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Abstract: The objective of this model is to examine the Dufour effect on unsteady free 
convection second-grade fluid flow past an accelerated moving plate subjected to the 
magnetic field through a porous medium. The thermal radiation and chemical reactions are 
also taken into account. The constitutive governing equations of the model with all levied 
initial and boundary conditions are written in non-dimensional form. The non-dimensional 
equations that govern the flow model are transformed into a time-fractional model using 
the Caputo, Caputo–Fabrizio, and Atangana–Baleanu time-fractional derivatives. The 
Laplace transform technique is applied to the differential equations of the flow model to 
obtain the exact solution for concentration, temperature, and velocity fields. The expression 
for the Sherwood number, the Nusselt number, and skin friction are also derived 
analytically. The effects of diffusion-thermo, chemical reactions, second-grade 
parameterfractional parameter (ߛ), porosity, magnetic parameter, heat 
absorption/generation, and thermal radiation on velocity profiles are studied through 
various figures. It is observed that the velocity profiles for Caputo–Fabrizio fractional 
derivatives are higher as compared to Caputo and Atangana–Baleanu fractional derivatives. 
It is also seen that for the value of fractional parameter ߛ → 1, the velocity profiles 
obtained via Caputo, Caputo–Fabrizo, and Atangana–Baleanu derivatives are identical. 

Keywords: Second-grade fluid, Free convection, Chemical reaction, Diffusion thermo, 
Heat generation, Caputo, Caputo–Fabrizio, Atangana–Baleanu fractional derivative. 

 
 

1. Introduction 
Non-Newtonian fluids have important 

applications in engineering, physics, and applied 
mathematics due to their diverse importance 
across various domains. Their relevance spans a 
wide range of areas, such as the movement of 
biological fluids in food processing, the 
performance of lubricants, and processes within 
the field of plastic manufacturing. Here are some 
common examples of non-Newtonian fluids: 
toothpaste, melted butter, ketchup, paint, starch 
suspensions, gels, shampoo, blood, custard, 
colloids, and corn starch. The nonlinear 

equations of non-Newtonian fluids can be solved 
either analytically or numerically. Pakzad et al. 
[1] have discussed the non-Newtonian fluids 
with electrical resistance tomography. 

Some models of second-grade fluids are 
industrial oils, slurry flows, and dilute polymer 
solutions with different geometry and boundary 
conditions. The solution of unsteady second-
grade fluid through a flat plate with the help of 
Fourier sine transforms has been discussed by C. 
Fetecau et al. [2]. A new technique of fractional 
order known as Caputo-Fabrizio (CF) derivative 
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has been proposed by Caputo and Fabrizio [3]. 
Ramzan et al. [4] have obtained the analytical 
solution of free convection flow of 
magnetohydrodynamic (MHD) Brinkmann fluid 
with heat transfer through a porous medium. 
They considered the problem under specific 
initial and boundary conditions. To solve the 
governing equation, they employed the Laplace 
transform technique. 

Khan and Shah [5] have obtained the 
analytical solution for second-grade fluid with 
heat transfer in the presence of porosity through 
a vertical plate by using the Caputo-Fabrizio 
(CF) derivative. However, the non-singular 
Kernel in the CF derivative was non-local. To 
overcome this issue of non-singularity of Kernel, 
a new function has been introduced by Atangana 
and Baleanu [6, 7]. Atangana and Koca [8] have 
applied the fractional order derivative of 
Atangana–Baleanu (AB) to a nonlinear system. 
The solution of Kirchhoff’s circuit with AB 
derivative of fractional order has been applied by 
Alkahtani [9]. Algahtani [10] has analyzed the 
comparison of AB and CF derivatives in a real-
world problem. 

Khan et al. [11] have discussed the solution 
of magnetohydrodynamics flow of viscous fluid 
through a plate with thermal radiation and 
chemical reaction in the presence of a porous 
medium. MHD flow of viscous fluid in liquid 
metal with heat transfer has been studied by 
Hartmann [12]. The effect of heat transfer on 
solar cookers has been analyzed by Murty et al. 
[13]. The design of the solar collector system has 
been proposed by Raja et al. [14]. The influence 
of stagnation point on the MHD flow of Carreau 
fluid through a porous sheet has been 
investigated by Akbar et al. [15]. Sheikholeslami 
et al. [16] have discussed the effect of the 
magnetic field and heat transfer through a 
sinusoidal wall. 

The effect of heat transfer on various fluid 
flows holds paramount importance within the 
realm of space technology. The mathematical 
model for the thermal radiation effect on Casson  
nanofluid flow through a plate with hybrid 
fractional derivative has been suggested by 
Wang et al. [17]. Nadeem et al. [18] have 
investigated the three-dimensional flow of the 
MHD fluid through a porous sheet. Abbasi et al. 
[19] have studied the solution of heat generation/ 
absorption of the convection flow of nanofluid. 
Ramzan et al. [20] have obtained the solution of 

a Mhd flow of Casson fluid with double 
diffusion and heat generation/absorption through 
a porous media. Sengupta and Ahmed [21] have 
analyzed the effect of first-order chemical 
reaction and thermo-diffusion on the convection 
flow of MHD fluid through a plate. 

The effect of slip parameters on the unsteady 
free convection flow of magnetohydrodynamics 
fluid with heat and mass transfer in the presence 
of porosity through a plate has been studied by 
Fetecau et al. [22]. Mass and heat transfer find 
substantial applications in various fields, 
including exothermic chemical reactors, food 
processing, smelting, polymer production, and 
the manufacturing of glassware. The effect of 
diffusion-thermo on Jeffrey fluid in the presence 
of porosity through a plate has been studied by 
Shafique et al. [23]. 

Ramzan et al. [24] have analyzed the Mhd 
flow of Maxwell fluid in the presence of porous 
media through an inclined plate. The exact 
solution of nanofluids through a porous media 
has been studied by Khalid et al. [25]. Seth et al. 
[26] have discussed the convection flow of 
magnetohydrodynamics fluid through a vertical 
plate with chemical reaction and heat 
generation/absorption. The effect of mass and 
heat transfer with first-order chemical reaction 
through a porous plate has been studied by Seth 
et al. [27]. Hayat et al. [28] have discussed the 
thermal radiation effect of the convection flow. 
Samiulhaq et al. [29] have dealt with the MHD 
flow of second-grade fluid through a plate in the 
presence of porous media. Kumaresan et al. [30] 
have analyzed the exact solution of the Duffour 
effect on the convection flow of MHD fluid 
through a vertical plate. 

In this article, the model of free convection 
flow of second-grade fluid through a plate with 
the Duffour effect in the presence of porous 
media is studied. Additionally, the effect of 
thermal radiation and chemical reactions is taken 
into account. The exact solution of 
dimensionless differential equations with initial 
and boundary conditions is obtained via the 
Laplace transform technique. The results of the 
concentration, temperature, and velocity fields 
are obtained and discussed graphically. The 
comparison among Caputo, AB, and CF 
fractional derivatives is also discussed. 

 



Analytical Solution of Diffusion Thermo Effect on MHD Second Grade Fluid Flow with Heat Generation and Chemical 
Reaction through an Accelerated Vertical Plate 

 343

2. Mathematical Formulation of the 
Problem 

Consider unsteady free convection flow of 
second-grade fluid with variable temperature in 
the presence of a porous medium through a 
vertical plate. A fluid flows vertically upward in 
 .axis is perpendicular to it-ݖ̇ direction and the ݔ
Initially, at time ̇ݐ ≤ 0 both the fluid and plate 
are at rest at temperature ܶ̇ஶ and concentration 
 ஶ throughout the entire duration. At timeܥ̇
ݐ̇ = 0ା, the plate begins to accelerate in the ̇ݖ̇ݔ 
plane with velocity ݁ݑ௧̇ . The concentration 
level near the plate rises to ̇ܥ௪ and the 
temperature of the plate rises linearly with ̇ݐ. A 
transverse magnetic field of strength ̇ߚ (fixed 
relative to fluid and plate) is applied in the 
normal direction. Due to the very small value of 
the Reynolds number, the value of the induced 
magnetic field is negligible. In the light of above 
assumption, governing equation of an 
incompressible, viscous, free convection flow of 
second-grade fluid with thermal diffusion, as 
well as heat and mass transfer, immersed in a 
porous medium through a vertical plate are given 
by: 
డ௨బ(௭̇,௧̇)

డ௧̇
= ߥ డమ௨బ(௭̇,௧̇)

డ௭̇మ + ఈభ
ఘ

డయ௨బ(௭̇,௧̇)
డ௭̇మడ௧̇

−
ఙఉబ

మ

ఘ
,ݖ̇)ݑ (ݐ̇ − ఔథ

భ
,ݖ̇)ݑ (ݐ̇ + ఙఉబ

మ

ఘ
(ݐ̇)݂߳ +

̇ܶ)்̇ߚ݃ − ܶ̇ஶ) + ܥ̇)̇ߚ݃ −  ஶ),         (1)ܥ̇
డ்̇(௭̇,௧̇)

డ௧
= మ

ఘ

డమ்̇(௭̇,௧̇)
డ௭̇మ − ோబ

ఘ
(ܶ̇ − ܶ̇ஶ) +

ఘ̇
ೞ̇

డమ̇(௭̇,௧̇)
డ௭̇మ ,           (2) 

డ̇(௭̇,௧̇)
డ௧̇

= ܦ
డమ̇(௭̇,௧̇)

డ௭̇మ − ܳ(̇ܥ −  ஶ).         (3)ܥ̇

The initial and boundary conditions of the 
flow model are: 

,ݖ̇)ݑ 0) = 0, ,ݖ̇)̇ܶ 0) = ܶ̇ஶ, ,ݖ̇)ܥ̇ 0) = ,ஶ̇ܥ ݖ̇ ≥ 0, 
(4) 

,(0ݑ (ݐ̇ = ௧̇݁ݑ , ܶ̇(0, (ݐ̇ = ܶ̇௪ , ,0)ܥ̇ (ݐ̇ = ௪ܥ̇ , ݐ̇ ≥
0,             (5) 

,ݖ̇)ݑ (ݐ̇ → 0, ,ݖ̇)̇ܶ (ݐ̇ → 0, ,ݖ̇)ܥ̇ (ݐ̇ → 0, ݐ̇ > 0.  (6) 

In order to write the flow model in 
dimensionless form, we introduced the following 
non-dimensional parameters and variables: 

∗ݓ = ௨బ
௨

, ∗ݖ = ௭̇௨
ఔ

, ∗ݐ = ௧̇௨మ

ఔ
, ∗ߴ = ்̇ି்̇ಮ

்̇ೢ ି்̇ಮ
, ݎܲ =

ఓ

మ
, ∗ݎܩ = ఔఉ̇(்̇ೢ ି்̇ಮ)

௨య , 

߸∗ = ̇ିಮ̇
̇ೢ ିಮ̇

, ∗݉ܩ = ఔఉ̇(̇ೢ ିಮ̇)
௨య , ܯ =

ఉబ
మఔఙ

ఘ௨మ , ݑܦ = ̇(̇̇ೢ ିಮ̇)
ೞఔ(்̇ೢ ି்̇ಮ)

,  

ଵ


= ఔథ
భ௨మ , ܳ = ொబఔ

௨మ , ܴ = ோబఔమ

మ௨మ , ܵܿ = ఔ
బ

.         (7) 

Using Eq. (7) in Eqs. (1)-(6), gives the 
following governing Eqs. (dropping stars): 
డ௪(௭,௧)

డ௧
= (1 + ଶߙ

డ
డ௧

) డమ௪(௭,௧)
డ௭మ − ܯ) +

ଵ


,ݖ)ݓ( (ݐ + (ݐ)݂߳ܯ + ,ݖ)ߴݎܩ (ݐ +
,ݖ)߸݉ܩ  (8)            ,(ݐ

డణ(௭,௧)
డ௧

= ଵ


డమణ(௭,௧)
డ௭మ − ோ


,ݖ)ߴ (ݐ + ݑܦ డమధ(௭,௧)

డ௭మ ,  
(9) 

డధ(௭,௧)
డ௧

= ଵ
ௌ

డమధ(௭,௧)
డ௭మ − ,ݖ)߸ܳ  (10)        ,(ݐ

,ݖ)ݓ 0) = 0, ,ݖ)ߴ 0) = 0, ,ݖ)߸ 0) = 0, ݖ ≥ 0,  
(11) 

,0)ݓ (ݐ = ݁௧ , ,0)ߴ (ݐ = ,ݐ ߸(0, (ݐ = 1, ݐ ≥ 0,  
(12) 

,∞)ݓ (ݐ → 0, ,∞)ߴ (ݐ → 0, ߸(∞, (ݐ → 0, ݐ > 0.  
(13) 

where ݎܩ, ,ܯ ,ܭ ,ݎܲ ,ݑܦ ܵܿ, ,݉ܩ ܳ, ܴ,  ݓ and ,ߛ
represent the Grashof number for heat transfer, 
the magnetic field, non-dimensional 
permeability, the Prandtl number, the Duffour 
effect, the Schmidt number, the Grashof number 
for mass transfer, heat source, chemical reaction, 
fraction parameter, and velocity of the fluid, 
respectively.  

3. Generalization of Local Model 
The local model defined in Eqs. (8) - (13) is  

generalized by converting ordinary derivative 
with Atangana–Baleanu, Caputo–Fabrizio, and 
Caputo fractional derivative of order ߛ as: 

௧ܦ
ఊݖ)ݓ, (ݐ = (1 + ௧ܦଶߙ

ఊ) డమ௪(௭,௧)
డ௭మ − ,ݖ)ݓܯ (ݐ −

ଵ


,ݖ)ݓ (ݐ + (ݐ)݂߳ܯ + ,ݖ)ߴݎܩ (ݐ +
,ݖ)߸݉ܩ  (14)          ,(ݐ

௧ܦ
ఊݖ)ߴ, (ݐ = ଵ


డమణ(௭,௧)

డ௭మ − ோ


,ݖ)ߴ (ݐ +

ݑܦ డమధ(௭,௧)
డ௭మ ,          (15) 
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௧ܦ
ఊ߸(ݖ, (ݐ = ଵ

ௌ
డమధ(௭,௧)

డ௭మ − ,ݖ)߸ܴ  (16)       ,(ݐ

,ݖ)ݓ 0) = 0, ,ݖ)ߴ 0) = 0, ,ݖ)߸ 0) = 0, ݖ ≥ 0,  
(17) 

,0)ݓ (ݐ = ݁௧ , ,0)ߴ (ݐ = ,ݐ ߸(0, (ݐ = 1, ݐ ≥ 0,  
(18) 

,∞)ݓ (ݐ → 0, ,∞)ߴ (ݐ → 0, ߸(∞, (ݐ → 0, ݐ > 0.  
(19) 

where ܦ௧
ఊݖ)ݓ, -represents the Caputo time (ݐ

fractional derivative of ݖ)ݓ,  :as (ݐ

௧ܦ
ఊݖ)ݓ, (ݐ =

ቐ
ଵ

(ଵିఊ) ∫  ௧


ଵ
(௧ି௦)ം

డ௪(௭,௦)
డ௦

,ݏ݀  0 ≤ ߛ <  1; 
డ௪(௭,௧)

డ௧
, ߛ  = 1.

  

(20) 
Now Caputo–Fabrizio fractional derivative is 

defined as: 

௧ܦ
ఊݖ)ݓ, (ݐ = ଵ

(ଵିఊ) ∫  ௧
 ݁

షം(షೞ)
భషം డ௪(௭,௦)

డ௦
,ݏ݀ 0 ≤ ߛ ≤

 1,            (21) 

Whereas Atangana–Baleanu time-fractional 
derivative is given as:  

௧ܦ
ఊݖ)ݓ, (ݐ = ெ(ఊ)

(ଵିఊ) ∫  ௧
 ߛ−)ఊܧ (௧ି௦)ം

ଵିఊ
) డ௪(௭,௦)

డ௦
  .ݏ݀

(22) 

4. Solution of Problem 
Now we solve the flow model by applying 

the Laplace transform technique. We can solve 
Eq. (16) for the concentration profile, Eq. (15) 
for the temperature profile, and Eq. (14) for the 
velocity profile. 

4.1 Calculation of Concentration with Caputo 

By taking the Laplace transform of Eq. (16), 
we obtain:  

,ݖ)ఊ߸ഥݍܿܵ (ݍ = డమధഥ (௭,)
డ௭మ − ܵܿܳ߸ഥ(ݖ,  (23)       ,(ݍ

Boundary conditions that satisfy Eq. (23), 
are:  

߸ഥ(0, (ݍ = ଵ


, ߸ഥ(ݖ, (ݍ → 0, ݖ → ∞.       (24) 

By using Eq. (24), the solution of partial 
differential Eq. (23) is given below:  

߸ഥ(ݖ, (ݍ = ଵ


݁ି௭ඥௌ(ംାொ).        (25) 

The suitable form of Eq. (25) is:  

߸ഥ(ݖ, (ݍ = [ംାொ


] ష√ೄඥ(ംశೂ)

ംାொ
.        (26) 

Taking the inverse Laplace transform of Eq. 
(26), we obtain the solution in following form:  

,ݖ)߸ (ݐ = ∫  ௧
 ,ݖ)ଵܨ ݐ − ]( షം

(ଵିఊ)
+  (27)     ,݀[ܳ

where: 

,ݖ)ଵܨ (ݐ =

∫  ஶ
 ݁ିொ௪݂݁ܿݎ(௭√ௌ

ଶ√௪
,ଵ(0ିݐ( ,ߙ−   .ݓ݀(ఈିݐݓ−

(28) 
4.2 Sherwood Number 

In order to calculate the Sherwood number, 
we use Eq. (26) in the following relation: 

ܵℎ = − డధ
డ௭

|௭ୀ = ଵ{డధഥିܮ−
డ௭

|௭ୀ} =

√ܵܿ ∫  ௧
 ((௧ି)షം

(ଵିఊ)
+ (ܳ

ം
మିଵܧ

ఊ,ംమ

భ
మ   .݀(ఊܳ−)

(29) 
4.3 Calculation of Concentration With 
Caputo–Fabrizio 

By taking the Laplace transform of Eq. (16), 
we obtain: 

ௌ
(ଵିఊ)ାఊ

߸ഥ(ݖ, (ݍ = డమధഥ (௭,)
డ௭మ − ܵܿܳ߸ഥ(ݖ,  (30)   ,(ݍ

The solution of partial differential Eq. (30), 
by using conditions of Eq. (24), is: 

߸ഥ(ݖ, (ݍ = ଵ


݁
ି௭ට(శయ)

(శభ)మ .        (31) 

The inverse Laplace transform of Eq. (31) is:  

,ݖ)߸ (ݐ = ߮ଵ(ݖ,  (32)         ,(ݐ

where: 

߮ଵ(ݖ, (ݐ =
݁ି௭√మ −
௭√మඥయିభ

ଶ√గ ∫  ஶ
 ∫  ௧


ଵ

√௧
݁(ିభ௧ିమమ

రೢ ି௪) ×

ଵ(2ඥ(ܿଷܫ − ܿଵ)(33)        .ݓ݀ݐ݀(ݐݓ 

4.4 Sherwood Number 

The expression for ܵℎ can be calculated from 
Eq. (31) and is given by:  

ܵℎ = ඥభమయ

భ
.          (34) 
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4.5 Calculation of Concentration with 
Atangana–Baleanu 

Applying the Laplace transform on Eq. (16), 
we have the following form: 

ௌം

(ଵିఊ)ംାఊ
߸ഥ(ݖ, (ݍ = డమధഥ (௭,)

డ௭మ − ܵܿܳ߸ഥ(ݖ,  (35) ,(ݍ

By using initial and boundary conditions, the 
solution of partial differential Eq. (35) is  

߸ഥ(ݖ, (ݍ = ଵ


݁
ି௭ට(ംశయ)

(ംశభ)మ .        (36) 

The suitable form of Eq. (36) is: 

߸ഥ(ݖ, (ݍ = ଵ
భషം

ଵ
ം ݁

ି௭√మට(ംశయ)
(ംశభ).       (37) 

The inverse Laplace transform of Eq. (37) is:  

,ݖ)߸ (ݐ = ∫  ௧
 ߶ଵ(ݖ, ݐ − ( షം

(ଵିఊ)
 (38)       ,݀

where:  

߶ଵ(ݖ, (ݐ =
∫  ஶ

 [݁ି௭√మ −
௭√మඥయିభ

ଶ√గ ∫  ஶ
 ∫  ௧


ଵ

√௧
݁(ିభ௧ିమమ

రೢ ି௪) ×

ଵ(2ඥ(ܿଷܫ − ܿଵ)ݓ݀ݐ݀(ݐݓ] ×
,ଵ߰(0ିݐ ,ߛ−  (39)        .ݔ݀(ఊିݐݔ−

4.6 Sherwood Number 
The rate of mass transfer can be calculated 

from Eq. (37) and is given by: 

ܵℎ = ටభయ
మ

.          (40) 

4.7 Calculation of Temperature with Caputo 
Applying the Laplace transform on Eq. (15) 

and by using initial and boundary conditions, we 
have  

,ݖ)ߴఊ̅ݍݎܲ (ݍ = డమణഥ(௭,)
డ௭మ + ݎܲݑܦ డమధഥ (௭,)

డ௭మ −
,ݖ)߸ߴܴ  (41)          ,(ݍ

డణഥ(,)
డ௭

= ଵ
మ , ,ݖ)ߴ̅ (ݍ → 0, ݖ → ∞.       (42) 

By using the condition of Eq. (42) in Eq. 
(41), we have the solution in the following form: 

,ݖ)ߴ̅ (ݍ =
ଵ

మ ݁ି௭ට(ംା ೃ
ುೝ) + ర(ംାொ)

[ംାఱ]
(݁ି௭ට(ംା ೃ

ುೝ) −

݁ି௭ඥௌ(ംାொ)).         (43) 

Equivalently form of Eq. (43) is:  

,ݖ)ߴ̅ (ݍ =

(
(ംା ೃ

ುೝ)

మ +
ర(ംା ೃ

ುೝ)


+

ల(ംା ೃ
ುೝ)

(ംାఱ)
) ష√ುೝට(ംశ ೃ

ುೝ))

ംା ೃ
ುೝ

− (ర(ംାொ)


+

ల(ംାொ)
(ംାఱ)

) ష√ೄඥ(ംశೂ)

ംାொ
.        (44) 

Using the inverse Laplace transform on Eq. 
(44), we have: 

,ݖ)ߴ (ݐ = ∫  ௧
 [ భషം

(ଶିఊ)
+ ோ


+ ܿସ( షം

(ଵିఊ)
+ ோ


) +

ܿ(ܧఊ(−ܿହఊ) + ோ
ఱ

(1 −

,ݖ)ଶܨ[(((ఊହܿ−)ఊܧ ݐ − ݀( − ∫  ௧
 ,ݖ)ଵܨ ݐ −

)ସܿ]( షം

(ଵିఊ)
+ ܳ) + ܿ(ܧఊ(−ܿହఊ) +

ொ
ఱ

(1 −  (45)        ,݀[(((ఊହܿ−)ఊܧ

where:  

,ݖ)ଶܨ (ݐ =

∫  ஶ
 ݁ିೃೢ

ುೝ ௭√)݂ܿݎ݁
ଶ√௪

,ଵ(0ିݐ( ,ߙ−   .ݓ݀(ఈିݐݓ−
(46) 

4.8 Nusselt Number 

From Eq. (44), the ܰݑ can be calculated in 
the following way:  

ݑܰ = − డణ
డ௭

|௭ୀ = ଵ{డణഥିܮ−

డ௭
|௭ୀ} =

ݎܲ√ ∫  ௧
 ݐ) − (

ം
మିଵܧ

ఊ,ംమ

భ
మ ((− ோ


ݐ)( −

](ఊ( భషം

(ଶିఊ)
+ ோ


+ ܿସ( షം

(ଵିఊ)
+ ோ


) +

ܿ(ܧఊ(−ܿହఊ) + ோ
ఱ

(1 −

݀[(((ఊହܿ−)ఊܧ − √ܵܿ ∫  ௧
 ݐ) −

(
ം
మିଵܧ

ఊ,ംమ

భ
మ ݐ)ܳ−)) − )ఊ)[ܿସ( షം

(ଵିఊ)
+ ܳ) +

ܿ(ܧఊ(−ܿହఊ) + ொ
ఱ

(1 −   .݀[(((ఊହܿ−)ఊܧ
(47) 

4.9 Calculation of Temperature with Caputo–
Fabrizio 

Using the technique of the Laplace transform 
on Eq. (16), we derive:  


(ଵିఊ)ାఊ

,ݖ)ߴ̅ (ݍ = డమణഥ(௭,)
డ௭మ + ݎܲݑܦ డమధഥ (௭,)

డ௭మ −
ோ


,ݖ)ߴ̅  (48)          .(ݍ
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The solution of partial differential Eq. (48), 
by using conditions of Eq. (42), we have:  

,ݖ)ߴ̅ (ݍ =
ଵ

మ ݁
ି௭ට(శఴ)

(శభ)ళ +

௨(ାయ)మ
[(ାయ)మି(ାఴ)ళ]

(݁
ି௭ට(శఴ)

(శభ)ళ −

݁
ି௭ට(శయ)

(శభ)మ).         (49) 

The suitable form of Eq. (49) is: 

߸ഥ(ݖ, (ݍ = [ଵ


+ ܿଽ + భభ
ାభబ

] 
షට(శఴ)

(శభ)ళ


− [ܿଽ +

భభ
ାభబ

] 
షට(శయ)

(శభ)మ


.         (50) 

Taking the inverse Laplace transform of Eq. 
(50), we obtain: 

,ݖ)߸ (ݐ =
ܿଽ߶ଶ(ݖ, (ݐ + ∫  ௧

 (1 + ܿଵଵ݁ି(భబ))߮ଶ(ݖ, ݐ −
݀( − ܿଽ߶ଵ(ݖ, (ݐ −
 ܿଵଵ ∫  ௧

 ݁ି(భబ)߮ଵ(ݖ, ݐ −  (51)       ,݀(

where: 

߮ଶ(ݖ, (ݐ =
݁ି௭√ళ −
௭√ళඥఴିభ

ଶ√గ ∫  ஶ
 ∫  ௧


ଵ

√௧
݁(ିభ௧ିమళ

రೢ ି௪) ×

଼ܿ)ଵ(2ඥܫ − ܿଵ)(52)        ,ݓ݀ݐ݀(ݐݓ 

4.10 Nusselt Number 

From Eq. (50), the rate of heat transfer ܰݑ 
can be calculated in the same way as in Eq. (47) 
and is given by: 

ݑܰ = ݐ) − 1)݇ଵ + ݇ଶ + ݇ଷ − ݇ହ − ݇ + (݇ସ −
݇)݁ି(భబ௧).          (53) 

4.11 Calculation of Temperature with 
Atangana–Baleanu 

By taking the Laplace transform of Eq. (16), 
we obtain: 

ം

(ଵିఊ)ംାఊ
,ݖ)ߴ̅ (ݍ = డమణഥ(௭,)

డ௭మ + ݎܲݑܦ డమధഥ (௭,)
డ௭మ −

ோ


,ݖ)ߴ̅  (54)          .(ݍ

The solution of partial differential Eq. (54), 
by using conditions of Eq. (42), is:  

,ݖ)ߴ̅ (ݍ =
ଵ

మ ݁
ି௭ට(ംశఴ)

(ംశభ)ళ +

௨(ംାయ)మ
[(ംାయ)మି(ംାఴ)ళ]

(݁
ି௭ට(ംశఴ)

(ംశభ)ళ −

݁
ି௭ට(ംశయ)

(ംశభ)మ).         (55) 

Eq. (55) can also be written as:  

,ݖ)ߴ̅ (ݍ = [ം

మ + వം


+ భభം

(ംାభబ)
] 

షඨ(ംశఴ)
(ംశభ)

ళ

ം −

[వം


+ భభം

(ംାభబ)
] 

షඨ(ംశయ)
(ംశభ)

మ

ം .                     (56) 

Taking the inverse Laplace transform of Eq. 
(56), we obtain:  

,ݖ)ߴ (ݐ = ∫  ௧
 ߶ଶ(ݕ, ݐ − )( భషം

(ଶିఊ)
+ వషം

(ଵିఊ)
+

ܿଵଵܧఊ(−ܿଵఊ))݀ − ∫  ௧
 ߶ଵ(ݖ, ݐ −

)( వషം

(ଵିఊ)
+ ܿଵଵܧఊ(−ܿଵఊ))݀(57)       , 

where:  

߶ଶ(ݖ, (ݐ =
∫  ஶ

 [݁ି௭√ళ −
௭√ళඥఴିభ

ଶ√గ ∫  ஶ
 ∫  ௧


ଵ

√௧
݁(ିభ௧ିమళ

రೢ ି௪) ×

଼ܿ)ଵ(2ඥܫ − ܿଵ)ݐݓ) ×
,ଵ߰(0ିݐ[ݓ݀ݐ݀ ,ߛ−  (58)       .ݖ݀(ఊିݐݖ−

4.12 Nusselt Number 

From Eq. (56), the ܰݑ can be calculated as:  

ݑܰ = ݇ଵݐ + ݇ଶ + ݇ଷ + ݇ସ(ܧఊ(−ܿଵݐఊ)) − ݇ହ −
݇ − ݇(ܧఊ(−ܿଵݐఊ)).        (59) 

4.13 Calculation of Velocity with Caputo 
By taking the Laplace transform of Eq. (14), 

we find:  

,ݖ)ഥݓఊݍ (ݍ = (1 + (ఊݍଶߙ డమ௪ഥ(௭,)
డ௭మ − ,ݖ)ഥݓܯ (ݍ −

ଵ


,ݖ)ഥݓ (ݍ + (ݐ)݂߳ܯ + ,ݖ)ߴ̅ݎܩ (ݍ +
,ݖ)ഥ߸݉ܩ  (60)          ,(ݍ

Boundary conditions satisfying Eq. (60) are: 

,ഥ(0ݓ (ݍ = ଵ
ି

, ,ݖ)ഥݓ (ݍ → 0, ݖ → ∞.       (61) 

The solution of partial differential Eq. (60), 
by using condition of Eq. (61), is:  
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,ݖ)ഥݓ (ݍ = ଵ
ି

݁ି௭ට ംశಹ
భశഀమം + ெఢ

(ି)(ംାு)
(1 −

݁ି௭ට ംశಹ
భశഀమം) + ( ଵ

మ + ర(ംାொ)
(ംାఱ)

) ×

( ீ
(ଵାఈమം)(ംାோ)ି(ംାு)

)(݁ି௭ට ംశಹ
భశഀమം −

݁ି௭ඥംାோ) + (ீ


− ర(ംାொ)
(ംାఱ)

) ×

( ଵ
ௌ(ଵାఈమം)(ംାொ)ି(ംାு)

)(݁ି௭ට ംశಹ
భశഀమം −

݁ି௭ඥௌ(ംାொ)).         (62) 

Eq. (62) can be written in suitable form as:  

,ݖ)ഥݓ (ݍ = 

ష
ඥഀమ

ඨ ംశಹ
ംశభమ

ം [ ം

ି
+ భయംషమ

(ംିభ)
+ భరംషమ

(ംିమ)
+

(భఱିమబ)ം

(ംାఱ)
+ భలം

(ംିభ)
+ భళം

(ംିమ)
+ (భఴିమభ)ം

(ംିయ)
+

(మబିమమ)ം

(ംିర)
] − ெఋ(

ష
ඥഀమ

ඨ ംశಹ
ംశభమ)

(ି)(ംାு)
+ ெఋ

(ି)(ംାு)
−

[ మయ
మ(ംିభ)

+ మర
మ(ംିమ)

+ మఱ
(ംିభ)

+ మల
(ംିమ)

−

మళ
(ംାఱ)

] 
షටುೝ(ംశ ೃ

ೝ)

(ംା ೃ
ೝ)

− [ మఴିయబ
(ംିయ)

+ మవିయభ
(ംିర)

−

యమ
(ംାఱ)

] షඥೄ(ംశೂ)

(ംାொ)
.       (63) 

Taking the inverse Laplace transform of Eq. 
(63), we have: 

,ݖ)ݓ (ݐ = ∫  ௧
 ߶ଷ(ݖ, ݐ − ଵ,ଵିఊܧఊ−]( (ܽ) +

ܿଵଷܧఊ,ଶ (݉ଵఊ) + ܿଵଷܧఊ ,ଶ (݉ଵఊ) +
(ܿଵହ − ܿଶ)ܧఊ(−ܿହఊ) + ܿଵܧఊ(݉ଵఊ) +
ܿଵܧఊ(݉ଶఊ) + (ܿଵ଼ −  ܿଶଵ)ܧఊ(݉ଷఊ) +
(ܿଶ − ܿଶଶ)ܧఊ(݉ସఊ)]݀ − ߜܯ ∫  ௧

 ߶ସ(ݖ, ݐ −
݀݁( +
ߜܯ  ∫  ௧

 ݁(௧ି)ఊିଵܧఊ ,ఊ ݀(ఊܪ−) −
∫  ௧

 ,ݖ)ଶܨ ݐ − ଶଷܿ]( ଵ݃() + ܿଶସ݃ଶ() +

 
మఱቀଵିாം(భം)ቁ

ିభ
+

మలቀଵିாം(ିమം)ቁ

మ
−

మళቀଵିாം(ିఱം)ቁ

ఱ
݀[ − ∫  ௧

 ,ݖ)ଵܨ ݐ −

(ଵିாം(భം))(మఴିయబ)]( 
ିభ

+
(మవିయభ)(ଵିாം(ିమം))

మ
− యమ(ଵିாം(ିఱം))

ఱ
  ,݀[

(64) 
where: 
߶ଷ(ݖ, (ݐ =

∫  ஶ
 [݁

ି 
ඥഀమ − ௭ඥுିభమ

ଶ√ఈమ√గ
∫  ஶ

 ∫  ௧


ଵ
√௧

݁(ିభమ௧ି మ
రഀమೢି௪) ×

ܪ)ଵ(2ඥܫ − ܿଵଶ)ݓ݀ݐ݀(ݐݓ] ×
,ଵ߰(0ିݐ ,ߛ−  (65)        ,ݔ݀(ఊିݐݔ−

߶ସ(ݖ, (ݐ =

∫  ஶ
 [݁ିு௧݁

ି 
ඥഀమ −

௭ඥுିభమ

ଶ√ఈమ√గ
∫  ஶ

 ∫  ௧


ಹ

√௧
݁(ିభమ௧ି మ

రഀమೢି௪) ×

ܪ)ଵ(2ඥܫ − ܿଵଶ)ݓ݀ݐ݀(ݐݓ] ×
,ଵ߰(0ିݐ ,ߛ−  (66)        ,ݔ݀(ఊିݐݔ−

ଵ݃() = ∫  ௧
 ݐ) − ఊܧఊିଵ( ,ఊ (݉ଵఊ),          (67) 

݃ଶ() = ∫  ௧
 ݐ) − ఊܧఊିଵ( ,ఊ (݉ଶఊ).       (68) 

4.14 Skin Friction 

In order to find the skin friction, we use the 
Eq. (63) in the following relation:  

߬ = − డ௪
డ௭

|௭ୀ = ଵ{డ௪ഥିܮ−
డ௭

|௭ୀ} =
ଵ

ఈమ
∫  ௧

 ݐ)ଵܪ − ݁]( + ܿଵଷ ଵ݃ + ܿଶସ݃ଶ +

(ܿଵହ + ܿଶ) ଵିாം(ିఱം)
ఱ

+ భల(ଵିாം(భം))
ିభ

+
భళ(ଵିாം(మം))

ିమ
+ (ܿଵ଼ − ܿଶଵ) ×

[ଵିாം(యം)
ିయ

] + (ܿଵଽ − ܿଶଶ) ଵିாം(రം)
ିర

݀[ −

ݎܲ ∫  ௧
 ݐ) − (

ം
మିଵܧఊ,ം

మ

భ
మ ((ିோ


ݐ)( − (ఊ(  ×

[ܿଶଷ ଵ݃() + ܿଶସ݃ଶ() + మఱ(ଵିாം(భം))
ିభ

+
మల(ଵିாം(ିమം))

మ
− మళ(ଵିாം(ିఱം))

ఱ
] −

ܵܿ ∫  ௧
 ݐ) − (

ം
మିଵܧఊ ,ം

మ

భ
మ ݐ)ܳ)−) −

ఊ)[(మఴିయబ)(ଵିாം(భം))(
ିభ

+
(మవିయభ)(ଵିாം(ିమം))

మ
− యమ(ଵିாം(ିఱം))

ఱ
].  

(69) 
4.15 Calculation of Velocity with Caputo–
Fabrizio 

By taking the  Laplace transform of Eq. (14), 
we obtain:  


(ଵିఊ)ାఊ

,ݖ)ഥݓ (ݍ = (1 + ఈమ
(ଵିఊ)ାఊ

) డమ௪ഥ(௭,)
డ௭మ −

,ݖ)ഥݓܯ (ݍ − ଵ


,ݖ)ഥݓ (ݍ + (ݍ)݂߳ܯ +
,ݖ)ߴ̅ݎܩ (ݍ + ,ݖ)ഥ߸݉ܩ  (70)        .(ݍ

By using initial and boundary conditions, we 
can solve Eq. (71) as follows: 
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,ݖ)ഥݓ (ݍ =
ଵ

ି
݁

ି௭ට(శయర)యళ
(శయల) −

ெఢ(ାభ)
(ାయర)(ି)యయ

݁
ି௭ට(శయర)యళ

(శయల) +
ெఢ(ାభ)

(ାయర)(ି)యయ
+

[ ீ(ାభ)మ

ళయఱ(ାయల)(ାఴ)ିయయ(ାయర)(ାభ)
][ ଵ

మ +

వ(ାయ)
(ାభబ)

] × [݁
ି௭ට(శయర)యళ

(శయల) − ݁
ି௭ට శఴ

(శభ)ళ] +

[ (ାభ)మ

మయఱ(ାయల)(ାయ)ିయయ(ାయర)(ାభ)
] × [ீ


−

వீ(ାయ)
(ାభబ)

][݁
ି௭ට(శయర)యళ

(శయల) − ݁
ି௭ට శయ

(శభ)మ].  
(71) 

Suitable form of Eq. (71) is:  

,ݖ)ഥݓ (ݍ = ଵ
ି

݁
ି௭ට(శయర)యళ

(శయల) − ( ௗభ
ି

+

ௗమ
ାయర

)݁
ି௭ට(శయర)యళ

(శయల) + ( ௗభ
ି

+ ௗమ
ାయర

) +

[ௗలାௗళ


+ ௗయ
మ + ௗరାௗవ

ିభ
+ ௗఱାௗభబ

ିమ
+

ௗఴ
ାభబ

][݁
ି௭ට(శయర)యళ

(శయల) − ݁
ି௭ට శఴ

(శభ)ళ] +

[ௗభభିௗభర


+ ௗభమିௗభల
ିయ

+ ௗభయିௗభళ
ିర

−

ௗభఱ
ାభబ

][݁
ି௭ට(శయర)యళ

(శయల) − ݁
ି௭ට శయ

(శభ)మ].       (72) 

Equation (72) can also be written as: 

,ݖ)ഥݓ (ݍ = (݀ଵ଼) 
షඨ(శయర)యళ

(శయల)


− ( 

ି
+ ௗభవ

ାయర
−

ௗమబ
ି

) 
షඨ(శయర)యళ

(శయల)


+ ( ௗభ

ି
+ ௗమ

ାయర
) + [݀ଶଵ +

ௗయ
మ + ௗమమ

ିభ
+ ௗమయ

ିమ
− ௗమర

ାభబ
][

షඨ(శయర)యళ
(శయల)


−


షට శఴ

(శభ)ళ


] + [݀ଶହ + ௗమల

ିయ
+ ௗమళ

ିర
+

ௗమఴ
ାభబ

][
షඨ(శయర)యళ

(శయల)


− 

షට శయ
(శభ)మ


].       (73) 

Taking the inverse Laplace transform of Eq. 
(73), we have: 

,ݖ)ݓ (ݐ = ݀ଵ଼߶ଷ(ݖ, (ݐ + ∫  ௧
 ߶ଷ(ݖ, ݐ −

݁ܽ)( + ݀ଵଽ݁ି(యర) − ݀ଶ݁௧)݀ +
݀ଵ݁௧ + ݀ଶ݁ି(యర) + ݀ଶଵ(߶ଷ(ݖ, (ݐ −
߶ଶ(ݖ, ((ݐ + ∫  ௧

 (߶ଷ(ݖ, (ݐ − ߶ଶ(ݖ, ଷ݀)]((ݐ +

݀ଶଶ݁భ + ݀ଶଷ݁మ − ݀ଶସ݁ି(భబ))]݀ −
݀ଶହ(߶ଷ(ݖ, (ݐ − ߶ଵ(ݖ, ((ݐ + ∫  ௧

 (߶ଷ(ݖ, (ݐ −
߶ଵ(ݖ, ଶ݁య݀]((ݐ + ݀ଶ݁ర −
݀ଶ଼݁ି(భబ))]݀(74)          , 

where: 

߮ଷ(ݖ, (ݐ =
݁ି௭ඥయళ −
௭ඥయళඥయరିయల

ଶ√గ ∫  ஶ
 ∫  ௧


ଵ

√௧
݁൬ିయల௧ିమయళ

రೢ ି௪൰ ×

ଵ(2ඥ(ܿଷସܫ  − ܿଷ)(75)        .ݓ݀ݐ݀(ݐݓ 

4.16 Skin Friction 

From Eq. (73), the ߬ can be calculated in the 
following form: 

߬ = ݇ସ଼ + (݇ଵଽ − ݇ଷସ)ݐ + (݇ଵ − ݇ଵ)݁௧ +
(݇ଶଵ − ݇ଷ)݁భ௧ + (݇ଶଷ − ݇ଷ଼)݁మ௧ +
(−݇ଶହ + ݇ଷଶ + ݇ସ − ݇ସ)݁ିభబ௧ − (݇ଶ଼ −
݇ସଷ)݁య௧ + (݇ଷ଼ − ݇ସହ)݁ర௧ .        (76) 

4.17 Calculation of Velocity with Atangana–
Baleanu 

By applying the Laplace transform on Eq. 
(14), we have the following form: 

ം

(ଵିఊ)ംାఊ
,ݖ)ഥݓ (ݍ = ቀ1 + ఈమം

(ଵିఊ)ംାఊ
ቁ డమ௪ഥ(௭,)

డ௭మ −

,ݖ)ഥݓܯ (ݍ − ଵ


,ݖ)ഥݓ (ݍ + (ݍ)݂߳ܯ +
,ݖ)ߴ̅ݎܩ  (ݍ + ,ݖ)ഥ߸݉ܩ  (77)        .(ݍ

By using initial and boundary condition, the 
solution of Eq. (77) is given by:  

,ݖ)ഥݓ (ݍ =
ଵ

ି
݁

ି௭ට(ംశయర)యళ
(ംశయల)ഀమ −

ெఢ(ംାభ)
(ംାయర)(ି)యయ

݁
ି௭ට(ംశయర)యళ

(ംశయల)ഀమ +

 ெఢ(ംାభ)
(ംାయర)(ି)యయ

+

[ ீ(ംାభ)మ

ళయఱ(ംାయల)(ംାఴ)ିయయ(ംାయర)(ംାభ)
][ ଵ

మ +

వ(ംାయ)
(ംାభబ)

] × [݁
ି௭ට(ംశయర)యళ

(ംశయల)ഀమ −

݁
ି௭ට ംశఴ

(ംశభ)ళ] +
[ (ംାభ)మ

మయఱ(ംାయల)(ംାయ)ିయయ(ംାయర)(ംାభ)
] ×

[ீ


− వீ(ംାయ)
(ംାభబ)

][݁
ି௭ට(ംశయర)యళ

(ംశయల)ഀమ −

݁
ି௭ට ംశయ

(ംశభ)మ].         (78) 

After simplifying and using partial fraction 
method on Eq. (78) we find: 
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,ݖ)ഥݓ (ݍ = ଵ
ି

݁
ି௭ට(ംశయర)యళ

(ംశయల) − ം
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Above Eq. can also be written as:  
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Taking the inverse Laplace transform of Eq. 
(80), we have:  

,ݖ)ݓ (ݐ =
∫  ௧

 [(1 − ݁ଵ)(−ఊܧଵ,ଵିఊ ,ݖ)ହ߶((ܽ) ݐ −
( −  ݁ଶ(−ఊܧଵ,ଵିఊ ,ݖ)߶((ܽ) ݐ − ݀[( +
݁ଵ݁௧ + ݁ଶ ∫  ௧

 ݐ)−) − ଵ,ଵିఊܧఊ( ݐ)ܽ) −
݀ଷ݃((( + ∫  ௧

 [(݁ଷ݃ସ +
 ݁ସ݃ହ)߶(ݖ, ݐ − ( + (݁ସ݃ସ + ݁݃ହ) ×
,ݖ)଼߶ ݐ − ( + ݁ଵଷ݃ହ߶ଽ(ݖ, ݐ − ( +
݁ଵସ݃ହ߶ଵ(ݖ, ݐ − ( + ݁ଵହ݃ହ߶ଵଵ(ݖ, ݐ −
݀[( − ∫  ௧

 [(݁ଷ݃ସ + ݁ହ݃ହ)߶ଵଶ(ݖ, ݐ −
( + (݁ସ݃ସ + ݁݃ହ)߶ଵଷ(ݖ, ݐ − ( +
 ݁݃ହ߶ଵସ(ݖ, ݐ − ݀[( −
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4.18 Skin Friction 

The expression for ߬ can be calculated from 
Eq. (80) and is given by: 

߬ =
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where: 
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(ݐ)ଶܮ = ఊܧఊିଵݐ ,ఊ (݊ଵݐఊ),      (100) 

(ݐ)ଷܮ = ఊܧఊିଵݐ ,ఊ (݊ଶݐఊ),      (101) 

(ݐ)ସܮ = ఊܧఊିଵݐ ,ఊ (݊ଷݐఊ),      (102) 

(ݐ)ହܮ = ఊܧఊିଵݐ ,ఊ (݊ସݐఊ),      (103) 

(ݐ)ܮ = ఊܧఊିଵݐ ,ఊ (−ܿଵݐఊ).      (104) 

5. Results and Discussion 
In this section, we studied the physical 

aspects of incompressible, unsteady free 
convection flow of second-grade fluid with 
variable temperature through a vertical plate in 
the presence of porosity. Figure 1 represents how 
the velocity profiles increase with increasing the 
value of Gr. It is observed that an increase in the 
values of Gr enhances the thermal effect of 
buoyancy forces, resulting in a stronger 
temperature gradient near the plate and 
consequently an increase in fluid motion. Figure 
2 highlights that the velocity profile increases as 
the value of Gm increases. This effect is evident 
from the figure, as increasing values of Gm 
strengthen the concentration effect of buoyancy 
forces. This, in turn, leads to an increased 
concentration gradient near the plate and 
subsequently enhances fluid motion. The effects 
of the Duffour parameter Du on velocity profiles 
are shown in Fig. 3. It is clear from this figure 
that fluid velocity increases as the value of Du 
increases. The reason behind this is that the rate 
of mass diffusion increases by an increasing 
value of Du, which decreases the fluid viscosity, 
and hence the velocity of a fluid is increased. 
Figure 4 depicts the effect of porosity on 
velocity fields. It is noted from this figure that 
the velocity of the fluid increases with increasing 
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values of K. Physically, it happens because the 
resistivity of porous medium is higher for lower 
values of K which decreases the flow regime. 
The effect of the magnetic parameter M on the 
velocity profile is plotted in Fig. 5. Physically, 
this phenomenon is attributed to the fact that as 
the value of M increases, it results in a higher 
resistive force, such as drag or the Lorentz force, 
which in turn decreases the fluid motion. Figure 
6 shows the impact of ܲݎ on the velocity field. It 
is seen that the velocity of fluid falls down as the 
value of ܲݎ goes up. Figure 7 illustrates that the 
velocity of fluid decreases with an increase in Q 
values. Physically, temperature decreases as the  
values of Q increase, which decays the motion of 
fluid. Figure 8 shows the effect of R on velocity 
profiles. The effect of ܵܿ on velocity profiles is 
plotted in Figure 9, revealing that fluid velocity 
increases as ܵܿ decreases. This phenomenon can 
be attributed to the decrease in ܵܿ, which 
corresponds to an increase in molecular 
diffusivity. This, in turn, leads to greater 
concentration and boundary layer thickness, 
thereby enhancing the fluid motion. Next,  

Figure 10 proves that the motion of the fluid 
decreases as the second-grade parameter ߙଶ 
increases. Physically, it is true because the 
boundary layer thickness decays by increasing 
the values of ߙଶ. The impact of ߛ on velocity 
profiles is shown in Fig. 11. One can observe 
that as the values of γ increase, the velocity 
profiles also increase. This phenomenon can be 
attributed to the fact that higher γ values result in 
the expansion of the thermal boundary layer and 
momentum. Consequently, this expansion leads 
to an overall increase in fluid velocity. Figure 12 
shows the comparison of the present work with 
Kumaresan et al. [30] by taking ߙଶ = 0, ܭ = ∞. 
Figure 13 illustrates how our results relate to 
those obtained by Kumaresan et al. [30] We set 
ߛ → ଶߙ ,1 = 0, ܭ = ∞ and found the results in 
good agreement. Figure 14 shows the 
comparison of the present work with Rajesh [31] 
by taking ݑܦ = ଶߙ = ܳ = ܴ = 0. Figure 15 
shows the validation of the present work with 
Rajesh [31] by taking ߛ → ݑܦ ,1 = ଶߙ = ܳ =
ܴ = 0. Again, the results are in good agreement. 

 
FIG. 1. Velocity profile against z due to ݎܩ where the values of other parameters are ݉ܩ = 4, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ܳ = 5.5, ܵܿ = 1.4, ݎܲ = 2.0, ܴ = 2.5, ଶߙ = 0.4.  

 
FIG. 2. Velocity profile against z due to ݉ܩ where the values of other parameters are ݎܩ = 10, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ܳ = 5.5, ܵܿ = 1.4, ݎܲ = 2.0, ܴ = 2.5, ଶߙ = 0.4.  
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FIG. 3. Velocity profile against z due to ݑܦ where the values of other parameters are ݎܩ = 10, ܯ = 0.2, ݉ܩ =

4, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ܵܿ = 1.4, ݎܲ = 2.0, ܴ = 2.5, ଶߙ = 0.4.  

 
FIG. 4. Velocity profile against z due to ܭ where the values of other parameters are ݎܩ = 10, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ݉ܩ = 4, ߛ = 0.5, ܵܿ = 1.4, ݎܲ = 2.0, ܴ = 2.5, ଶߙ = 0.4.  

 
FIG. 5. Velocity profile against z due to ܯ where the values of other parameters are ݉ܩ = 4, ݎܩ = 10, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ܳ = 5.5, ܵܿ = 1.4, ݎܲ = 2.0, ܴ = 2.5, ଶߙ = 0.4.  
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FIG. 6. Velocity profile against z due to ܲݎ where the values of other parameters are ݎܩ = 10, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ܳ = 5.5, ܵܿ = 1.4, ݉ܩ = 4, ܴ = 2.5, ଶߙ = 0.4.  

 
FIG. 7. Velocity profile against z due to ܳ where the values of other parameters are ݉ܩ = 4, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ݎܩ = 10, ܵܿ = 1.4, ܽ = 0.25, ݎܲ = 2.0, ܴ = 2.5, ଶߙ = 0.4.  

 
FIG. 8. Velocity profile against z due to ܴ where the values of other parameters are ݎܩ = 10, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ݉ܩ = 4, ܵܿ = 1.4, ݎܲ = 2.0, ܳ = 5.5, ଶߙ = 0.4.  
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FIG. 9. Velocity profile against z due to ܵܿ where the values of other parameters are ݉ܩ = 4, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ݎܩ = 10, ݎܲ = 6.5, ܴ = 2.5, ଶߙ = 0.4.  

 
FIG. 10. Velocity profile against z due to ߙଶ where the values of other parameters are ݎܩ = 10, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ߛ = 0.5, ݉ܩ = 4, ܵܿ = 1.4, ݎܲ = 6.5, ܴ = 2.5, ܳ = 5.5.  

 
FIG. 11. Velocity profile against z due to ߛ where the values of other parameters are ݉ܩ = 4, ܯ = 0.2, ݑܦ =

0.2, ݐ = 0.35, ܭ = 6, ݎܩ = 10, ܵܿ = 1.4, ݎܲ = 6.5, ܴ = 2.5, ଶߙ = 0.4.  
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FIG. 12. Comparison of velocity profile with Kumaresan et al. against y. 

  
FIG. 13. Comparison of velocity profile with Kumaresan et al. against z. 

 
FIG. 14. Comparison of velocity profile with Rajesh against z. 
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FIG. 15. Comparison of velocity profile with Rajesh. 

6. Conclusion 
In this model, the MHD free convection flow 

of second-grade fluid through a plate with 
porous media, in the presence of the Duffour 
effect, thermal radiation, and chemical reactions 
is considered. The magnetic field is fixed 
relative to fluid and plate. An exact solution is 
performed to evaluate the Dufour effect on the 
magnetohydrodynamics flow of fractional 
second-grade fluid through a plate. The 
concentration, temperature, and velocity profiles 
are obtained and plotted graphically. 

Here are the main points of the present work: 
• Velocity is higher for Caputo–Fabrizio (CF) 

than for Caputo (C). 
• Velocity is higher for Caputo (C) than for 

Atangana–Baleanu. 
• Higher values of ݂ܦ ,݉ܩ ,ݎܩ, and ܭ increase 

the velocity of a fluid. 
• Higher values of ݎܲ ,ܯ, and ܵܿ reduce the 

fluid velocity. 
• Velocity profiles are higher if the magnetic 

field is fixed relative to a plate. 
• Velocity profiles are lower if the magnetic 

field is fixed relative to the fluid. 
• Velocity field is an increasing function of the 

fractional parameter ߛ. 

7. Appendix 
ܿଵ = ఊ

(ଵିఊ) , ܿଶ = ௌାௌொ(ଵିఊ)
(ଵିఊ) ,  ܿଷ = ఊொௌ

ௌାௌொ(ଵିఊ), 

 ܿସ = ௨ௌ
ௌି

,  ܿହ = ொௌିோ
ௌି

, ܿ = ܿସ(ܳ − ܿହ),  

ܿ = ାோ(ଵିఊ)
(ଵିఊ) , ଼ܿ = ఊோ

ାோ(ଵିఊ)
, ܿଽ = ௨మ

మିళ
,   

ܿଵ = మయିళఴ
యିళ

, ܿଵଵ = (ܿଷ − ܿଵ)ܿଽ,  

ܿଵଶ = ଵ
ఈమ

, ܿଵଷ = ீ
భିమ

,  ܿଵସ = ீ
మିభ

,   

ܿଵହ = (ொିఱ)ீర
(ఱାభ)(ఱାమ),  ܿଵ = (ொାభ)ீర

(ఱାభ)(భିమ), 

ܿଵ = (ொାଶ)ீర
(ఱାమ)(మିభ)

, ܿଵ଼ = ீ
యିర

,  

ܿଵଽ = ீ
రିయ

, ܿଶ = (ொିఱ)ீర
(ఱାయ)(ఱାర),   

ܿଶଵ = (ொାయ)ீర
(ఱାయ)(యିర)

, ܿଶଶ = (ொାସ)ீర
(ఱାర)(రିయ)

,  

ܿଶଷ =
ீቀభା ೃ

ುೝቁ

భିమ
, ܿଶସ =

ீቀమା ೃ
ುೝቁ

మିభ
,   

ܿଶହ =
ீరቀభା ೃ

ುೝቁ(భାொ)

(భିమ)(భାఱ) ,   

ܿଶ =
ீర(మା ೃ

ುೝ)(భାொ)

(మିభ)(మାఱ)
,  

ܿଶ =
ீరቀିఱା ೃ

ುೝቁ(ିఱାொ)

(ିఱିమ)(ିభିఱ) ,   

ܿଶ଼ = ீ(యାொ)
యିర

, ܿଶଽ = ீ(రାொ)
రିయ

,   

ܿଷ = ீర(యାொ)మ

(యିర)(యାఱ)
,   

ܿଷଵ = ீర(రାொ)మ

(రିయ)(రାఱ)
, ܿଷଶ = ீర(ିఱାொ)మ

(ିఱିర)(ିయିఱ)
,  

ܿଷଷ = ଵାு(ଵିఊ)
ଵିఊ

, ܿଷସ = ுఊ
ଵାு(ଵିఊ),   

ܿଷହ = ఈమା(ଵିఊ)
ଵିఊ

, ܿଷ = ఊ
ఈమା(ଵିఊ) , ܿଷ = యయ

యర
,  

݀ଵ = ெఢ(ାభ)
యయ(ାయర) , ݀ଶ = ெఢ(భିయర)

ିయరି
,   

݀ଷ = ீభ
మ

భమ
, ݀ସ = ீ(భାభ)మ

(భ)మ(భିమ)
,  

݀ହ = ீ(మାభ)మ

(మ)మ(మିభ)
, ݀ = −݀ସ − ݀ହ,   
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݀ = ீవయ(భ)మ

(భబ)మమభ
, ଼݀ = ீవ(యିభబ)(భିభబ)మ

భబ(భబିభ)(ିభబିమ) ,   

݀ଽ = ீవ(యାభ)(భାభ)మ

భ(భబାభ)(భିమ)
,  

݀ଵ = ீవ(యାమ)(భାమ)మ

మ(భబାమ)(మିభ) , ݀ଵଵ = ீభ
మ

యర
,   

݀ଵଶ = ீ(యାభ)మ

(య)(యିర) , ݀ଵଷ = ீ(రାభ)మ

(ర)(రିయ),   

݀ଵସ = ீవయ(భ)మ

(భబ)యర
, ݀ଵହ = ீవ(యିభబ)(భିభబ)మ

భబ(భబିయ)(ିభబିర)
,   

݀ଵ = ீవ(యାయ)(భାయ)మ

య(భబାయ)(యିర) ,  

݀ଵ = ீవ(యାర)(భାర)మ

ర(భబାర)(రିయ)
, ݀ଵ଼ = (1 − ݀ଵ − ݀ଶ),   

݀ଵଽ = ݀ଶܿଷସ, ݀ଶ = ܽ݀ଵ,  
݀ଶଵ = (݀ସ + ݀ହ + ݀ + ݀ + ଼݀ + ݀ଽ + ݀ଵ),   
݀ଶଶ = ݊ଵ(݀ସ + ݀ଽ), ݀ଶଷ = ݊ଶ(݀ହ + ݀ଵ),  
݀ଶସ = ܿଵ଼݀,  
݀ଶହ = (݀ଵଵ − ݀ଵସ + ݀ଵଶ + ݀ଵଷ − ݀ଵହ − ݀ଵ −

݀ଵ),   
݀ଶ = ݊ଷ(݀ଵଶ − ݀ଵ),   
݀ଶ = ݊ସ(݀ଵଷ − ݀ଵ), ݀ଶ଼ = ܿଵ݀ଵହ,   

݇ଵ = ඥభళఴ

భ
, ݇ଶ = వඥభళఴ

భ
,   

݇ଷ = భభඥభళఴ

భభబ
, ݇ସ = భభඥళ(భିభబ)(ఴିభబ)

ିభబ(భିభబ) ,  

݇ହ = వඥభమయ

భ
, ݇ = భభඥభమయ

భ
,   

݇ = భభඥమ(భିభబ)(యିభబ)
ିభబ(భିభబ) , ଼݇ = ௗభఴඥయరయలయళ

యల
,  

݇ଽ = ௗభవඥయరయలయళ

యరయల
, ݇ଵ = ඥ(ାయర)(ାయల)యళ

(ାయర)(ାయల) ,   

݇ଵଵ = ௗమబඥ(ାయర)(ାయల)యళ
(ାయర)(ାయల)

, ݇ଵଶ = ௗమభඥయరయలయళ

యల
,  

݇ଵଷ = ௗయඥయరయలయళ

యల
, ݇ଵସ = ௗమమඥయరయలయళ

(ିభ)యల
,   

݇ଵହ = ௗమమඥ(భାయర)(భାయల)యళ
భ(భାయల)

,   

݇ଵ = ௗమయඥయరయలయళ
(ିమ)యల

,  

݇ଵ = ௗమయඥ(మାయర)(మାయల)యళ
మ(మାయల) ,   

݇ଵ଼ = ௗమరඥయరయలయళ
(భబ)యల

,   

݇ଵଽ = ௗమరඥ(యరିభబ)(యలିభబ)యళ
ିభబ(యలିభబ) ,  

݇ଶ = ௗమఱඥయరయలయళ

యల
, ݇ଶଵ = ௗమలඥయరయలయళ

(ିయ)యల
,   

݇ଶଶ = ௗమలඥ(యାయర)(యାయల)యళ
య(యାయల) ,   

݇ଶଷ = ௗమళඥయరయలయళ
(ିర)యల

,  

݇ଶସ = ௗమళඥ(రାయర)(రାయల)యళ
ర(రାయల) ,   

݇ଶହ = ௗమఴඥయరయలయళ
(భబ)యల

,   

݇ଶ = ௗమఴඥ(యరିభబ)(యలିభబ)యళ
ିభబ(యలିభబ)

,  

݇ଶ = ௗమభඥఴళభ

భ
, ݇ଶ଼ = ௗయඥఴభళ

భ
,  

݇ଶଽ = ௗమమඥఴభళ
(ିభ)భ

, ݇ଷ = ௗమమඥ(భାఴ)(భାభ)ళ
భ(భାభ) ,  

݇ଷ = ௗమయඥఴభళ
(ିమ)భ

, ݇ଷଵ = ௗమయඥ(మାఴ)(మାభ)ళ
మ(మାభ) ,   

݇ଷଶ = ௗమరඥఴభళ
(భబ)భ

, ݇ଷଷ = ௗమరඥ(ఴିభబ)(భିభబ)ళ
ିభబ(భିభబ) ,  

݇ଷସ = ௗమఱඥయభమ

భ
, ݇ଷହ = ௗమలඥయభమ

(ିయ)భ
,   

݇ଷ = ௗమలඥ(యାయ)(యାభ)మ
య(యାభ) , ݇ଷ = ௗమళඥయభమ

(ିర)భ
,  

݇ଷ଼ = ௗమళඥ(రାయ)(రାభ)మ
ర(రାభ) , ݇ଷଽ = ௗమఴඥయభమ

(భబ)భ
,   

݇ସ = ௗమఴඥ(యିభబ)(భିభబ)మ
ିభబ(భିభబ) ,   

݈ଵ = ඥయరయలయళ

యల
, ݈ଶ = ඥ(భାయర)(భାయల)యళ

భାయల
,   

݈ଷ = ඥ(మାయర)(మାయల)యళ
మାయల

,   

݈ସ = ඥ(యరିభబ)(యలିభబ)యళ
(యలିభబ)

,  

݈ହ = ඥ(యାయర)(యାయల)యళ
యାయల

,   

݈ = ඥ(రାయర)(రାయల)యళ
రାయల

, ݈ = ඥ(భାఴ)(భାభ)ళ
భାభ

,  

଼݈ = ඥ(మାఴ)(మାభ)ళ
మାభ

, ݈ଽ = ௗඥ(ఴିభబ)(భିభబ)ళ
(భିభబ) ,   

݈ଵ = ඥ(యାయ)(యାభ)మ
యାభ

,  

݈ଵଵ = ඥ(రାయ)(రାభ)మ
రାభ

, ݈ଵଶ = ඥ(యିభబ)(భିభబ)మ
(భିభబ)

,  

(݊ଵ, ݊ଶ) = ି(ఈమோିଵା)±ඥ(ఈమோିଵା±)మିସ(ோିு)(ఈమ)
ଶ(ఈమ)

,  

(݊ଷ, ݊ସ) =
ି(ఈమௌொିଵାௌ)±ඥ(ఈమௌொିଵାௌ±)మିସ(ௌொିு)(ఈమௌ)

ଶ(ఈమௌ)
.  
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