removing two bonds from the 
perfect lattice. These problems have been studied 
only for infinite networks. More recently, the 
impedance of infinite perfect and perturbed 
lattice networks is investigated using the Green’s 
function method [19]. 

In the present work, the lattice Green’s 
function approach [17] is used to compute the 
capacitance of a perturbed lattice which can be 
either finite or infinite that is obtained by 
replacing one capacitor in the perfect lattice by 
another. The capacitance across the 
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substitutional capacitor equals the parallel 
combination of the capacitance between the two 
ends of the missing bond and the substitutional 
capacitor.  

The paper is arranged as follows. In the next 
section, a review for the perfect lattice is given 
for completeness [5, 10, 16]. Then, the perturbed 
lattice is considered. Numerical results for 
perturbed square lattice and discussion are then 
presented. The paper is ended with a brief 
conclusion. 

Lattice Green's function and 
capacitance for perfect lattice 

Consider an infinite d- dimensional lattice of 
identical capacitances C. Let ࢞ෝ૚, …,ෝ૛࢞ ,  be a	ࢊෝ࢞
set of orthogonal unit vectors, so that ࢞ෝ࢏, ࢐ෝ࢞ =
,݅)ߜ ݆). If the primitive lattice vectors are 
௜ࢇ = ܽ௜࢞ෝ௜, then all points in the lattice are given 
by the lattice vectors ࢔࢘ = ∑ 	݊௜ௗ

௜ୀଵ  ௜, whereࢇ

in is an integer (positive or negative or even 
zero). We wish to find the capacitance between 
two arbitrary lattice points of an infinite perfect 
lattice. We denote the charge that can enter at 
site ࢔࢘ by ܳ(࢔࢘) from a source outside the lattice 
and the potential at site ࢔࢘ will be denoted 
by	ܸ(࢔࢘). Using Kirchhoff’s law and the 
electrical charge/potential relationship for a 
capacitor, the charge at node	࢔࢘ is given by: 

(௡࢘)ܳ = ܥ ∑ ൫2ܸ(࢘௡) − ௡࢘)ܸ + (௜ࢇ −ௗ
௜ୀଵ

 .  ݅ࢇ−ܸ݊࢘      

(1)  

Using Dirac vector space notation, let �|݊�〉 
denote the lattice basis vector associated with the 
lattice point  ࢔࢘ ; then:  

(࢔࢘)ܸ = ⟨݊|ܸ⟩ and ܳ(࢔࢘	) = ⟨݊|ܳ⟩  .             (2) 

It is assumed that �|࢘�〉 forms a complete 
orthonormal set, i.e., ⟨݈|݉⟩ =  and (݉,݈)ߜ
∑ ࢒〈�݈|�

�〈݈�| = ૚. In the lattice basis, the vectors �|ܸ�〉 
and �|ܳ�〉 are: 
�|ܸ�〉 = ∑ ࢔〈�݊|(࢔࢘)ܸ� 	and	�|ܳ�〉 = ∑ ࢔〈�݊|(࢔࢘)ܳ� 	.  (3) 

Eq. (1) can be written as the Poisson-like 
equation: 
〈�ܸ|଴ܮ	� = − ଵ

஼
�|ܳ�〉;           (4) 

where ܮ଴ is the so-called lattice Laplacian 
operator:  
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        (5) 

Here, one needs to solve Eq. (4) for �	|ܸ�〉 for a 
given charge configuration �|ܳ�〉 formally as: 

�	|ܸ�〉 = ଵ
஼
଴ܩ �|ܳ�〉;            (6) 

where ܩ଴ is the perfect lattice Green's function 
defined by:  

଴ܩ଴ܮ = −1.            (7)  

To calculate the capacitance between the sites 
 ܳ enters at	we assume that the charge ,࢓࢘ and ࢒࢘
site ࢒࢘ and -	ܳ exits at site ࢓࢘ and that the 
charge is zero at all other sites. Hence, the 
charge at lattice point ࢔࢘ can be written as:  

(࢔࢘)ܳ = ܳ൫ߜ(݈, ݊) − ,݉)ߜ ݊)൯, for all  .      (8) 

Using Eqs. (7) and (8), the electric potential 
at any point ࢑࢘ is given by: 

(࢑࢘)ܸ =
ଵ
஼
∑ ,࢑࢘)଴ܩ ࢔(࢔࢘      (࢔࢘)ܳ

                 = ொ
஼
൫ܩ଴(࢑࢘, (࢒࢘ − ,࢑࢘)଴ܩ                                                                                                .   ൯(࢓࢘

                                                                                                   (9) 

The effective capacitance between sites ࢒࢘ 
and ࢘௠ in the perfect lattice, the quantity we 
wish to compute, is by definition the ratio: 
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where the symmetry properties of the Green's 
function 0G  have been used. 

Lattice Green's function and 
capacitance for perturbed lattice  

In this section, we consider the perturbed 
capacitor network. As the perfect lattice, the 
combination of Kirchhoff’s law and 
charge/potential relationship for a capacitor 
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again results in a Poisson-like equation involving 
a lattice Laplacian operator. This operator is a 
sum of a lattice Laplacian ܮ଴ associated with the 
perfect lattice and an operator ܮ′ corresponding 
to the perturbation arising from a substitutional 
capacitor. A relation between the capacitance 
and Green’s function for the perturbed lattice is 
given in the following part of this section. 
Green’s function satisfies the so-called Dyson 
equation, which can be solved exactly for the 
perturbed Green’s function in terms of the 
perfect Green’s function. Finally, an explicit 
formula can be derived for the capacitance of the 
perturbed lattice in terms of the capacitance of 
the perfect lattice. 

The charge contribution (࢏࢘)ܳߜ at lattice 
point ࢏࢘due to the bond	(࢘௟బ ,  ௠బ) in the perfect࢘
lattice is given by: 
ఋொ(࢏࢘)
஼

=

ቀߜ൫࢏࢘, ௟బ൯࢘ − ,࢏࢘൫ߜ ௠బ൯ቁ࢘ ቀܸ൫࢘௟బ൯ −

  (11)                                                     .0݉࢘ ܸ 

As mentioned in section 1, if we replace the 
bond (࢒࢘૙  ௠బ) with a substitutional capacitor࢘	
ܥ ′, the equivalent capacitance between 
૙࢒࢘ 	and	࢘௠బ in the perturbed lattice will be equal 
to the parallel combination of the capacitance 
between the missing bond (࢒࢘૙ ,  ௠బ) and the࢘
substitutional capacitor. Thus, the charge 
contribution	(࢏࢘)′ܳߜ at lattice point ࢏࢘ due the 
substitutional capacitor	ܥ′ in the perturbed lattice 
is given by:  

(࢏࢘)ᇱܳߜ
ܥ =

ᇱܥ

ܥ
(࢏࢘)ܳߜ
ܥ  

= ஼ᇲ

஼	
ቀߜ൫࢏࢘, ૙൯࢒࢘ − ,࢏࢘൫ߜ ૙൯ቁ࢓࢘ ∗

ቀܸ൫࢒࢘૙൯ − ܸ	൫࢓࢘૙൯ቁ. 
                                                                        (12) 

 The net contribution of the charge at site ࢏࢘ is: 
(࢏࢘)ܳ∆
	ܥ =

(࢏࢘)ᇱܳߜ
ܥ −

(࢏࢘)ܳߜ
ܥ  

												=
ᇱܥ) − (ܥ

	ܥ
ቀߜ൫࢏࢘, ૙൯࢒࢘ − ,࢏࢘൫ߜ  ૙൯ቁ࢓࢘

                  ∗ ቀܸ൫࢒࢘૙൯ − ܸ	൫࢓࢘૙൯ቁ .           (13)  

Using Dirac notation in the above equation, 
we get: 

(࢏࢘)ܳ∆ =  (14)         ; ⟨ܸ|′ܮ|݅⟩
 where the operator ܮᇱ is the perturbation arising 

from the substitutional capacitor: 

′ܮ =  (15)            , |�ߙ〉�〈�ߙ|ܽ�

with 

 ܽ	 = (஼ ′ି஼)
஼	

     and     �|ߙ�〉 = �|	݈଴ �〉 − �|݉଴
�〉   .    (16)  

Now, the charge ܳ(࢏࢘) in the perturbed 
lattice at site	࢏࢘ is given by: 
ொ(࢏࢘)
࡯
	= (࢏࢘)(଴ܸܮ−) 		+

∆ொ(࢏࢘)
࡯

 .                   (17) 

Substituting Eq. (14) into Eq. (17), one can 
write Kirchhoff's law for perturbed lattice as:  

〈�ܸ|�ܮ = − ଵ
஼
�|ܳ�〉  ;         (18)  

where ܮ is the lattice Laplacian operator for the 
perturbed lattice:  

ܮ = ଴ܮ −   (19)          . ′ܮ

Similar to the perfect lattice, the perturbed 
Green's function ܩ is defined as:  

ܩܮ = −1 .          (20)  

Using Eq. (19) in (20), we obtain Dyson's 
equation [8]: 

ܩ = ଴ܩ − --   ଴ܩ′ܮ଴ܩ′ܮ଴ܩ + ଴ܩ′ܮ଴ܩ
଴ܩ′ܮ଴ܩ′ܮ଴ܩ′ܮ଴ܩ  +…       .                 (21)  

Substituting Eq. (15) into (21) and 
performing the summation exactly, one obtains:  

ܩ = ଴ܩ − ଴ܩܽ          	〈�ߙ|�

              ∑ ∞௡(⟨ߙ|଴ܩ|ߙ⟩ܽ−)
௡ୀ଴

 											଴ܩ|�ߙ〉�

     = ଴ܩ −
௔ீబ �|ఈ�〉�〈ఈ�|ீబ
ଵା௔⟨ఈ| బீ|ఈ⟩	

 .                    (22) 

After inserting (16) into (22), the matrix 
elements of ܩ can be written in terms of the 
matrix elements of	ܩ଴:  

(݉,݈)ܩ = (݉,݈)଴ܩ + 

(ீబ(௟,௟బ)ି బீ(௟	,௠బ))( బீ(௠,௟బ)ି బீ(௠	,௠బ)
಴

಴ᇲష	಴
ିଶ( బீ௟బ,௟బ)ି బீ(௟బ	,௠బ))

   .         (23)  

Note that the denominator in the above 
equation is never equal to zero and is always 
positive. 
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In order to calculate the capacitance for the 
perturbed lattice, one can follow the same steps 
for the perfect lattice. However, the capacitance 
between sites ࢘௟ and ࢘௠ in the perturbed lattice 
is:  

C(	݈	, ݉	) =
ܳ

(	࢒࢘)ܸ − (	࢓࢘)ܸ
 

                   

=
ܥ

൫ܩ(݈, ݈) + (݉,݉)ܩ − 		൯(݉,݈)ܩ2
. 

      (24) 
 Substituting (23) into (24) and using (10), we 

obtain (after some simple algebraic 
manipulations) the perturbed capacitance 
between sites ࢘௟ and ࢘௠ in terms of the perfect 
capacitance 0C : 
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           (25) 

This is the final result for the capacitance 
between two arbitrary sites of the perturbed 
lattice (finite or infinite) in which the capacitor 
between the sites ࢒࢘૙ 	and	࢘௠బ  in the perfect 
lattice is replaced by capacitor C  . 

As a special case, letting C  go to zero, the 
problem reduces to broken bond case [16], so we 
have: 
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                        (26) 

One can show from Eq. (25) that when 
ܥ	 ′ =  the problem reduces to the perfect ,ܥ
lattice (i.e.,	C(݈,݉) =  ଴(݈,݉)). It is easy to findܥ
the capacitance across the substitutional 

capacitor in the perturbed lattice. Using Eq. (25), 
the capacitance between sites ࢒࢘૙ 	and	࢘௠బ  is:  

,௦௨௕(݈଴ܥ ݉଴) = ,଴(݈଴ܥ ݉଴) − ܥ + ܥ ′        (27)	

From Eq. (26), the capacitance between the 
ends of the missing bond is: 

,௕௥௢௞௘௡(݈଴ܥ ݉଴) =
	
,଴(݈଴ܥ ݉଴) −  (28)       . ܥ

Thus,  

,௦௨௕(݈଴ܥ ݉଴) = ௕௥௢௞௘௡(݈଴,݉଴)ܥ + ܥ ′        (29)	

as mentioned previously.   

Finally, one can note that the perfect lattice 
Laplacian given in Eq. (6) was not used in the 
derivation of Eq.(25). Therefore, the expression 
in Eq. (25) is valid for any lattice structure, finite 
or infinite, in which each cell has only one lattice 
point such as simple cubic and triangular lattices. 

Numerical results and discussion 
Below we present some numerical results for 

infinite and finite perturbed square lattices. In 
the case of an infinite square lattice, we used the 
known results [16] for the unperturbed infinite 
lattice for calculating the effective capacitance 
between sites ࢘௟ = (0,0) and ࢘௠ = (݉௫ , ݉௬) in 
the infinite perturbed square lattice using Eq. 
(25). As an example, we show the results when 
the capacitor between the nodes ࢒࢘૙ =
(0,0)	and	࢘௠బ = (1,0) is replaced by the 
substitutional capacitor ܥ ′ =  In another .ܥ4
example, we consider ܥ ′ =  is substituted 4/ܥ
between the origin and the node (1,0). Fig. 1 
shows the capacitance between the origin and a 
point on the	ݔ-axis with and without 
substitutional capacitor. One can see that the 
perturbed capacitance is always larger than the 
perfect capacitance if	ܥ′ >  and smaller than ܥ
that if	ܥ′ <  This is obvious from the second .ܥ
term in Eq. (25). The capacitance is not 
symmetric as ݉௫ → −݉௫	because translational 
symmetry is broken in the perturbed lattice.  

In the case of a finite square lattice, one can 
obtain the effective capacitance between the 
origin (center of lattice) and the node 
(݉௫ , ݉௬)	in an ܯ ×ܰ perfect square lattice of 
identical capacitances [15]ܥ: 



Networks of Identical Capacitors with a Substitutional Capacitor 

 117

 
FIG.1. The equivalent capacitance in units of ܥ in the perfect (■) and perturbed infinite square lattices measured 

between  the origin and 	(݉௫ ,0). The cases of substitution: ܥ′ =  between the origin and the node (1,0) (●) ܥ4
and	ܥᇱ =  .between the origin and the node (1,0) (▲) 4/ܥ
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௡ୀଵ

; 

(30) 

where M  and N  are the number of nodes in 
x  and y - coordinates, respectively. Using 
Mathematica 5, we calculate the capacitance 
between the origin and the point (݉௫ , ݉௬) in a 
21 × 21 perfect square lattice, then we repeat the 
calculations for a 21 × 21 perturbed square 
lattice. In Fig. 2, the capacitances for the infinite 

and a 21 × 21 perturbed square lattices are 
plotted as functions of ݉௫ .	It can be seen that the 
finiteness of the perturbed network causes the 
equivalent capacitances to be greater than the 
values for an infinite network, which is expected 
because the charge has fewer paths. 

 
FIG.2. The equivalent capacitance in units of C in the infinite (●) and a 21 × 21(■) perturbed square lattices 

measured between the origin and the point(m୶,0). The substitutional capacitor is Cᇱ = 4C , with its ends at 
r୪బ = (0,0)and		r୫బ = (1,0). 
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 Conclusion 
In this work, using the Green’s function 

method, we calculated the capacitance between 
arbitrary lattice points of a perturbed capacitor 
lattice obtained by replacing one capacitor with 
another one. We derived a formula for the matrix 
elements of the lattice Green’s function for the 
perturbed lattice in terms of that for the perfect 
lattice by solving Dyson’s equation. We 
expressed the capacitance between arbitrary 
lattice points of the perturbed network in terms 
of the capacitances of the unperturbed lattice.  

We computed the increase (ܥ′ >  and (ܥ
decrease (ܥ′ <  of the capacitances for the (ܥ

perturbed square lattice along the substitutional 
capacitor.  

A similar calculation can be performed for 
simple cubic and triangular lattices. Finally, it is 
worth mentioning that when more than one 
substitutional capacitor are inserted, the method 
outlined above is still valid. 
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