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Abstract: We have formulated the first-order Hartree–Fock equations for multielectron 
systems exposed to an external perturbation in the LCAO (Linear Combination of Atomic 
Orbital) approximation. The perturbation theory corrections to these equations have been 
found in the form of expansions in unperturbed equations and terms which depend 
explicitly on this perturbation. The ideas leading to this amendment are implicit in previous 
studies, but the significance of its existence has not yet been sufficiently emphasized and its 
simple explicit form has not been presented. With the proposed approach, one may obtain 
the first-order correction perturbation energy in the presence of any perturbation, knowing 
merely the overlap. This may further facilitate linear scaling computation of the energy 
correction. 
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Introduction 

For multielectronic systems, the calculation 
used is the algebraic form of Hartree-Fock (HF) 
method like Hartree-Fock-Roothaan (HFR) [1, 
2]. In this formalism, the minimum energy of the 
system is a function of the orbital coefficients 
and nonlinear parameters of the basis functions. 
The physical properties of a system under 
external field are described with the aid of 
polarizabilities, susceptibilities and other 
parameters based on the framework of quantum 
mechanics expressed in terms of perturbation 
theory which represents a very complex problem 
in computational and formalism aspect [3]. The 
equations of Hartree-Fock perturbation theory 
lead to the equations of McWeeny formulae with 
all orders, obtained in terms of the unperturbed 
Hamiltonian and density matrix. It is also shown 
that the perturbation may be obtained directly, 
without separating the orders, and that the 
approach is related to earlier steepest-descent 
methods [4]. The coupled-perturbation theory [5] 

leads to good accuracy [6–10]. However, there is 
a dispersion in the values of calculated 
polarizability [7]. In [6, 11], the optimum basis 
set of atomic orbitals to calculate polarizabilities 
can be found by minimization methods of the 
first and second orders. In the magnetic case of 
perturbation, all spectral states are needed in 
Vanvleck formulation which leads to calculation 
limit and invariant problems [12, 14].  

It has been seen that orders are not explicit or 
separated from all variants of the perturbation 
method derived from McWeeny formulae [13]. 
In the present work, we use the London 
unperturbed base with Gauge factor bypass 
invariant problem [14] to achieve the separated 
order perturbation method. It is an original way 
to formulate the theory of first-order perturbation 
taking account of the effect of perturbation on 
the basis set. From the formalism developed by 
MacWeeny, we show explicitly the action of a 
perturbation on the different quantities that are 
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associated with it. The special feature of the 
writing in our equations lies in the fact to recover 
the unperturbed state just in quashing the terms 
relating to the perturbation. To illustrate this, we 
have attached an annex with the case of a 
magnetic perturbation in which the basis set is 
represented by the perturbed GIAO introduced 
by London [14].  

Hartree–Fock-Roothaan equations 
The Hartree-Fock-Roothaan [1-3] method is 

constructed on the MO (Molecular Orbital) 
theory [4, 5] and the LCAO (Linear 
Combination of Atomic Orbital) approach, 
where the OM  i  are simply expressed in 
terms of a basis set of atomic orbitals {r} as 
follows: 

1

.
n

i ir r
r

C 


  ;                                                 (1) 

where n represents the dimensional basis used 
and the set {Cir} the OM {Ψi} coefficients of 
development.  

The pseudo-secular equations of the method 
are expressed as:  

i i iFC e SC ;                                                    (2) 

where F represent the Fock operator and can be 
expressed by the relation  F = h + G, in which h 
and G are respectively the core operator and the 
bioelectronic repulsion operator; {ei} is a set of 
the OM energies and S signifies the overlap 
matrix whose elements are written as follows: 

*
ij i jS   .                                                    (3) 

The coefficient vectors of the molecular 
orbital are pseudo-normalized, so: 

i j ijC SC   .                                                    (4) 

In this notation, the exposing label + means 
the adjunction operation and δij represents the 
Krönecker symbol.  

In general, we note Zi j = Xi
+ZXj any scalar 

product, where Xi and Xj are vector-columns and 
Z represents a matrix. 

For example, in eq. (4), Sij is defined as: 

jiij SCCS  . 

Finally, the system to be resolved is 
expressed as follows:  

 . 0i iF e S C  ;        (5.a) 

i j ijC SC   .        (5.b) 

The energy orbital ei is obtained by using eq. 
(2).  

Multiplying at left by Ci
+ yields  

Ci
+FCi  = eiCi

+SCi. 
Based on the normalization condition, we 

have: 

i i ie C FC ;        (6.a) 

i iie F .            (6.b) 

The total electronic energy can be expressed 
by:  





M

i
ii HCCE

1
. 

With H = h + F and F = h + G, we obtain  
H = 2h + G. 

M indicates the label of the HOMO (Highest 
Occupied Molecular Orbital). 

We can rewrite:  








 
M

i
ii

M

i
ii GCChCCE

11

2 . 

Taking: 

1
1

2
M

i i
i

E C hC



            (7.a) 

2
1

M

i i
i

E C GC



 ,           (7.b) 

we obtain 

E = E1 + E2 .            (7) 

Note that Ci
+hCi corresponds to a scalar 

product which can be developed meaning the 
property:  


 

 
n

r

n

s
isrsirii YZXZYX

1 1
. 

So: 

  2
M

ii ii
i

E h G  .           (8) 
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By using LCAO basis {r} and development 
(1), the expression of E is obtained as follows: 


    


M

i

n

r

n

s
isrsir

M

i

n

r

n

s
isrsir CGCChCE

1 1 1

*

1 1 1

*2  

or: 

*

1 1 1

*

1 1 1

2

1
2 .

2

n n M

rs ir is
r s i

n n M

ir is
r s i

E h C C

C C

  

  

 
  

 
 

  
 

 

 
  

Defining the matrix density by: 

*

1

2
M

rs ir is
i

P C C


 ,           (9) 

we can write: 

 
1 1

1

2

n n

rs rs rs
r s

E P h F
 

   
 

  ,        (10) 

with: 

1 1

.

1
. .

2

rs rs rs

n n

rs tu rstu
t u

rstu rstu ruts

F h G

G P g

g  

 

 

 


  



 

The matrix elements Frs, hrs and γrstu are 
respectively the Fock integrals, the Hamiltonian 
core integrals and the bi-electronic repulsion 
integrals, defined by:  

     
     

       

*

*

2
* *

12

1 1 1

1 1 1

1 1 2 2 .

rs r s

rs r s

rstu r s t u

F F

h h

e

r

 

 

    

 

 






 

Effects of perturbation 
Our theoretical approach is applied to any 

physical phenomenon where a perturbation 
modifies the basis set in the framework of HFR 
method, allowing the calculation of the 
parameters related to the presence of an external 
electric or magnetic field.  

In principle, all equations stay formally 
unchanged, but they will be evaluated by passing 
the new perturbated basis {χr}. 

The introduction of an external field induces 
a perturbation that affects all sizes (F, C, ei, E, H, 
S) and can develop into a series of perturbation 
in the following way:  




























000

000

p

p

p

p

p

p
p

p
ii

p

p
ii

p

p

SSHHEE

eeCCFF
. 

The exposing notation signifies the different 
orders of development, where p = 0, 1, 2… 
represent respectively the unperturbated state, 
the first perturbation order, the second 
perturbation order, and so on. 

The decomposition in perturbation series of 
relations (5.a) and (5.b) gives: 

0 0 0 0 0

0p q p q t
i i i

p q p q t

F C e S C
    

   ;    (11.a) 

0 0 0

p q t
i j ij

p q t

C S C 
  

  .    (11.b) 

Orders’ separation 
For the physical meaning, the sizes in the 

equation must be in the same order, and hence an 
order separation is required. The calculation 
technique of the separation process is 
summarized as follows:  

We call m = p + q the perturbation order with 
m ≥ 0; then q = m - p where q ≥ 0, so m – p ≥ 0 
and p ≤ m; since p ≥ 0, finally 0 ≤ p ≤ m. Then, 
we simply replace the couple of variables (p, q) 
by (p, m). So, the double summation can be 
expressed by: 

 
   


0 0 0 0p q m

m

p

pm
i

pq
i

p CFCF . 

In the same manner m = p + q + t; then          
t = m - (p + q) with t ≥ 0, so m - (p + q) ≥ 0 or   
q ≤ m - p; since q ≥ 0, finally 0 ≤ q ≤ m - p. As 
before, we replace the variables (p, q, t) by (p, q, 
m). So, the triple summation is expressed as: 

 
    






0 0 0 0 0 0

)(

p q t m

m

p

pm

q

qpm
i

qp
i

t
i

qp
i CSeCSe . 

The pseudo-secular eqs. (11.a) are written as:  

( )

0 0 0 0

0
m pm m

p m p p q m p q
i i i

m p p q

F C e S C


  

   

 
  

 
  

(12.a) 
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So, it is clear that the perturbed HF equation 
in the order m is given by:  

 

0 0 0

0
m pm m

m p qp m p p q
i i i

p p q

F C e S C


 

  

   .
    

(12.b) 

The same way applied to pseudo-
orthonormality condition (11.b) leads to: 

 

0 0 0

m pm
m p qp q

i j ij
m p q

C S C 


 

  

   .     (13.a) 

By extracting the term of zero order (m = 0), 
we can write: 

 
 





 
1 0 0

000

m

m

p

pm

q
ij

qpm
j

qp
iji CSCCSC  . 

Based on the orthonormality condition (eq.4), 
we obtain: 

   
 





 
1 0 0

0
m

m

p

pm

q

qpm
j

qp
i CSC . 

Separating the orders, we have: 

 

0 0

0
m pm

m p qp q
i j

p q

C S C


 

 

  .    (13.b) 

Note that in the case of zero order (m = 0), 
we find the solutions corresponding to the 
absence of any perturbation: 

00000
iii CSeCF  ; 

0 0 0
i j i jC S C   . 

With respect to first-order perturbation        
(m = 1), eqs. (12.b) and (13.b) take the following 
form:  

 
1 0 0 1

1 0 0 0 1 0 0 0 1 0

i i

i i i i i i

F C F C

e S C e S C e S C

  


   
;     (14.a) 

1 0 0 0 1 0 0 0 1 0i j i j i jC S C C S C C S C     .    (14.b) 

First-order correction to energy 
orbital ei1 

Multiplying the left expression of eq. (14.a) 
by Ci

+0
 gives the form: 

 
0 1 0 0 0 1

1 0 0 0 0 0 1 0 0 0 0 1

0.

i i i i

i i i i i i i i i

C F C C F C

e C S C e C S C e C S C

 

  

 
  


 

 

Taking into account the conditions 
1000 

ii CSC , 00000 SCeFC iii
   and with 

Ci
+0F1Ci

0=Fii
1; Ci

+0S1Ci
0=Sii

1, we obtain:  

 
1 0 0 0 1

1 0 1 0 0 0 1 0

ii i i i

i i ii i i i

F e C S C

e e S e C S C





  


   
, 

from which, we can write the ei
1
 expression 

1 1 0 1

1 0 1 0 0 0 1 0
i ii i ii

i i i i i i

e F e S

e C F C e C S C 

 


  
.        (15) 

Principles of calculating Sii1 
In this method, the perturbation changes the 

basis set; then it is possible to develop S in a 
series of perturbation with: 





0p

pSS . 

In addition, we can develop S near a given 
value of perturbation, following a series of Mac-
Laurin. By identifying these two developments, 
one can express the analytical forms of S 

p with p 
≥ 1. 

Calculation of Fii
1 

Its expression is given by: 

 

1 1 1 1

1 1 1 0 0 1

1 1

( )
n n

rs rs tu rstu tu rstu
t u

F h G P

F h P g P g
 

 



   



.
      

(16)
 

The elements of the density matrix are 
expressed as: 

 1 *1 0 *0 1

1

2 . .
M

tu it iu it iu
i

p C C C C


  .       (17) 

Then, the correction of the density matrix in 
first order requires Ci

1 calculation. The technique 
consists of developing Ci

1 on a basis of 
eigenvectors of zero order {Cj

0}: 

1 1 0

1

.
n

i ij j
j

C a C


  .           (18) 

All {Cj
0} are known as the corresponding 

eigenvectors of the unperturbed system and the 
knowledge of all {aij

1} determines fully Ci
1. 
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Determination of coefficients {aij1}  

Substituting (18) in (14.a) gives the form:  

1 0 0 1 0

1

1 0 0 0 1 0 0 0 1 0

1

0.

n

i ij j
j

n

i i i i i ij j
j

F C F a C

e S C e S C e S a C






  


    

 






 . 

Multiplying the left expression by Ck
+0 and 

with linearity and hermitic properties of F0 
0

F

and 
S0, we obtain: 

1 1 0

1

1 0 1 0 1

1

0

n

ki ij j kj
j

n

i ki i ki i ij kj
j

F a e

e e S e a



 






  




        




. 

Taking into account the following relations: 























0101

0101

000

00000

kiik

kiik

ijji

jjj

CSCS
CFCF

CSC
CSeCF


 

we can write:  

    01001101  kiiikikkiiki eeeaSeF  . 

We have two options for consideration by the 
indices i and k.  

When i k  ( 0ki  ), then: 




















n

ki,i
iikk

ki

kiiki
ik

CaC

ee
SeFa

1

011

00

101
1

 

If i k  ( 1ki  ), we obtain the previous 
expression (15).  

Applying the relation between {aik
1} with the 

decomposition of orthonormality condition 
(14.b) in the first order of full basis set, we 
obtain: 

*1 1 1
ij ji ija a S i j    ;      (19.a) 

*1 1 1
ii ii iia a S i j    .     (19.b) 

Determination of the matrix P1  
First-order (m = 1) correction of the density 

matrix P is expressed by: 

 



M

i
is

*
iris

*
irrs CCCCP

1

10011 2 . 

The components r and s of the vector Ci
1 are 

given by 



n

j
jrijir CaC

1

011  and 



n

j
jsijis CaC

1

011 ; 

in Prs
1 we obtain a new expression: 

 
 


M

i

n

j
js

*
irijis

*
jr

*
ijrs CCaCCaP

1 1

0010011 2 . 

The relationship (19.a) allows to write 

 *1 1 1
ij ji ija a S    and the expression above 

becomes: 
1 *0 0 1 *0 0

1

1 * 0 0
1 1

2
M n

ji j r is ij jr is

r s
i j ij ir js

a C C S C C
P

a C C 

  
 
  

  .

 
Finally, after some transformations, the 

correction to the first order of the matrix density 
P is given by the following form: 

 

 

1 0 1 0 0 1 0 0 1 0

1

1 0 1 1 0 1
0 0 0 0

0 0 0 0
1 1

1 *0 0 1 1 *0 0 1 *0 0

1

2 2

2

2 2

2

M M

i ii i j ij i i ji j
i i j

M n
ij i ij ji i ji

j i i j
i j M i j i j

M M

rs ir is ii ij jr is ji ir js
i i j

P C S C C S C C S C

F e S F e S
C C C C

e e e e

P C C S S C C S C C

F
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 

 

  

 

 
     

 
  

 
   

 
     

 

 

 

 
1 0 1 1 0 1

*0 0 *0 0
0 0 0 0

1 1

M n
ij i ij ji i ji

jr is ir js
i j M i j i j

e S F e S
C C C C

e e e e  











  
 

     
 

. 

                        (20) 

The relations in expression (20) show that the 
elements of

1
P

 P1 are expressed in terms of those of
1

F

 
F1 which depend themselves on

1P

 P1 according to 
relations (16). 

The resolution process is to initialize the 
matrix density to the first order with P1 = 0, 
which allows us to calculate in the first round   
F1 = h1.  P1 is determined by the expression (20) 
which is then used to calculate G1(P1) then F1

1
F

. 
The iterative process is thus repeated until the 
system is in coherence. 
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Expression of F1
1F

 
With Fij

1 = Ci
+0F1Cj

0 and F1 = h1 + G1, then: 

 1 *0 1 1 0

1 1

n n

ij ir rs rs js
r s

F C h G C
 

  . 

Developing 
 


n

t

n

u
rstuturs g.PG

1 1
 in terms of 

the first order yields: 

1 0 1 1 0

1 1 1 1

. .
n n n n

rs tu rstu tu rstu
t u t u

G P g P g
   

    .        (21) 

Defining:  

 0 1 0 1

1 1

, .
n n

rs tu rstu
t u

G P g P g
 

         (21.a) 

 1 1 1 0

1 1

.
n n

rs tu rstu
t u

G P P g
 

 ,       (21.b) 

eq. (21) becomes: 1 1 0 1 1 1( , ) ( )rs rs rsG G P g G P  . 

Then 

   

1

*0 0 1 1 0 1 1 1

1 1

,

ij

n n

ir js rs rs rs
r s

F

C C h G P g G P
 



    


 . 

So, we can write: 

   1 0 1 1 0 1 1 1 0,ij i jF C h G P g G P C       . 

Taking into account the relations 
0 1 0 1

i j ijC h C h  , 0 1 0 1
i j ijC G C G   and 

0 1 0 1
i j ijC G C G  , we can write: 

1 1 1 1
ij ij ij ijF h G G    .         (22) 

Expression of the electronic energy
1E

 E1 
The expressions of E1

1 and E2
1 derived from 

(7.a) and (7.b) are as follows: 

 1 1 1 0 0 0 0 1
1

1

2
M

ii i i i i
i

E h C h C C h C 



   ;     (23.a) 

 1 0 0 1 1 0 0
2

1

*0 1 0

1 1 1

M

i i i i
i

M n n

ir rs is
i r s

E C G C C G C

C G C

 



  


  








,            (23.b) 

with: 

 1 1 1
1 2E E E  .           (23) 

In developing Ci
+0h0Ci

1 + Ci
+1h0Ci

0 and taking 
into account that h0 is hermetic, we have: 

 
 

0 0 1 1 0 0

0 0 0 1 1 0 0

0 0 1 1 0 0

i i i i

i i i i i

i i i i

C h C C h C

e C S C C S C

C G C C G C

 

 

 

   


  

. 

After the relationship of ortho-normalization 
at first order, we can write by replacing in 
expression (23.a):  

 

1 1 0 1
1

1

0 0 1 1 0 0

1

2( )

2

M

ii i ii
i

M

i i i i
i

E h e S

C G C C G C



 




  


  




.   (23.c) 

Replacing expressions (23.c) and (23.b) in 
(23), we obtain:  

 

1 1 0 1

1

0 0 1 1 0 0

1

*0 1 0

1 1 1

2( )
M

ii i ii
i

M

i i i i
i

M n n

ir rs is
i r s

E h e S

C G C C G C

C G C



 



  

  



  



 








.     (24) 

Taking: 

 *0 1 0

1 1 1

M n n

ir rs is
i r s

X C G C
  

          (25) 

and knowing the relation:  
*1 0 0

1 *0 1 0

1 1 1
*0 0 1

2

jt ju rstu
M n n

rs jt ju rstu
j t u

jt ju rstu

C C g

G C C g

C C g
  

 
 

  
   

 , 

and replacing in (25), we will have: 
*1 0 0

*0 0 *0 1 0

1 1 1 1 1 1
*0 0 1

2

jt ju rstu
M M n n n n

ir is jt ju rsyu
i j r s tr u

jt ju rstu

C C g

X C C C C g

C C g
     

 
 

  
   

 .                

                                                                     (26) 

This relationship is divided into three terms: 
X1, X2 and X3. 
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*0 0 *1 0 0
1

,

2
M n

ir is jt ju rstu
i j rstu

X C C C C g ;      (26.a) 

*0 0 *0 1 0
2

,

2
M n

ir is jt ju rstu
i j rstu

X C C C C g  ;    (26.b) 

*0 0 *0 0 1
3

,

2
M n

ir is jt ju rstu
i j rstu

X C C C C g  .     (26.c) 

In performing a permutation of indices 
according to r ↔ t, s ↔ u, i ↔ j and knowing the 
property of indiscernible electrons (gturs

0 =  grstu
o) 

and through the definitions presented, we obtain: 

1 0 0
1

1

M

i i
i

X C G C



  ;       (27.a) 

0 0 1
2

1

M

i i
i

X C G C



 ;      (27.b) 

0 1 0
3

1

M

i i
i

X C G C



 .       (27.c) 

The relationship (26) becomes: 

 


 
M

i
iiiiii CGCCGCCGCX

1

010100001 . 

Replacing this expression in (24), we obtain: 

  1 1 0 1 1

1

2
M

ii i ii ii
i

E h e S G


       .     (28.a) 

And in view of a matrix sense: 

 1 0 1 0 1 1 0

1

1
2

2

M

i i i
i

E C h e S G C



    
 

  .    (28.b) 

Expression of energy of first order on 
a basis LCAO 

The expression (28.b) of energy E1 can be 
rewritten as:  

1 0 1 0

1

0 1 0

1

0 0 1 0

1

2

2

M

i i
i

M

i i
i

M

i i i
i

E C h C

C G C

e C S C













 



 



 








 . 

The term Ci
+0h1Ci

0 is a scalar product which 
develops according to: 


 

 
n

r

n

s
isrs

*
irii ChCChC

1 1

010010 . 

Then, applying this development to all of the 
terms, we have:  

1 1 *0 0

1 1 1

1 *0 0

1 1 1

1 *0 0 0

1 1 1

2

1
2

2

2

n n M

rs ir is
r s i

n n M

rs ir is
r s i

n n M

rs ir is i
r s i

E h C C

G C C

S C C e

  

  

  

 
  

  
   

 
       

 

 

 

. 

Introducing: 

0 *0 0 0

1

2
M

rs ir is i
i

Q C C e


           (29) 

and knowing that 



M

i
is

*
irrs CCP

1

000 2 , we obtain 

finally: 

 1 0 1 1 0 1

1 1

1

2

n n

rs rs rs rs rs
r s

E P h G Q S
 

     
 . 

                                                                        (30) 

Conclusion 
In this work, we developed a new formalism 

of the McWeeny perturbation theory for 
expressing the first-order energy correction 
under external perturbation in the LCAO 
scheme. 

The dependence of the LCAO basis on an 
external perturbation was taken into account and 
treated as a perturbation amending the basis set 
LCAO. 

We have established the expressions of the 
first-order perturbed energies, and our results 
show that McWeeny approach is a particular 
case of our global formalism. 

Annex: Particularities related to an applied 
external magnetic field 
In the presence of an external perturbation 

represented by a magnetic field B
 , the basis set is 

built on an ensemble of GIAO (Gauge Invariant 
Atomic Orbital), proposed by London [14], and 
expressed as follows:  

           BB KKkKKkKKk

 ,.,    ; 
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where    BKKk

 ,  and   KKk 


 represent 
respectively the atomic orbital in presence and in 
absence of perturbation, centered on the K 
nucleus, and    BKKk


,  the term introduced 

by London defined as:  

   






 rA

c
ieB KKKk




 ..exp,  , 

where r  represents the position vector of the 
electron compared with an origin, KK Rr


  

is its position vector compared with the K 

nucleus and KK RBA



2
1

 signifies the potential-

vector on this nucleus, centered on KR


. 

On the other hand, for a weak perturbation, 
one knows that the energy can be developed in 
Mac-Laurin-Taylor’s series, according to:  

E = E0 + E1 + E2 + … 

where E0, E1, E2…represent respectively the 
unperturbed energy and the first, second, … etc 
perturbed energies. 

The size of the first perturbation corresponds 
to the components of magnetic dipolar moment 
and is defined as follows: 

0












uBu

u B
E . 

The label u means one of the three 
orientations of space x, y or z. 
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