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Abstract: We have formulated the first-order Hartree—Fock equations for multielectron
systems exposed to an external perturbation in the LCAO (Linear Combination of Atomic
Orbital) approximation. The perturbation theory corrections to these equations have been
found in the form of expansions in unperturbed equations and terms which depend
explicitly on this perturbation. The ideas leading to this amendment are implicit in previous
studies, but the significance of its existence has not yet been sufficiently emphasized and its
simple explicit form has not been presented. With the proposed approach, one may obtain
the first-order correction perturbation energy in the presence of any perturbation, knowing
merely the overlap. This may further facilitate linear scaling computation of the energy

correction.
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Introduction

For multielectronic systems, the calculation
used is the algebraic form of Hartree-Fock (HF)
method like Hartree-Fock-Roothaan (HFR) [1,
2]. In this formalism, the minimum energy of the
system is a function of the orbital coefficients
and nonlinear parameters of the basis functions.
The physical properties of a system under
external field are described with the aid of
polarizabilities,  susceptibilities and  other
parameters based on the framework of quantum
mechanics expressed in terms of perturbation
theory which represents a very complex problem
in computational and formalism aspect [3]. The
equations of Hartree-Fock perturbation theory
lead to the equations of McWeeny formulae with
all orders, obtained in terms of the unperturbed
Hamiltonian and density matrix. It is also shown
that the perturbation may be obtained directly,
without separating the orders, and that the
approach is related to earlier steepest-descent
methods [4]. The coupled-perturbation theory [5]

leads to good accuracy [6—10]. However, there is
a dispersion in the values of -calculated
polarizability [7]. In [6, 11], the optimum basis
set of atomic orbitals to calculate polarizabilities
can be found by minimization methods of the
first and second orders. In the magnetic case of
perturbation, all spectral states are needed in
Vanvleck formulation which leads to calculation
limit and invariant problems [12, 14].

It has been seen that orders are not explicit or
separated from all variants of the perturbation
method derived from McWeeny formulae [13].
In the present work, we wuse the London
unperturbed base with Gauge factor bypass
invariant problem [14] to achieve the separated
order perturbation method. It is an original way
to formulate the theory of first-order perturbation
taking account of the effect of perturbation on
the basis set. From the formalism developed by
MacWeeny, we show explicitly the action of a
perturbation on the different quantities that are
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associated with it. The special feature of the
writing in our equations lies in the fact to recover
the unperturbed state just in quashing the terms
relating to the perturbation. To illustrate this, we
have attached an annex with the case ofa
magnetic perturbation in which the basis set is
represented by the perturbed GIAO introduced
by London [14].

Hartree—Fock-Roothaan equations

The Hartree-Fock-Roothaan [1-3] method is
constructed on the MO (Molecular Orbital)
theory [4, 5] and the LCAO (Linear
Combination of Atomic Orbital) approach,

where the OM {‘P,} are simply expressed in

terms of a basis set of atomic orbitals {¢,} as
follows:

%= 4 1)
r=1

where n represents the dimensional basis used
and the set {C;.} the OM {¥;} coefficients of
development.

The pseudo-secular equations of the method
are expressed as:

FC, =¢SC;; 2

where F represent the Fock operator and can be
expressed by the relation F =4 + G, in which &
and G are respectively the core operator and the
bioelectronic repulsion operator; {e;} is a set of
the OM energies and S signifies the overlap
matrix whose elements are written as follows:

S, =(#']4,). 3)

The coefficient vectors of the molecular
orbital are pseudo-normalized, so:

C'SC, =6, )

In this notation, the exposing label + means
the adjunction operation and J;; represents the
Kronecker symbol.

In general, we note Z; = X; ZX; any scalar
product, where X; and X; are vector-columns and
Z represents a matrix.

For example, in eq. (4), Sj; is defined as:

S, =C;SC,.
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Finally, the system to be resolved is
expressed as follows:

(F-e.5)C =0; (5.a)

C'SC,=5,. (5.b)

The energy orbital e; is obtained by using eq.
2).

Multiplying at left by C;" yields
Ci+FCi = eiCi+SCi.

Based on the normalization condition, we
have:

e,=C/FC,; (6.2)

e, =F

i *

(6.b)

The total electronic energy can be expressed
by:

M
E=) C/HC,.
i=1

With H=h + Fand F = h + G, we obtain
H=2h+G.

M indicates the label of the HOMO (Highest
Occupied Molecular Orbital).

We can rewrite:

M M
E=)2C'hC,+>.C/GC,.

i=1 i=1

Taking:
M

E, =Y 2C/hC, (7.2)
i=1
M

E, =) C/GC,, (7.b)
i=1

we obtain

E=E +E,. (7

Note that C;'hC; corresponds to a scalar
product which can be developed meaning the
property:

Xi+ZYi = Zn:Zn:XirerYis :

r=1 s=1
So:
M
E=) (2h,+G,). (8)
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By using LCAO basis {¢} and development
(1), the expression of £ is obtained as follows:

E= ZZZMW 1 Cis +§:ZHZZH:C;G”C,.S

i=l r=l s=1 i=l r=1 s=1

or:

=

n

E= h, (22 " j

r=1 s=1

333 Sacic, |

r=1s

P

\®)

Deﬁning the matrix density by:

P, = N 20 C (9)

ir s 2
i=1

(h +— Fj
with:

F:"S = hI"S + GI"S

n n

er = Z Z Ru ‘grxtu

t=1 u=l1

we can write:

n n

E=22F

r=1 s=1

(10)

1
A }/rutx *

grxtu - }/I"S[M - 2

The matrix elements Fj, A, and Yy are
respectively the Fock integrals, the Hamiltonian
core integrals and the bi-electronic repulsion
integrals, defined by:

). (1)
%,(1))

(5 000] e 2102

rs

F,=(g ()]F(1

b, =(g; (1)]r(1)

rs

e

Up

Effects of perturbation

Our theoretical approach is applied to any
physical phenomenon where a perturbation
modifies the basis set in the framework of HFR
method, allowing the calculation of the
parameters related to the presence of an external
electric or magnetic field.

In principle, all equations stay formally
unchanged, but they will be evaluated by passing
the new perturbated basis {y,}.

The introduction of an external field induces
a perturbation that affects all sizes (F, C, e, E, H,
S) and can develop into a series of perturbation
in the following way:

:ZFP C, =2Cip e =Zeip

p=0 p=0 p=0
E=YE’' H=)H" §=)8§"
p=0 p=0 p=0

The exposing notation signifies the different
orders of development, where p = 0, 1, 2...
represent respectively the unperturbated state,
the first perturbation order, the second
perturbation order, and so on.

The decomposition in perturbation series of
relations (5.a) and (5.b) gives:

DDFICI= Y > elsiCl =05 (11.a)
p=0 g0 p20 g=0 =0

ZOZ(;ZO:C{’ST; =5, . (11.b)
p20 g=20 =

Orders’ separation

For the physical meaning, the sizes in the
equation must be in the same order, and hence an
order separation is required. The calculation
technique of the separation process is
summarized as follows:

We call m = p + ¢ the perturbation order with
m > 0;then g =m-p whereg>0,som—p >0
and p < m; since p > 0, finally 0 < p < m. Then,
we simply replace the couple of variables (p, q)
by (p, m). So, the double summation can be
expressed by:

S S Frct =SS Frer

p=0 g20 m20 p=0

In the same manner m = p + ¢ + t; then
t=m-(p+gq)witht>0,som-({p +¢q) >0or
q <m - p;since g > 0, finally 0 <g <m-p. As
before, we replace the variables (p, ¢, ¢) by (p, g,
m). So, the triple summation is expressed as:

Zzzepsqct ZZ ZequCm (r+q)
p20g=>0 120 m=0 p=0 g=0
The pseudo-secular eqgs. (11.a) are written as:

Z{ZFPCM P imzljepsqcm (p+q)} 0
(12.a)

m20 | p=0 p=0 g=0
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So, it is clear that the perturbed HF equation
in the order m is given by:

m_m-—p

ZFPC’" PN N ersic P =0, (12.b)
p=0 p=0 ¢g=0

The same way applied to pseudo-
orthonormality condition (11.b) leads to:
SN crsicr 25 (15a)
m=0 p=0 ¢g=0

By extracting the term of zero order (m = 0),
we can write:

m m-—p
0GQ00 m—(p+q) _
Cc/'scl+y. Y > clrsicrtrd =5,
m=1 p=0 g=0
Based on the orthonormality condition (eq.4),

we obtain:
Zm: Al +quC{n—(p+Q) =0
; .
1 =0 g=0
Separating the orders, we have:

S S s 2.

p=0 ¢=0

(13.b)

Note that in the case of zero order (m = 0),
we find the solutions corresponding to the
absence of any perturbation:

F°C =¢)S°C};
+0 o0 0
c's'cl=s5,.

With respect to first-order perturbation
(m = 1), egs. (12.b) and (13.b) take the following
form:

F'C} +F°C, -

(e,.;s"c,.“ +le;’slc;’ +e)5°C})=0 (14
C/'S°Cl+C°S'CY +C°S°C} = 0. (14.b)
First-order correction to energy

orbital eil

Multiplying the left expression of eq. (14.a)
by C;* gives the form:

+0 1 ,~0 +0 170 1
COF'CO+CPF°C! -
(ell Cl.+0SOC’.O + e:)cf—%—()slcf()
=0.

+ eio Ci+0 So Cil )
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Taking into account the conditions

COS°CY =1, CF°=¢’C°S° and with
Ci+0F]Ci0:Fii]; Ci+0S]Ci0:Sii], we obtain:

1 + e:)Ci-%—() S()Cil _
(e} +elS, +6°C°5°C) =0

from which, we can write the e,’ expression
1 _ ol 0 ¢l
'1 = F —-é€ S } (15)

— C+()F C() _ ()C+()S C()

Principles of calculating S;;’

In this method, the perturbation changes the
basis set; then it is possible to develop S in a
series of perturbation with:

S=>.8".

p=0

In addition, we can develop S near a given
value of perturbation, following a series of Mac-
Laurin. By identifying these two developments,

one can express the analytical forms of S” with p
> 1.

Calculation of F;;’
Its expression is given by:
F'=h'+G'(P")
n n . (16)

Fy=h+ 3" > (Pigh +Pogh)

t=1 u=1

The elements of the density matrix are
expressed as:

pl = ZM: 2(c;len+clc). 17
i=1

Then, the correction of the density matrix in
first order requires C;’ calculation. The technique
consists of developing C/ on a basis of
eigenvectors of zero order {Cjo}:

3 n . 0

=>a.C!. (18)
j=1

All {Cjo} are known as the corresponding

eigenvectors of the unperturbed system and the
knowledge of all {a,jl} determines fully C;.
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Determination of coefficients {a,-,-’ }

Substituting (18) in (14.a) gives the form:

C() F() z a C()

/]

i

[ S()CO +eOS C() +e()s()za C()j .

=0.

Multiplying the left expression by C;™
with linearity and hermitic properties of F’ and
S’ we obtain:

0
k:*Z a; 15 -
1 0ol 0 .1
[€i5k,-+€,-5 +Ze a5 j

Taking into account the following relations:
0,0 _ 0a0,~0
F'C;=e5C;
+0 G0 ~0
G 5°C —5l.j
1 01,0
Fy=CFC,
1 +0 ol 0
S =CSC
we can write:
(Fkli _eio Iii)—i_ailk(el(c) _eio)_eilgki =0.

We have two options for consideration by the
indices i and k.

When i #k (6,;, =0), then:
1 0gl
B -elSy
ik — 0 0
e —e,
1 1 0
C = Zaikcz
i=1,i#k

If i=k (6,,=1), we obtain the previous
expression (15).

Applying the relation between {aikl} with the
decomposition of orthonormality condition
(14.b) in the first order of full basis set, we
obtain:

a,jl +a}i =—S; i#j; (19.a)
a;'+a; =-S, i=j. (19.b)

Determination of the matrix P’

First-order (m = I) correction of the density
matrix P is expressed by:

M
B =3 2ccl+crc)).

i=1

The components 7 and s of the vector C; ! are

. 1 _ O 10 1 .

given by C, = ZaUCﬂ and C, Za P

Jj=1
express1on.

1 ~*0~0
+aicrct).

in P, we obtain a new

M n
_ 1 %0 ~0
I (i eplen
i=1 j=1

The relationship (19.a) allows to write

1 1 1 .
a; =—(a..+S..) and the expression above
Ly Jt y
becomes:
0 0 1 «0 0
M —atcc? —slcc!
1 Ji jr is ij Jjr is
Pi=2 272 [,
#
i=1 j=1 +aijCir ij

Finally, after some transformations, the
correction to the first order of the matrix density
P is given by the following form:

+

JuJ

M M T
—{ch;“s;icj’ +>°2(C)’s;Cl +C 1S,
i~ i ]
Z Z o) ' IOS; Cmco Fll_elOSjll Cmco
i=l j=M+1 el ¢; 6‘[. —ej

{fzc*”cﬂs; +f“2(syc;fc§ +8,CCh) |+
i= i(j

i=l j=M+1 ¢; ei _ej

e st F' —e's! ]
Z Z 2|: i~ C;?Cl? Ji ez Ji CxOCO
6‘
(20)

The relations in expression (20) show that the
elements of P’ are expressed in terms of those of
F' which depend themselves on P’ according to
relations (16).

The resolution process is to initialize the
matrix density to the first order with P’ = 0
which allows us to calculate in the first round
F'=h'. P"is determined by the expression (20)
which is then used to calculate G'(P') then F'.
The iterative process is thus repeated until the
system is in coherence.
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with:
Expression of F’ E'=E +E,. (23)
: I _ 0 0 _ ! 1 .
Wltllll F:i’ = CGF'Cl and F' = h' + G, then: In developing C;"’h’C,' + C;"'h’C/ and taking
- Z Z c? ( W+ G )CQ ) into account that 4" is hermetic, we have:
r=tost CORC! + CHROCY =
Developing G, = Z:‘Z;Pm .g,,, interms of e (C,.+()S()C,1 n C,«HSOC,«O)
t=1 u=
the first order yields: _ (Ci+OGOCi1 n Ci+1G0Ci0)
GrlY = ZZPO gnm + ZZ & - 21 After the relationship of ortho-normalization
=1 u=l =1 u=l at first order, we can write by replacing in
Defining: expression (23.a):
M
—_ n 1 1 0¢l
; ( ) ;; R 1;11 (23.¢)
_ 0 ->2(c6 ¢l +c'G cy)
G, (Pl) =33 Pl 21.b) P
= _ Replacing expressions (23.c) and (23.b) in
eq. (21) becomes: G- =G (P’,g")+G.(P"). (23), we obtain:
M
Then = Z 2(hi1i - eiOSili)
1 i=1
F;j = M
. _ . -Y.(¢r6ci+cri6 et @
> yclcy|n +GL(P.g')+GL(P)] =
r=1 s=1 M n n
+ C’G
So, we can write: ; ,Z:‘ Z‘ G
Fj =1 +G (P".g')+G (P')|C) . Taking:
Taking into  account the  relations X= z z z C 0 Grv C 2 (25)
C'n'C) =h, C°G'C} =G, and =t
i ij > i J ij
C,-+O & C;) _ Gilj . we can write: and knowing the relation:
_ C w1 C 0
F'=h +G.+G' . 22 TR o
ij ij ij ij ( ) Z ) Cjug,w ’
. . 1 j=t 1=l u=l £0
Expression of the electronic energy E +C; °cY jug,w
The expressions of E,' and E,’ derived from L . )
(7.a) and (7.b) are as follows: and replacing in (25), we will have:
w C*IC g()
uOrstu
=" 2(h)+C'H°CY +C°h°C)): (23.0) " !
i=1

Xziizzzzzc*oco +C*0C 1grw

i=l j=1 r=1 s=1 tr=1 u=1 0.0 1
E! :i(cﬂ)GoC} +C+1GOCO) +C, Ci8ru
2 P i i i i (26)
e
S e 0 is relationship is divided into three terms:
+ZZZC GrTCIY

i X1, X2 and X3.
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X, ZZ 2C°C0CIC 80 (26.2)
i,j rstu

X, Zch*”c}jc;?cju 0 (26.b)
i,j rstu

X, Zch*“c,‘:c;“cj; L (26.¢)

i,j rstu

In performing a permutation of indices
according to r <> ¢, s <> u, i <> j and knowing the
property of indiscernible electrons (g’ = s’
and through the definitions presented, we obtain:

M

X, =>.¢/'G°C! ; (27.a)
i=1
M

X,=>.CG’C!; (27.b)
i=1
M —

X,=>C’G'C). (27.c)

i=1
The relationship (26) becomes:
M -
X = Z(c;@”c? +CGC! + c;"Glc?).
i=1
Replacing this expression in (24), we obtain:

E'= f[z(h}, ~elS))+ Gy |

i=1

(28.a)

And in view of a matrix sense:

M J—
E'=>"2C" (hl —e's' +%G1 j C’ . (28b)

Expression of energy of first order on
a basis LCAO

The expression (28.b) of energy E' can be
rewritten as:

M
=>2C°h'C)
i=1

M JR—
+>.CG'CY

i=1

M
- Y 2¢)Cs'C!
i=1
The term Ci+0h]Ci0 is a scalar product which
develops according to:

C/°h'C’ = ZZC*Oh Cy.

r=1 s=l1

Then, applying this development to all of the
terms, we have:

n n

E' ZZhry(ch*OCOJ
1 c ~1 S 0 ~0
N er (Z 2Cir Cix}
2 r s=1 i=1
M
33 Sacree |

Introducing:

n

1

0’ ch*“c“ 0 (29)

IYI

and knowing that P. = Z2C C) , we obtain

i=1

finally:

n n

El

Il
.
l
i

P H3GL )08 |
(30)

Conclusion

In this work, we developed a new formalism
of the McWeeny perturbation theory for
expressing the first-order energy correction
under external perturbation in the LCAO
scheme.

The dependence of the LCAO basis on an
external perturbation was taken into account and

treated as a perturbation amending the basis set
LCAO.

We have established the expressions of the
first-order perturbed energies, and our results
show that McWeeny approach is a particular
case of our global formalism.

Annex: Particularities related to an applied
external magnetic field

In the presence of an external perturbation
represented by a magnetic field , the basis set is
built on an ensemble of GIAO (Gauge Invariant
Atomic Orbital), proposed by London [14], and
expressed as follows:

Zk(K)(_.K ’E): ¢k(1<)(ﬁl< )'nk(K)(ﬁK ,E) ;
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where )(k(K)(ﬁK,B) and ¢k(1<)(/51<) represent
respectively the atomic orbital in presence and in
absence of perturbation, centered on the K

nucleus, and 7, K)(,B K,B) the term introduced
by London defined as:

-~ 3 e -
nk(K)(pK,B)z exp{—%.AK.r} ,

where 7 represents the position vector of the

electron compared with an origin, p, =7 — R,
is its position vector compared with the K

- 1= =
nucleus and A4, :EBARK signifies the potential-

vector on this nucleus, centered on R, .

Anak et al.

On the other hand, for a weak perturbation,
one knows that the energy can be developed in
Mac-Laurin-Taylor’s series, according to:

E=E'+E+E+ ..

where E’, E', E’..represent respectively the
unperturbed energy and the first, second, ... etc
perturbed energies.

The size of the first perturbation corresponds
to the components of magnetic dipolar moment
and is defined as follows:

i
! OB, ), _,

u

The label u means one of the three
orientations of space x, y or z.

References

[1] Roothaan, C.C.J.,, Rev. Phys. Mod., 23(1)
(1951) 69.

[2] Roothaan, C.C.J., Rev. Phys. Mod., 32(2)
(1960) 179.

[3] Malykhanov, Y.B., Meshkov, V.V. and
Chadin, R.M., Journal of Applied
Spectroscopy, 7 (2003) 5.

[4] Dalgarno, A., London, Proc. Roy. Soc. A,
251 (1959) 282.

[5] Stiehler, J. and Hinze, J., J. Phys. B, 28
(1995) 4055.

[6] Malykhanov,Y.B. and Pravosudov, R.N.,
Prikl. Spektrosk. Zh., 67(1) (2000) 5.

[7] Stiehler, J. and Hinze, J., J. Phys. B, 28
(1995) 4071.

112

[8] Brattsev, V.F. and Khodyreva, N.V., Opt.
Spektrosk., 50(2) (1981) 22.

[9] Brattsev, V.F. and Khodyreva, N.V., Opt.
Spektrosk., 54(5) (1983) 927.

[10] Stewart, R.F., Mol. Phys., 30(4) (1975)
1288.

[11] Malykhanov, Y.B., Meshkov, V.V. and
Chadin, R.M., Prikl. Spektrosk. Zh., 70(5)
(2003) 588.

[12] Van Vleck, J.H., Electric and Magnetic
Susceptibilities, (Oxford University Press,
Oxford, 1932) 275.

[13] McWeeny, R., Phys. Rev., 126 (1962)
1034.

[14] London, F., J. Phys. Radium, 8 (1937) 397.



