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Abstract: The objective of this model is to examine the Dufour effect on unsteady free
convection second-grade fluid flow past an accelerated moving plate subjected to the
magnetic field through a porous medium. The thermal radiation and chemical reactions are
also taken into account. The constitutive governing equations of the model with all levied
initial and boundary conditions are written in non-dimensional form. The non-dimensional
equations that govern the flow model are transformed into a time-fractional model using
the Caputo, Caputo—Fabrizio, and Atangana—Baleanu time-fractional derivatives. The
Laplace transform technique is applied to the differential equations of the flow model to
obtain the exact solution for concentration, temperature, and velocity fields. The expression
for the Sherwood number, the Nusselt number, and skin friction are also derived
analytically. The effects of diffusion-thermo, chemical reactions, second-grade
parameterfractional ~ parameter  (y),  porosity, = magnetic  parameter, heat
absorption/generation, and thermal radiation on velocity profiles are studied through
various figures. It is observed that the velocity profiles for Caputo—Fabrizio fractional
derivatives are higher as compared to Caputo and Atangana—Baleanu fractional derivatives.
It is also seen that for the value of fractional parameter y — 1, the velocity profiles
obtained via Caputo, Caputo—Fabrizo, and Atangana—Baleanu derivatives are identical.

Keywords: Second-grade fluid, Free convection, Chemical reaction, Diffusion thermo,
Heat generation, Caputo, Caputo—Fabrizio, Atangana—Baleanu fractional derivative.

1. Introduction

Non-Newtonian  fluids have important
applications in engineering, physics, and applied
mathematics due to their diverse importance
across various domains. Their relevance spans a
wide range of areas, such as the movement of
biological fluids in food processing, the
performance of lubricants, and processes within
the field of plastic manufacturing. Here are some
common examples of non-Newtonian fluids:
toothpaste, melted butter, ketchup, paint, starch
suspensions, gels, shampoo, blood, custard,
colloids, and corn starch. The nonlinear

equations of non-Newtonian fluids can be solved
either analytically or numerically. Pakzad et al.
[1] have discussed the non-Newtonian fluids
with electrical resistance tomography.

Some models of second-grade fluids are
industrial oils, slurry flows, and dilute polymer
solutions with different geometry and boundary
conditions. The solution of unsteady second-
grade fluid through a flat plate with the help of
Fourier sine transforms has been discussed by C.
Fetecau et al. [2]. A new technique of fractional
order known as Caputo-Fabrizio (CF) derivative
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has been proposed by Caputo and Fabrizio [3].
Ramzan et al. [4] have obtained the analytical
solution of free convection flow of
magnetohydrodynamic (MHD) Brinkmann fluid
with heat transfer through a porous medium.
They considered the problem under specific
initial and boundary conditions. To solve the
governing equation, they employed the Laplace
transform technique.

Khan and Shah [5] have obtained the
analytical solution for second-grade fluid with
heat transfer in the presence of porosity through
a vertical plate by using the Caputo-Fabrizio
(CF) derivative. However, the non-singular
Kernel in the CF derivative was non-local. To
overcome this issue of non-singularity of Kernel,
a new function has been introduced by Atangana
and Baleanu [6, 7]. Atangana and Koca [8] have
applied the fractional order derivative of
Atangana—Baleanu (AB) to a nonlinear system.
The solution of Kirchhoff’s circuit with AB
derivative of fractional order has been applied by
Alkahtani [9]. Algahtani [10] has analyzed the
comparison of AB and CF derivatives in a real-
world problem.

Khan et al. [11] have discussed the solution
of magnetohydrodynamics flow of viscous fluid
through a plate with thermal radiation and
chemical reaction in the presence of a porous
medium. MHD flow of viscous fluid in liquid
metal with heat transfer has been studied by
Hartmann [12]. The effect of heat transfer on
solar cookers has been analyzed by Murty et al.
[13]. The design of the solar collector system has
been proposed by Raja ef al. [14]. The influence
of stagnation point on the MHD flow of Carreau
fluid through a porous sheet has been
investigated by Akbar et al. [15]. Sheikholeslami
et al. [16] have discussed the effect of the
magnetic field and heat transfer through a
sinusoidal wall.

The effect of heat transfer on various fluid
flows holds paramount importance within the
realm of space technology. The mathematical
model for the thermal radiation effect on Casson
nanofluid flow through a plate with hybrid
fractional derivative has been suggested by
Wang et al. [17]. Nadeem et al. [18] have
investigated the three-dimensional flow of the
MHD fluid through a porous sheet. Abbasi et al.
[19] have studied the solution of heat generation/
absorption of the convection flow of nanofluid.
Ramzan et al. [20] have obtained the solution of
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a Mhd flow of Casson fluid with double
diffusion and heat generation/absorption through
a porous media. Sengupta and Ahmed [21] have
analyzed the effect of first-order chemical
reaction and thermo-diffusion on the convection
flow of MHD fluid through a plate.

The effect of slip parameters on the unsteady
free convection flow of magnetohydrodynamics
fluid with heat and mass transfer in the presence
of porosity through a plate has been studied by
Fetecau et al. [22]. Mass and heat transfer find
substantial applications in various fields,
including exothermic chemical reactors, food
processing, smelting, polymer production, and
the manufacturing of glassware. The effect of
diffusion-thermo on Jeffrey fluid in the presence
of porosity through a plate has been studied by
Shafique et al. [23].

Ramzan et al. [24] have analyzed the Mhd
flow of Maxwell fluid in the presence of porous
media through an inclined plate. The exact
solution of nanofluids through a porous media
has been studied by Khalid ef al. [25]. Seth ef al.
[26] have discussed the convection flow of
magnetohydrodynamics fluid through a vertical
plate with chemical reaction and heat
generation/absorption. The effect of mass and
heat transfer with first-order chemical reaction
through a porous plate has been studied by Seth
et al. [27]. Hayat et al. [28] have discussed the
thermal radiation effect of the convection flow.
Samiulhaq et al. [29] have dealt with the MHD
flow of second-grade fluid through a plate in the
presence of porous media. Kumaresan et al. [30]
have analyzed the exact solution of the Duffour
effect on the convection flow of MHD fluid
through a vertical plate.

In this article, the model of free convection
flow of second-grade fluid through a plate with
the Duffour effect in the presence of porous
media is studied. Additionally, the effect of
thermal radiation and chemical reactions is taken
into account. The exact solution of
dimensionless differential equations with initial
and boundary conditions is obtained via the
Laplace transform technique. The results of the
concentration, temperature, and velocity fields
are obtained and discussed graphically. The
comparison among Caputo, AB, and CF
fractional derivatives is also discussed.
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2. Mathematical Formulation of the
Problem

Consider unsteady free convection flow of
second-grade fluid with variable temperature in
the presence of a porous medium through a
vertical plate. A fluid flows vertically upward in
x direction and the z-axis is perpendicular to it.
Initially, at time ¢ < 0 both the fluid and plate
are at rest at temperature Too and concentration
C» throughout the entire duration. At time
t = 0%, the plate begins to accelerate in the xz
plane with velocity ue®. The concentration
level near the plate rises to C, and the
temperature of the plate rises linearly with t. A
transverse magnetic field of strength S, (fixed
relative to fluid and plate) is applied in the
normal direction. Due to the very small value of
the Reynolds number, the value of the induced
magnetic field is negligible. In the light of above
assumption, governing equation of an
incompressible, viscous, free convection flow of
second-grade fluid with thermal diffusion, as
well as heat and mass transfer, immersed in a
porous medium through a vertical plate are given
by:

dug(z,8) _ - 0%up(z,t) | a3 Pup(zt)

at 822 p 02209t

"ﬁ" uo(2, ) — —uo(z £) + 268 "ﬁf’ ef (B) +

gﬁT(T Too)+gﬁc(C Coo). (1)
aT(z,8) _ ﬁaZT'(z',t')

at _pCp a9z2 pCp (T T°°)+

pPDm Ky aZC(Z',f)

7 @
ac(z,b) = D, 92 C(zt)_QO(C C). 3)

at

The initial and boundary conditions of the
flow model are:

uo(2,0) = 0,T7(2,0) = T, C(2,0) = Cs,2 = 0,

4)
u,(0,1) = ue®, 7(0,¢) =T,,C(0,t) = C,, t >
0, (5)

uy(2,8) » 0,T(z,t) » 0,C(2,t) » 0,i > 0. (6)

In order to write the flow model in
dimensionless form, we introduced the following
non-dimensional parameters and variables:

«  Zu T—Teo

u
w==z"=—,t"=—,9"=—>=,Pr =
u v v Tyw—Teo
Ky v _ VOP1(y—Tm)
kz ! - u3 >
« _ C—Co Gm vgﬁc(C'w—C'oo)’M _
T Cw—Coo’ u3
ﬁoVO' _ DmKT(Cw—Coo)
pu?’ CsCpv (T —Tw)’
1 _ QoV Rov _
K KuZ'Q_uZ‘ ,Sc D_0 0

Using Eq. (7) in Eqs. (1)-(6), gives the
following governing Egs. (dropping stars):

Iw(zt) 9, 9%w(zt)
o = A+ a3)—5 (M +
E)W(Z, t) + Mef (t) + Gri(z, t) +
Gmw(z,t), (8)
39(zt) _ 1 0%9(zt) R a2 w(z t)
at  Pr 0z2 ]9(2 t) + Du !
€))
2
(’)wa(tz,t) Slca w(z,t) QID'(Z t) (10)
w(z,0)=0,9(z,0) =0,w(2,0) =0,z =0,
(11)
w(0,t) = e%,9(0,t) = t,w(0,t) = 1,t = 0,
(12)
w(oo,t) = 0,9(o0,t) = 0,w (oo, t) = 0,t > 0.
(13)

where Gr,M,K,Pr,Du,Sc,Gm,Q,R,y, and w
represent the Grashof number for heat transfer,
the magnetic field, non-dimensional
permeability, the Prandtl number, the Duffour
effect, the Schmidt number, the Grashof number
for mass transfer, heat source, chemical reaction,
fraction parameter, and velocity of the fluid,
respectively.

3. Generalization of Local Model

The local model defined in Egs. (8) - (13) is
generalized by converting ordinary derivative
with Atangana—Baleanu, Caputo—Fabrizio, and
Caputo fractional derivative of order y as:

D!w(z,t) = (1+ a,D! ) LLE PCD — Mw(z,t) -

~w(z,t) + Mef (£) + Grﬁ(z, t) +

Gmw(z,t), (14)
10%9(zt) R
D9z t) == — Ly(z,1) +
azw(zt)
DuaT, (15)
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ia w(z,t)
d0z2
w(z,0) = 0,19(2, 0)=0,w(z,0)=0,z=0,
17)
t,w(0,t) =1,t >0,
(18)
w(oo,t) = 0,9(o0,t) = 0,w (oo, t) = 0,t > 0.
(19)
where Dg/ w(z,t) represents the Caputo time-
fractional derivative of w(z, t) as:

D]w(z,t) =

— Rw(z,t), (16)

w(0,t) = e%,9(0,t) =

Dlw(zt) =
1 t 1 0w(zs) .
r(1-y) fO (t-s)Y 0ds ds, 0=y<1
ow(z,t)
— y = 1.
at
(20)

Now Caputo—Fabrizio fractional derivative is
defined as:

y _ 1t T awas
Diw(z,t) = R J, e v —ds,0<y <
1, 21
Whereas  Atangana—Baleanu  time-fractional

derivative is given as:

M(y) (t s aw(z,s)
DYw(z,t) = (lyy)f ), ds.

(22)

4. Solution of Problem

Now we solve the flow model by applying
the Laplace transform technique. We can solve
Eq. (16) for the concentration profile, Eq. (15)
for the temperature profile, and Eq. (14) for the
velocity profile.

4.1 Calculation of Concentration with Caputo

By taking the Laplace transform of Eq. (16),
we obtain:

’®(z,9)

Scq"@(z,q) = —ScQw(z,q),  (23)

Boundary conditions that satisfy Eq. (23),
are:

@(0,9) =

By using Eq. (24), the solution of partial
differential Eq. (23) is given below:

&(z,q) = ie—zv“(q”@. (25)

0z2

—w(zq)—>Oz—>oo (24)

The suitable form of Eq. (25) is:
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q’+Q e—2V5c/(@V+Q)
q qv+Q

Taking the inverse Laplace transform of Eq.
(26), we obtain the solution in following form:

@(z,q) = [ (26)

w(zt) = [, Fi(zt - P)[m +Qldp, (27)
where:
Fi(z,t) =
N e‘QWerfc(ZZ\/—E)t_l(O, —a,—wt)dw.
(28)

4.2 Sherwood Number

In order to calculate the Sherwood number,
we use Eq. (26) in the following relation:

|z 0o — =—-L" 1{ |z O}
t
Ve f G224 Qp” E;Z(—ondp.
2
(29)
of Concentration With

Sh=-22

4.3 Calculation
Caputo—Fabrizio

By taking the Laplace transform of Eq. (16),
we obtain:

02 w(Z 0°®(2,9)

=& (2,q) = 552 — ScQ(2,0), (30)

The solution of partial differential Eq. (30),
by using conditions of Eq. (24), is:

(q+c3)

A @ren?, 31)

= =1,
@(z,q) = e
The inverse Laplace transform of Eq. (31) is:

w(z,t) = ¢1(2 1), (32)

where:

P1(z,t) =
e—Z Cy __
( cit—

elea o L
t
11(2,/(c3 —c)wt)dtdw. (33)

4.4 Sherwood Number

_—W) %

The expression for Sh can be calculated from
Eq. (31) and is given by:

Sh=Y="22 61;263. (34)
1
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4.5 Calculation of Concentration with

Atangana—Baleanu

Applying the Laplace transform on Eq. (16),
we have the following form:

@(z,q) = —S5cQ@(z,q), (35)

By using initial and boundary conditions, the
solution of partial differential Eq. (35) is

02 w(z 2*®(z,9)
(1- V)qyﬂ/

(q¥+c3)

5(2’ q) = ; —z (qy+C1)c2 (36)

The suitable form of Eq. (36) is:

(q¥+c3)

2@V +c1). (37)

— 1 1
@(z,q) = ql_yq—ye

The inverse Laplace transform of Eq. (37) is:

w@O = [y 1@t -PE—dp,  (8)
where:
$1(z,t) =

Jy em=Vez —

z\/awlc3 cy f f
N
I (2,/(c3 — cp)wi)dtdw] X
t~ 10, —y, —xt7V)dx. (39)
4.6 Sherwood Number
The rate of mass transfer can be calculated
from Eq. (37) and is given by:

C1C3

Sh = G

(40)

4.7 Calculation of Temperature with Caputo

Applying the Laplace transform on Eq. (15)
and by using initial and boundary conditions, we
have

— 29
Prq¥d(z, q) = 22%D g;z,q) + Dupr L2 _ j(j D
RI9w(z,q), (41)
—"’Egg'q) = iz 9(z,q) = 0,2 > o. (42)

By using the condition of Eq. (42) in Eq.
(41), we have the solution in the following form:

9(z,q) =
1,77 [Pr(aY+2) 4 Gald’™+Q) (e—Z\IPr(‘?”%) _
q? qlq¥+cs]
e 7@’ +Q)y, (43)

Equivalently form of Eq. (43) is:

9(z,q) = .
@+5)  calq¥+30)
( qur + 4 Pr +
c6(qV+30) o VPT @57 _ (c4(qV+Q) n
q(q"+cs) qy+ﬁ q
co(q"+Q)y e~V @+ 44
q(q¥+cs) qv+Q (44)

Using the inverse Laplace transform on Eq.
(44), we have:

= (F2 LR P LR
I(z,t) = [, [ram y)+ st aGoy te) T
ce(Ey (— Cspy)+c o (1=

By (—esp P2zt = p)dp - fy Fi(z,t -

e + G+ Q) + co(By (—csp?) +

g (1 = Ey(=csp¥)))]dp, (45)
where:
Fy(z,t) =

10, —a, —wt™%)dw.
(46)

4.8 Nusselt Number

From Eq. (44), the Nu can be calculated in
the following way:

39
Nu=—a—Z|Z=0=—L { |z 0} =

VPr [ (¢ - p)g‘lE;_z((— o)t~
T Rp ¥ R

Py +or * iy o) ¥

co(Ey (—cspy)+c,,r( -

E, (- Cspy))) dp —Sc [; (t -

)“1E2y(( 0t~ PNlea(l

Ce(Ey(—Csp”) + g (1 = Ey(=csp¥)))]dp
(47)

4.9 Calculation of Temperature with Caputo—
Fabrizio

+Q)+

Using the technique of the Laplace transform
on Eq. (16), we derive:

92 19(ZLI) 92 @(z,4q)
(1-y)a+y V)q+y 9(2,q) ==z~ + DuPr 922

£ 5(z,q). (48)
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The solution of partial differential Eq. (48),
by using conditions of Eq. (42), we have:

I(z,q) =

(q+cg)

ize (q+c)7 4
q
(q+cg)
DuPr(q+c3)c, (q+cj) 7
ql(q+c3)ca—(q+cg)cq]
(Q+C3)C
e N@ren™?), (49)

The suitable form of Eq. (49) is:

(q+cg)

-z 7
c11 e (q+c1)
w(z,q) = + Cy +
(70 = [+ o+ 2] — [
(a+cs) s
c11 e (q+c1) (50)
q+cio q

Taking the inverse Laplace transform of Eq.
(50), we obtain:
w(z,t) =
copa(2,0) + [y (1+ crre™ 0P, (z,t —
p)dp - Cod1(2,t) —
c11 J, e7C1P (2, ¢ — p)dp, (51)

where:

¥2(z,t) =
e—Z Cy; __

PO e e 1 2 w)
11(2,/(c8 = cl)wt)dtdw, (52)

4.10 Nusselt Number

From Eq. (50), the rate of heat transfer Nu
can be calculated in the same way as in Eq. (47)
and is given by:

Nu=(t— 1k, +ky, + ks — ks — kg + (kg —

k;)e~(€100), (53)

4.11 Calculation with
Atangana—Baleanu

( ct—

of Temperature

By taking the Laplace transform of Eq. (16),
we obtain:

Prq¥ = _9%9(z,q) %% (2,9)
—(1—y)qy+y'9(z' q) = oz + DuPr T, =
R —_
> 9(2,9). (54)

The solution of partial differential Eq. (54),
by using conditions of Eq. (42), is:

I(z,q9) =
(qy+C8)
ie “J@+en® +
qZ
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(q¥+cg)
DuPr(q¥+c3)c, ( q],+c?)
ql(q¥+c3)ca—(q¥+cg)cy]
(@¥+c3)
e - qV+c1>C) (55)

Eq. (55) can also be written as:

o @),
(q¥+cq)
— q¥ ngy c11qY e
9(z,q)=[Z+ + -
=9 [q2 q q(qy+clo)] qv
@)
(@V+cp) ?
[CQCIY + c119Y ]e (56)
q q(q¥+c10) q '

Taking the inverse Laplace transform of Eq.
(56), we obtain:
ot cgp‘y
CllEy( Clopy))dp - fo ¢1 (Z! t—

p)(r(gf ) + c11Ey (=c10p?))dp, (57)

where:

P2(z,t) =
Jy Te2Ver —
Z\/EJCg le f
L (2\/ (Cs - Cl)Wt) X
dtdw]t= 1 (0, -y, —zt ")dz. (58)
4.12 Nusselt Number

( cit— ——w) %

From Eq. (56), the Nu can be calculated as:
Nu = kit + ky + k3 + k4 (Ey(—cq1ot")) — ks —

ke — k7 (E,(—c1t?)). (59)
4.13 Calculation of Velocity with Caputo

By taking the Laplace transform of Eq. (14),
we find:

¢ W(zq) = (1+ a0") 22D Mip(z,q) -

EW(Z’ q) + Mef (t) + Grﬁ(z, q) +
Gm@(z, q), (60)

Boundary conditions satisfying Eq. (60) are:
w(0,q) =q_%,v_v(z,q) -0,z > o, (61)

The solution of partial differential Eq. (60),
by using condition of Eq. (61), is:
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T e
1+azq _— (1 —
+(q a)(qy+H)(

C4(q +Q))
q(qy+Cs)

— 1
w(z,q) = —
JW
1+a2qy) + (

( Gr
(1+a2qY)(Prq¥+R)—(q¥+H)

_ 6m  ci(q¥+Q)
eoRITT 4 (2 Sy

q¥+H
) (e 1+azqY

_Z qY +H
)(e 1+azqY

1
(Sc(1+az q¥)(qY+Q)—(q¥ +H)

=25+, (62)

Eq. (62) can be written in suitable form as:

=z | g¥+H
_( ) e‘/a_z q¥+cq2 qy Cl3qy—2 Cqu—z
w(Z = —_
4 qv q-a  (q¥-m1)  (q¥-myp)
(c15—C20)9” c16q" 179" (c18—C21)q”
q(q¥+cs) q(@¥-m1)  q(@¥-mpz) = q(q¥-m3)
-z | q¥+H
ay.|qY+c
(a0’ _ m(e/ o2y Ms__
q(q¥-my) (q—a)(q¥+H) (q—a)(q¥+H)
[ €23 C24 C25 C26 _
q%(q@¥-m1) = q*(q¥-mz)  q(q¥-my) = q(q¥-my)
-z [Pr(q¥ +)
C27 € v _ [ €28—C30 €297C31
a(q¥+cs) (qy+§) a(@’-m3z)  q(q¥-ms)
C32 e=7VSc@’+Q) (63)
a@+cs)  (@+Q

Taking the inverse Laplace transform of Eq.
(63), we have:

w(z,t) = [ p3(z,t —p)[~p"Eva—y (ap) +
c13PEy,2 (myp¥) + c13pEy . (mip") +
(c15 — €20)E (—cspY) + ¢16Ey (Mmyp") +
c17E,(map") + (c18 — €21)Ey (m3p¥) +
(c20 — €22)Ey (map?)ldp — M5 [, po(z,t —
p)e*Pdp +
e fot ea(t—p)py—lEy,y
Jy Fa(z,t = P)[c23g1(0) + C2ag> () +
Czs(l—Ey(m1py)) n 026(1—Ey(—mzpy)) _

-my m,

—E,(~cspY
(:27(1 Ey(=csp ))]dp _ fot Fy(zt -

(—Hp¥)dp —

Cs
— - Y
p) [(028 030)(_1mfy(m1p ) +
(029—031)(11:151/(—"1217]/)) _ 032(1—E);(—Cspy))]dp’
2 5
(64)
where:
¢3 (Z, t) =
[ —% Z\/'H——Clz ( c1pt— ﬂ—w)
fo [e \/_2_ 2\/&,—2\[_.r f a2 X
I, (2 (H — c;5)wt)dtdw] X
t~1(0, —y, —xt7¥)dx, (65)

¢4(Z, t) = 2
f0°° [e_Hte_\/T_z -

22
Z\/H—Cuf ft et ( C12C—W—W) x

2Ja N NG

I, (2/(H = c;)wt)dtdw] x

™10, =y, —xt™")dx, (66)
910) = [ (t = PP’ Ey, (myp"),  (67)

t _
g2(p) = J, (t —p)p""'Ey,, (myp?). (68)
4.14 Skin Friction

In order to find the skin friction, we use the
Eq. (63) in the following relation:

T= |zO=_L1{ |z0}—

a_zfo Hl(t —p)[e® + C1391D T C2492p +
+ ¢16(1=Ey(m;pY)) +

1-Ey(=csp?)
y(—Cs
(c15 + €20) c —
¢17(1=Ey(mypY))
——m. T (c18 — €21) X
2
1_Ey(m3py)

1-E, (mypY)

]+ (19 — ¢22) ldp —

[
t Y_ 4 % -R
Prf, t=p)2 Epy (G — p)") x
2

25(1—Ey(mypY))
[c2391(P) + €2492(P) + 25# +
c26(1=Ey(-m3pY)) _ €27(1=Ey(=c5p?))

m, Cs

Se ff (t—p)a By 2 (—(Q(t -

2
- ) 14
p)y)[(czs 030)(_1m1y(m1p ))+
(c20—c31)(1=Ey(-m3p?))  c32(1-Ey(=c5pY))
m N c 1
2 5

]_

(69)

4.15 Calculation of Velocity with Caputo—
Fabrizio

By taking the Laplace transform of Eq. (14),
we obtain:

a2q *W(zq) _
(1- y)q+yw(z D=1 (l—y)qﬂ/) dz2

Mw(z,q) — ;v‘v(z. q) + Mef (q) +
Gri(z,q) + Gm@(z, q). (70)

By using initial and boundary conditions, we
can solve Eq. (71) as follows:
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w(z,q) =
_ . [(atcza)ezy
Le z (q+c36) —
q—a
_ . [(atcza)ezy
Me z (q+c36) +
(q+c34)(q—a)c33
Me(q+cq)

(q+c34)(q—a)c3s
Gr(q+cy)? 1

[67035(‘?”36)(%08) C33(q+c34)(q+c1)] [? +

¥c
C9(‘I+03) \’(q;?;;):)y _Z\ (Z+c?)c7] +
Q(Q+C10)
[ (q+c1)? ] [G_m _
€2¢35(q+C36)(q+c3)—C33(q+C34)(q+C1)

cgcr(q+c3)
Q(Q+010)

Q+63
Q+C1)

(71)

(q+c34)Cc37
(q+c36)
Suitable form of Eq. (71) is:

(q+c34)c37
— -z d
W(Z, q) = Le (q+c36) (—1 +

q—a q—a
_ . [(a+c34)c37
dz )e Z\J (q+c36) +(£+L)+
q+C3q q—a  qtcCzy
q nq q—n;
(q+c34)c37 q+cg
(a+cz6) — o \/(q+c1) 7
Q+C10
[d11 d14+d12 dig | diz—dy7
q—ny
(Q+C34)C37 _ q+c3
d15 T2 @rese) Z\J(q+C1)CZ]_ (72)
Q+C10

Equation (72) can also be written as:

(q+c34)c37
e (q+c36) a d
w(z, = (d - (371
(2,9) = (@) = (o
_y |@@*c3a)c3y
d e (q+c36) d d
f20NE - Y1, %2 do. +
p)) p + Lty tlda
—z (Q(+C34)C)37
qtc3e
ds dya dy3 doy € _
2+ _ + o ][
q q—n; q-nz q+cCyo q
q+c
e—z (q+C$)C7 dze da7
e
q q—ny
(q+c34)c37
—z 22207 __ |atc3
dyg ][e (@+cse) e ZV(Q+C1)C2] (73)
a+cio q q '

Taking the inverse Laplace transform of Eq.
(73), we have:

w(z,t) = digds(z,t) + [, ps(zt -
p)(ae® + d;ge~ ()P — d, e )dp +
dleat + dze_(c34)p + d21(¢3 (Z, t) —
$2(z,0) + [, ($3(2,) — 2(2,))[(ds +
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dype™P + dyze™P — dy,e(€10)P)]dp —

dys(3(2,) — 1 (2, ) + [, ($3(z,6) —
$1(z,t))[d6e™P + dyye™P —

dzge_(clo)p)]dp, (74)
where:
@3 (Z, t) =
e ZVC7 —
2
Z\/C3_7VC34 €36 t 1 (—caet=2 637—\4;
f fo \/_E ( 4 ) X

11 (21/ (C34 — C36)Wt)dtdW (75)
4.16 Skin Friction

From Eq. (73), the 7 can be calculated in the
following form:
T = kag + (k1o — K3a)t + (ki — k17)e® +

(kay — kzg)e™' + (ka3 — kag)e™* +

(=kas + ksp + kag — kaz)e ™10t — (kpg —

kaz)e™st + (kg — kas)e™". (76)
4.17 Calculation of Velocity with Atangana—
Baleanu

By applying the Laplace transform on Eq.
(14), we have the following form:

azq¥ 9%w(z,q)
(1- y)q”ﬂ/w(z Q) = ( (1—y)qy+y) 072
Mw(z,q) — Ev‘v(z, q) + Mef(q) +
Gri(z,q) + Gm@(z, q). (77)

By using initial and boundary condition, the
solution of Eq. (77) is given by:

w(z,q) =
_, [(@¥+c34)c37
Le z (qY+c3g)ay
q-a
(q¥+c34)c37
M g (qV+C36)a2 +
(q¥+c34)(q—a)cs3
Me(q¥+cq)
(q¥+c34)(q—a)C33
[ Gr(qY+cy)?
c7¢35(qY +¢36)(qY+Cg)—C33(qY+¢34)(q +¢1)
(q¥ +c34)c37
M] % [e_le (@7 +cze)az —
q(q¥+cq10)
_, [.aV+cs
et (qV+C1)C7] +
[ (qy+cl)2 ]
€2¢35(qY +¢36)(qY+03)—C33(qY +¢34)(qY +¢1)
(q¥+c34)c37
y (q” +€34)€37
[G_m CoGr(q¥+cs) +C3)][e (q¥+c36)az —
q q(q"+c10)
q¥+c3

e N@+en?], (78)

1

1z

After simplifying and using partial fraction
method on Eq. (78) we find:
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(g +c34)c37

1 q” €1
w(z, = —e (q¥+c36) — (=
(zq) = q-a (a-a) (q”
_. |@¥+c3a)c37 v
£2 e (a¥+c36) +q_(e_1
q¥—c34 (q-a) ~q¥
e, q¥+cq e3 ey
Y— ) [ 2 ( Y— Y— )
q"—C34 q qr—-ny q¥—-n,
qy+cl( €s €6
qa q"-n;  q¥-n,
(q¥+c34)c37 _Z qy+Csc
(q¥ +c36) (q¥+c1) 7] +
qy+010
qy+01[ €g €10
q "q¥-nz qV n,  q'-ng qV n,
(qy+C34)C37 q¥+c3 2
(q¥ +c36) (q¥+c1) 79
qy+010 ( )

Above Eq. can also be written as:

 |(@+c3a)cs7
(1- el)qy e (q¥ +c36)

w(z,q) ==~ p -

e.qV _y [(@+csa)cay
Le (qV+C36) +
(q-a)(q"+c34)

exq? €1 [((qy+cl)e3

+
(q;a)(qy+C34) (q-a) , q?
+cp)e 1 +cy)e
(q 1) 5) + ((q 21) 4 +
q qv-ny q
(qy+cl)e6) 1 qy+c1( €13 €14 +
q q¥—n; q q¥-nz  q¥-ny
_. |@¥+c34)c37
€15 )]e z qV+c36) — [((qy+61)€3+
q¥+cq0 q?
(qy+cl)es) 1 ((qy+cl)e4+
q q¥-ny q?
(qy+cl)e6) 1 (qy+cl)e7( 1 )
q q¥-n; q q¥+c1o
qy+C8
e 2@V e €7 qy+c1[ €13 €14
q "q¥-nz  q¥-ny
e _y |43
_f12 V4cp)C2
e (q 1 80
qy+010] (80)

Taking the inverse Laplace transform of Eq.
(80), we have:
w(z,t) =
t
Jo [(A = e))(=p"Ep1—y (ap))Ps(z,t —
p) — e2(—p"E1,1-y (ap))de(z,t —p)]dp +
t
1e® +ey [, (=t —p) Ergy (a(t -
t
p))gspdp + [ [(esgap +
e4gsp)P7(z,t —p) + (e294P + €69sp) X
¢s(z,t —p) + e139spdo(z,t —p) +
eugquﬁlot(z. t—p)+ e1sgspPr1(z,t —
p)ldp — [, [(e394p + esgsp)P12(z,t —
p) + (€194P + €69sp)P13(2,t —p) +
e79sPP14(z,t —p)ldp —

—Dp) + €1495PP16(2, t —
p)ldp, (81)

t
J, le13gspdis(z.t
p) — €1295PP17(2,t —

where:

¢s(z,t) =
fO [e_z C37 _
e o [t 1
I (2\/ (C34 - C36)Wt) X
dtdw]t=1(0, -y, —zt ")dz, (82)
¢6 (Z, t) =
f0°° [8—034te— c37
Z@m'r ft ec3at e (C36t
I (24 (€34 — C36)Wt) X

dtdw]t=1(0, —y, —zt")dz, (83)
¢7(Z! t) =

f0°° [enlte—z C37

Z\/03_7\/C34 Cssf ft e Mt

11(2Jm) x

dtdw]t=1(0, -y, —zt ")dz, (84)
$g(z,t) =

f0°° [em2te=2VCs7 —

Z\/03_7\/C34 Cssf ft e M2t ( 5361;_737_‘4,) %

11(2Jm) x

dtdw]t~'9 (0, -y, —zt ¥)dz, (85)
$o(z,t) =

f0°° [en3te—z C37

Z\/03_7\/C34 Cssf ft e~ 3t

11(2Jm) x

dtdw]t=1(0, -y, —zt ")dz, (86)
¢10(Z! t) =

f0°° [en4te—z C37 _

Z\/03_7\/C34 Cssf ft e nat ( 5361;_737_‘4,) %

11(2Jm) x

dtdw]t=1(0, -y, —zt ")dz, (87)
$11(z,t) =

f0°° [e—clote—z C37

Z@mf ft eC1o

11(2Jm) x

dtdw]t=1(0, -y, —zt ")dz, (88)
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$12(2,t) =

f0°° [enlte—z c; _

Z\/EJCg le ft e~mat ( clt——— )><

A (2,/(c8 - cl)wt) X

dtdw]t =" (0, —y, =zt ¥)dz, (89)
$13 (OZO' t) =

fy lemteVe —

Z\/EJCg le ft e ma2t ( clt——— )><

I (2,/(c8 — cl)wt) X

dtdw]t™ (0, —y, —zt V)dz, (90)

h1a(z,t) =

fO [e—clote zZ\Ccy _

Z\/a\/cs le ft eclot ( C1t———W) %

I (2\/ (Cs - Cl)Wt) X

dtdw]t=1(0, -y, —zt ")dz, 1)

$15(2,t) =
f0°° [en3t —z\c5 _

z\@\/@ le f e M3t (—C1t—%—w) %
11(2\/ (C3 - Cl)Wt) X
dtdw]t=1(0, -y, —zt ")dz, (92)

h16(2,t) =
f0°° [en4t —z\c5 _

Z@Ws e pren e cat-B2w)

11(2\/ (C3 - Cl)Wt) X

dtdw]t=1(0, -y, —zt ")dz, (93)
P17(z,t) =

f0°° [e—clote—z Cy _

z\@\/@ le ft eclot ( C1t———W) %
11(2\/ (C3 - Cl)Wt) X

dtdw]t=1(0, -y, —zt ")dz, (94)
93(@) =" ' Ey.y (—c3ap"), (95)
pl=Y
9a(p) = F(z—y) c1p, (96)
—Y
9s(P) = 5, +ap. 97)
4.18 Skin Friction

The expression for T can be calculated from
Eq. (80) and is given by:

‘[ =
L(1—eDe® —e, [ Ly(t—
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P)(=p" Eva—y (ap))dp + [, [l2(e394(p) +
e49s(0))L2(t —p) + l3(esg4(p) +
e69s(0))L3(t —p) + laei39s(p)La(t —

p) + lse14gs(p)Ls(t — p) +

le1sgs(P)Le(t — p)ldp — [, [L(esg4(p) +
esgs(P))L2(t —p) + lg(esga(p) +
ecgs(@))L3(t —p) + loe;gs(p)Le(t —

p)dp — [ [loersla(t — p) + lLiyersLs(t
p) — lize12Le(t — p)]gs(p)dp, (98)
where:

1

Li(®) = JI (¢ = P)2 By % (—caa(t —

1

PY P By (~csop” ), (99)
Ly(t) = tY7E,,, (nqtY), (100)
Ly(t) = t"71E,,, (nyt?), (101)
Ly(t) = t"71E,,, (n3t?), (102)
Ls(t) = t"71E,,,, (ngt?), (103)
Le(t) = tY71E,,,, (—cyot?). (104)

5. Results and Discussion

In this section, we studied the physical
aspects of incompressible, unsteady free
convection flow of second-grade fluid with
variable temperature through a vertical plate in
the presence of porosity. Figure 1 represents how
the velocity profiles increase with increasing the
value of Gr. It is observed that an increase in the
values of Gr enhances the thermal effect of
buoyancy forces, resulting in a stronger
temperature gradient near the plate and
consequently an increase in fluid motion. Figure
2 highlights that the velocity profile increases as
the value of Gm increases. This effect is evident
from the figure, as increasing values of Gm
strengthen the concentration effect of buoyancy
forces. This, in turn, leads to an increased
concentration gradient near the plate and
subsequently enhances fluid motion. The effects
of the Duffour parameter Du on velocity profiles
are shown in Fig. 3. It is clear from this figure
that fluid velocity increases as the value of Du
increases. The reason behind this is that the rate
of mass diffusion increases by an increasing
value of Du, which decreases the fluid viscosity,
and hence the velocity of a fluid is increased.
Figure 4 depicts the effect of porosity on
velocity fields. It is noted from this figure that
the velocity of the fluid increases with increasing
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values of K. Physically, it happens because the
resistivity of porous medium is higher for lower
values of K which decreases the flow regime.
The effect of the magnetic parameter M on the
velocity profile is plotted in Fig. 5. Physically,
this phenomenon is attributed to the fact that as
the value of M increases, it results in a higher
resistive force, such as drag or the Lorentz force,
which in turn decreases the fluid motion. Figure
6 shows the impact of Pr on the velocity field. It
is seen that the velocity of fluid falls down as the
value of Pr goes up. Figure 7 illustrates that the
velocity of fluid decreases with an increase in Q
values. Physically, temperature decreases as the
values of Q increase, which decays the motion of
fluid. Figure 8 shows the effect of R on velocity
profiles. The effect of Sc on velocity profiles is
plotted in Figure 9, revealing that fluid velocity
increases as Sc decreases. This phenomenon can
be attributed to the decrease in Sc, which
corresponds to an increase in molecular
diffusivity. This, in turn, leads to greater
concentration and boundary layer thickness,
thereby enhancing the fluid motion. Next,

10, T

Figure 10 proves that the motion of the fluid
decreases as the second-grade parameter a5
increases. Physically, it is true because the
boundary layer thickness decays by increasing
the values of a,. The impact of y on velocity
profiles is shown in Fig. 11. One can observe
that as the values of y increase, the velocity
profiles also increase. This phenomenon can be
attributed to the fact that higher y values result in
the expansion of the thermal boundary layer and
momentum. Consequently, this expansion leads
to an overall increase in fluid velocity. Figure 12
shows the comparison of the present work with
Kumaresan et al. [30] by taking a, = 0, K = oo,
Figure 13 illustrates how our results relate to
those obtained by Kumaresan ef al. [30] We set
y =1, a, = 0,K = o and found the results in
good agreement. Figure 14 shows the
comparison of the present work with Rajesh [31]
by taking Du=a, =Q =R =0. Figure 15
shows the validation of the present work with
Rajesh [31] by taking y - 1, Du=a, =Q =
R = 0. Again, the results are in good agreement.

T
Caputo-Fabrizo Gr=8
+— Caputo Gr=8
#—# Atangana-Baleanu Gr=8
#—& Caputo-Fabrizo Gr=4
&= Caputo Gr=4
#—# Atangana-Baleanu Gr=4

w(z,t)

Caputo-Fabrizo Gr=8
4—¢ Caputo Gr=8
&% Atangana-Baleanu Gr=8
& Caputo-Fabrizo Gr=4
e~ Caputo Gr=4
“— Atangana-Baleanu Gr=4 | |

w(z,t)

FIG. 1. Velocity profile against z due to Gr where the values of other parameters are Gm = 4,M = 0.2, Du =
0.2,t =0.35K =6,y =050 =5.55Sc=14,Pr=20,R=25a, =04

14 T

T
Caputo-Fabrizo Gm=20
+— Caputo Gm=20
#—& Atangana-Baleanu Gm=20
&—& Caputo-Fabrizo Gm=2
e~ Caputo Gm=2
A Atangana-Baleanu Gm=2

w(z,t)

0

0

[

6

w(z,t)

14 T

Caputo-Fabrizo Gm=20
4—¢ Caputo Gm=20
#—#& Atangana-Baleanu Gm=20
& Caputo-Fabrizo Gm=2
&= Caputo Gm=2
A Atangana-Baleanu Gm=2

i

0

(=]

z 7
FIG. 2. Velocity profile against z due to Gm where the values of other parameters are Gr = 10,M = 0.2,Du =
0.2,t =0.35K =6,y =050 =5.55Sc=14,Pr=20,R=25a, =04
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T T
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&—& Caputo-Fabrizo Du=0.3 &4 Caputo-Fabrizo Du=0.3
&= Caputo Du=0.3 e~ Caputo Du=0.3

~—t AtanganaBaleanu Du=0.3 #— AtanganaBaleanu Du=0.3
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w(z,t)
w(z,t)
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z

z
FIG. 3. Velocity profile against z due to Du where the values of other parameters are Gr = 10,M = 0.2,Gm =
4,t=0.35K=6,y=05_Sc=14Pr=20R=250a, =04.

10

10

T
= Caputo-Fabrizo K=2
4— Caputo K=2
#—& Atangana-Baleanu K=2 |
& Caputo-Fabrizo K=0.5 8
&= Caputo K=0.5
A Atangana-Baleanu K=0.5

= Caputo-Fabrizo K=2
e—¢ Caputo K=2
#—& Atangana-Baleanu K=2 |
&k Caputo-Fabrizo K=0.5
e—= Caputo K=0.5
~—¢ Atangana-Baleanu K=0.5 | |

w(z,t)
w(z,t)

(=)

(=]

0 2 6 o0

(-]
(]
A

6

z
FIG. 4. Velocity profile against z due to K where the values of other parameters are Gr = 10,M = 0.2, Du =
0.2,t =0.35G6m =4,y =0.5,5c =14,Pr=20,R =25a, =0.4.
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FIG. 5. Velocity profile against z due to M where the values of other parameters are Gm = 4,Gr = 10,Du =
0.2,t =035K=6,y=0.5,Q =5.5,5c=14,Pr=2.0,R=25,a, =04.
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6. Velocity profile against z due to Pr where the values of other parameters are Gr = 10,M = 0.2, Du =
0.2,t=035K =6,y =050 =55,Sc=14,6m=4R =2.5,a, =0.4.
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FIG. 7. Velocity profile against z due to Q where the values of other parameters are Gm = 4,M = 0.2, Du =

FIG.

0.2,t = 035K =6,y = 0.5,6r = 10,Sc = 1.4,a = 0.25,Pr = 2.0,R = 2.5,a, = 0.4.
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8. Velocity profile against z due to R where the values of other parameters are Gr = 10,M = 0.2, Du =
0.2,t=035K=6,y=05Gm=4,5c=14Pr=2.0,0Q=55a, =04
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FIG. 9. Velocity profile against z due to Sc where the values of other parameters are Gm = 4,M = 0.2, Du =
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FIG. 10. Velocity profile against z due to a, where the values of other parameters are Gr = 10,M = 0.2, Du =
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FIG. 11. Velocity profile against z due to y where the values of other parameters are Gm = 4,M = 0.2, Du =
0.2,t =0.35K =6,6r =10,Sc = 1.4,Pr = 6.5,R =2.5,a, = 0.4.
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6. Conclusion

In this model, the MHD free convection flow
of second-grade fluid through a plate with
porous media, in the presence of the Duffour
effect, thermal radiation, and chemical reactions
is considered. The magnetic field is fixed
relative to fluid and plate. An exact solution is
performed to evaluate the Dufour effect on the
magnetohydrodynamics flow of fractional
second-grade fluid through a plate. The
concentration, temperature, and velocity profiles
are obtained and plotted graphically.

Here are the main points of the present work:

Velocity is higher for Caputo—Fabrizio (CF)
than for Caputo (C).

Velocity is higher for Caputo (C) than for
Atangana—Baleanu.

Higher values of Gr, Gm, Df, and K increase
the velocity of a fluid.

Higher values of M, Pr, and Sc reduce the
fluid velocity.

Velocity profiles are higher if the magnetic
field is fixed relative to a plate.

Velocity profiles are lower if the magnetic
field is fixed relative to the fluid.

Velocity field is an increasing function of the
fractional parameter y.
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