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Abstract: In this research, we first solve the radial Schrödinger equation analytically using 
the Nikiforov–Uvarov method with the class of Yukawa potential by replacing the 
screening parameter with Debye mass and the energy eigenvalues and Then, the 
corresponding wave functions are obtained in closed form. The obtained energy equation is 
used to predict the mass spectra of heavy quarkonium systems, namely, charmonium ( cc ) 
and bottomonium     ( bb ). Thermal properties such as mean energy, free energy, entropy, 
and specific heat capacity are also studied. It is found that the presence of Debye mass 
removes degeneracy in the newly predicted quantum states. Three particular cases are 
examined, yielding Hellmann potential, inversely quadratic Yukawa potential, and 
Coulomb potential. The research provides satisfying results in comparison with 
experimental data and some works in literature with a maximum error of 0.0045 GeV. 

Keywords: Schrödinger equation, Nikiforov–Uvarov method, Class of Yukawa potential, 
Heavy quarkonium system, Thermal properties. 

 
 

1. Introduction 
The focal point of studying the 

thermodynamic properties (TP) of a given 
system is to calculate its partition distribution 
function which is essential in various fields of 
physical and chemical sciences [1]. The partition 
function of any system depends uniquely on 
temperature. This is because it is usually seen as 
the distribution function and obtaining it paves 
the way for the evaluation of other TP [2, 3]. In 
recent times, many studies in literature have 
considered the TP of selected diatomic 
molecules and other physical systems [4-10]. For 
instance, Abu-Shady et al. [11] used the 
Nikiforov–Uvarov (NU) method to solve the 

Cornell potential (CP), which was applied in 
studying the TP of heavy mesons. 

The heavy quarkonium system (HQS) 
interactions can be effectively studied by the 
Schrödinger equation (SE) [12]. The solution of 
the spectral problem for the SE with spherically 
symmetric potentials is of major concern in 
describing the mass spectra (MS) of HQS such 
as bottomonium and charmonium [13, 14]. In the 
simulation of interacting potentials for these 
systems, it's customary to use confining-type 
potentials, specifically the CP with two terms. 
The first term represents Coulomb interaction, 
while the second term constitutes a confining 
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term. [15]. The study of HQS with CP has 
gained substantial support and has attracted the 
attention of many researchers [16-26]. 

In studying the quantum mechanical system, 
different techniques are applied, such as the NU 
method [27-42], the Nikiforov–Uvarov 
Functional Analysis (NUFA) method [5, 43], 
series expansion method (SEM) [44-47], the 
exact quantization rule [48], analytical exact 
iterative method (AEIM) [49], WKB 
approximation method [50], and others [51]. 
Recently, the study of MS of HQS with 
exponential-type potentials has attracted the 
attention of most researchers. For example, 
Inyang et al. [40] studied the MS of HQS with 
Yukawa potential using the NU method. Also, 
Akpan et al. [33] presented the MS of HQS 
using the Hulthen and Hellmann potential model 
through the solutions of SE. Furthermore, 
Ibekwe et al. [45] studied the MS of heavy HQS 
using SEM with the improved screened Kratzer 
potential.  

In the present research, our interest is to 
obtain the mass spectra of HQS with a class of 
Yukawa potential (CYP) in the presence of the 
Debye mass, which is a function of temperature 
and its thermal properties using the NU method. 
The CYP is a combination of Yukawa potential 
[52], Hellmann potential [53], and inverse 
quadratic Yukawa potential [54]. The CYP 
applications cut across other fields of physics, 
such as atomic, nuclear, and condensed matter 
physics, among others. The CYP takes the form 
[55]: 

r 2

2( )
ra be ceV r

r r r

  

    ,           (1) 

where ,a b , and c  are potential strengths, 
whereas  is the screening parameter. Equation 
(1) is made to be temperature-dependent, by 
replaying the screening parameter with the 
Debye mass  ( )Dm T . This yields 

( ) r 2 ( )

2( , )
D Dm T m T ra be ceV r T

r r r

 

   
         

(2) 

The exponential terms in Eq. (2) are 
expanded with the Taylor series up to the third 
order so that the potential can interact in the 
quark-antiquark system. Thus, Eqs. (3) and (4) 
are obtained. 

2 3 2( ) (T) r ( )1 ( ) ...
2 6

Dm T r
D D

D
m m T re m T

r r



    

(3) 
௘షమ೘ವ(೅)ೝ

௥మ
= ଵ

௥మ
− ଶ௠ವ(்)

௥
+ 2݉஽

ଶ (ܶ) −
1.33݉஽

ଷ .+ݎ(ܶ) ..            (4) 

Putting Eqs. (3) and (4) into Eq. (2) yields 

20 3
1 2 42( , )V r T r r

r r
 

       
 
       (5) 

where    
଴ߙ− = ܾ − ܽ + 2ܿ݉஽(ܶ),

ଵߙ =
௕௠ವ

మ (்)
ଶ

− 1.33݉஽
ଷ (ܶ)

ଶߙ = − ௕௠ವ
య (்)
଺

,
ଷߙ = −ܿ,

ସߙ = −ܾ݉஽(ܶ) − 2ܿ݉஽
ଶ (ܶ)⎭

⎪⎪
⎬

⎪⎪
⎫

           (6) 

2. The Solutions of the Schrödinger 
Equation with Class of Yukawa 
Potential  

The SE takes the form [40]: 
ௗమ௎(௥)
ௗ௥మ

+ ቂଶఓ
ℏమ
൫ܧ௡௟ − ൯(ݎ)ܸ − ௟(௟ାଵ)

௥మ
ቃܷ(ݎ) = 0 

(7)
 

where ,l  is the angular momentum quantum 
number, ,  is the reduced mass for the quark-
antiquark particle, r is the inter-particle distance, 
and   is the reduced Planck’s constant.  

We substitute Eq. (5) into Eq. (7) and obtain: 
ௗమ௎(௥)
ௗ௥మ

+ ቂଶఓா
ℏమ

+ ଶఓఈబ
ℏమ௥

− ଶఓఈభ௥
ℏమ

− ଶఓఈమ௥మ

ℏమ
− ଶఓఈయ

ℏమ௥మ
−

ଶఓఈర
ℏమ

− ௟(௟ାଵ)
௥మ

ቃ (ݎ)ܷ = 0           (8) 

Transformation of r in Eq. (8) to z
coordinate yields Eq. (9): 

1 , 0z r
r

 
 
            (9) 

The second derivative of Eq. (9) is given as: 
2 2

3 4
2 2

(r) ( ) ( )2d U dU z d U zz z
dzdr dz

 
  

     (10)  

Substituting Eqs. (9) and (10) in Eq. (8) 
gives: 
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ଶఓா
ℏమ

+ ଶఓఈబ௭
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− ଶఓఈభ
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⎥
⎥
⎤
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The approximation scheme (AS) on the terms

1

z


 and 2
2z


is introduced by assuming that there 

is a characteristic radius ݎ଴ of the meson. The AS 

is achieved by the expansion of 1

z


 and 2
2z


 in 

a power series around 0r ; i.e. around
0

1
r

  , up 

to the second order [25]. 

By setting y z   and around 0y   we 
expand it in powers of series as: 

1
1 1 1 1 1

1

y
yz y
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   (12) 

Equation (12) yields: 
2

1
1 2 3

3 3z z
z



  
 
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        (13) 

Similarly, 
2

2
22 2 3 4

6 8 3z z
z



  
 

   
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        (14) 

Also, by putting Eqs. (13) and (14) into Eq. 
(11), we obtain: 
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௭మ

ௗ௎(௭)
ௗ௭
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(15) 
where: 

ߝ− = ቀଶఓா
ℏమ

− ଺ఓఈభ
ℏమఋ

− ଵଶఓఈమ
ℏమఋమ

− ଶఓఈర
ℏమ

ቁ ,

ߙ = ቀଶఓఈబ
ℏమ

+ ଺ఓఈభ
ℏమఋమ

+ ଵ଺ఓఈమ
ℏమఋయ

ቁ

ߚ = ቀଶఓఈభ
ℏమఋమ

+ ଺ఓఈమ
ℏమఋర

+ ଶఓఈయ
ℏమ

+ ቁߛ ,
ߛ = ݈(݈ + 1) ⎭
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           (16)  

The comparison of Eq. (15) with Eq. (A1) in 
Appendix A shows that: 

2

2
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(z) 2 ,  (z) 2

z z
z z

z

 

   
 

 


    
   




 

        (17) 

We substitute Eq. (17) into Eq. (A9) and 
obtain: 

  2(z) z k z       
 
       (18) 

To determine ݇ in Eq. (18), the discriminant 
of the function, i.e. Eq. (19), and Eq. (20) are 
obtained. 

2 4
4

k  




 
         (19) 

(z)
2

z 
 

 
   

   
        (20) 

For a physically acceptable solution, we take 
the negative part of Eq. (20), which is required 
for bound state problems, and differentiate it 
with respect to z   

(z)
2



  
 
         (21) 

By putting Eqs. (17) and (20) into Eq. (A7) 
we have: 

2(z) 2 zz  
 

  
 
         (22) 

Differentiating Eq. (22) yields 

(z) 2 


  
 
         (23) 

Upon substituting Eqs. (19) and (21) into Eq. 
(A10) we obtain: 

2 4
4 2

  


 

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        (24) 

Putting Eqs. (17) and (23) into Eq. (A11) 
yields: 

2
n

n n n


             (25) 

By equating Eqs. (24) and (25) and 
subsequently substituting Eqs. (6) and (16), we 
arrive at the energy eigenvalue equation for the 
CYP: 
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      (26) 

Special cases: 

1. When we set 0c  , Eq.(26) reduces to 
Hellmann potential (HP) energy. 
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(27) 

When we set 0a b  , Eq. (26) reduces to 
the inversely quadratic Yukawa potential (IQYP) 
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     (28) 

2. When we set ( ) 0Db c m T   , Eq. (26) 
reduces to the Coulomb potential (CoP) 
energy 

 

2

222 1
nl

aE
n l


 
 

         (29)  

The result of Eq. (29) is the same as reported 
by Ref. [31] in Eq. (36). 

 The wave function is obtained by putting 
Eqs. (17) and (20) into Eq. (A4)  

2 2
d dz

z z
  
  

 
  
   

        (30) 

Integration of Eq. (30) gives: 

2(z) zz e
 
 

 
           (31) 

2.1 Determination of the Weight Function 

Upon differentiating the left-hand side of Eq. 
(A6) we get: 

(z) (z) (z)
(z) (z)

  
 
 


  

        (32) 

Upon substituting of Eqs. (17) and (22) into 
Eq. (32) and subsequently performing the 
integration, we get: 

2

(z) zz e
 
 

 
           (33) 

The substitution of Eqs. (17) and (33) into 
Eq. (A5) gives: 

2 2 2
(z)

n n
z z

n n n

dy B e z e z
dz

   
   

  
  

     
     (34) 

The Rodrigues’ formula of the associated 
Laguerre polynomials is: 

௡ܮ
ഀ
√ഄ ቀ ଶఌ

௭√ఌ
ቁ = ଵ

௡!
݁
మഄ
೥√ഄݖ

ഀ
√ഄ

ௗ೙

ௗ௭೙
൬݁ି

మഄ
೥√೥ݖଶ௡ି

ഀ
√ഄ൰       (35) 

where 
1
! nB

n


  
 

Hence, 

2(z)n ny L
z


 


 

  
   

         (36) 

The substitution of Eqs. (31) and (36) into 
Eq. (A2), gives the wave function in terms of 
Laguerre polynomials as: 

2 2(z) z
nl nN z e L

z

  
   



   
  

   
       (37) 

where nlN is the normalization constant, which 
can be obtained from 

2

0

| ( ) | 1nlN r dr



 
         (38) 

3. Thermodynamic Properties of the 
SE with Class of Yukawa Potential  

To obtain the TP of CYP, we first calculate 
the partition function by setting the temperature

0T  , at which the Debye mass vanishes. Thus,  
Eq. (26) is reduced to 
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 

22

8nl
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n 
 

    


        (39) 

where 
2

2

1 1 2
2 2

cl       
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        (40)  

and   

 2

2P b a
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           (41) 

 
3.1 Partition Function 

The partition function is given as [11]: 

0
( ) nlE

n
Z e


 




 
         (42) 

Where 
1

kT
 

, 
k  is the Boltzmann constant,

T  is the absolute temperature, n  is the principal 
quantum number, and   is the maximum 
quantum number (MQN). 

Substituting of Eq. (39) into Eq. (42) gives: 

 

22

8

0
( )

P
n

n
Z e

  


          






  
       (43) 

At high temperatureT , the summation is 
replaced by an integral, in the classical limit 

1
2

0

( )
M

Z e d


  
 
         (44) 

The parameters in the above equation are 
defined as follows: 

n               (45) 

and 
2 2

1 8
PM





 
          (46) 

The integration of Eq. (44) yields the 
following partition function: 

(ߚ)ܼ = ଵ
ଶඥܯଵߚቌ

ଶఒ௘
ಾభഁ
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−

 ቍ           (47)ߨ√2

The imaginary error function ( )erfi x  takes 
the form [9]: 

2

0

( ) 2( ) .
x

terf ixerfi x e dt
i 

  
  

     (48)  

3.2 Mean Energy ( )U   
The mean energy takes the form [11]: 

( ) ( ),U InZ 



 
  

        (49) 

By substituting Eq. (47) into Eq. (49) we 
obtain  

1
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1
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1

2
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M
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1
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 
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1
2 1

1

1

2 2
M M
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H
M




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  



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 
 
(52) 

3.3 Mean Free Energy F( )  
The mean free energy takes the form [11]: 

( ) ln ( )F KT Z             (53) 

The substitution of Eqs. (42) and (47) into 
Eq. (53) gives 
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(ߚ)ܨ =

− ଵ
ఉ
ln ቎ଵ

ଶඥܯଵߚ ቌ
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3.4 Entropy S( )  
The entropy takes the form [11]: 

( ) ln ( ) ln ( )S K Z K Z   



 
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     (55) 

Next, the substitution of Eqs. (42) and (47) 
into Eq. (55) yields: 

(ߚ)ܵ = lnܭ ൦ଵ
ଶ
ඥܯଵߚ൮

ଶఒ௘
ಾభഁ
ഊమ ିଶඥெభఉ√గ௘௥௙௜ቆ

ඥಾభഁ
ഊ ቇ

ඥெభఉ

ߨ√2−

൲൪

ߚܭ−

⎣
⎢
⎢
⎢
⎢
⎡൮మಾభ೐

ಾభഁ
ഊమ

ഊඥಾభഁ
ି஽ெభ൲

ுିଶ√గ

⎦
⎥
⎥
⎥
⎥
⎤   

(56) 
3.5 Specific Heat Capacity C( )  

The specific heat capacity takes the form 
[11]: 

(ߚ)ܥ = డ௎
డ்
= ଶߚܭ− డ௎

డఉ
               (57) 

The substitution of Eqs. (51) and (52) into 
Eq. (50) and thereafter into Eq. (57) gives: 

(ߚ)ܥ = ଶߚܭ−

⎣
⎢
⎢
⎢
⎡మಾభ

మ೐
ಾభഁ
ഊమ

ഊయඥಾభഁ
ିమಾభ

మ೐
ಾభഁ
ഊమ

ഊ(ಾభഁ)
య
మ
ାீ

௃
− ிమ

௃మ

⎦
⎥
⎥
⎥
⎤

      (58) 

where: 

ܬ =
ଶఒ௘

ಾభഁ
ഊమ ିଶඥெభఉ√గ௘௥௙௜൬

ඥಾభഁ
ഊ ൰

ඥெభఉ
−  (59)          ߨ√2

ܨ = ଶெభ௘
ಾభഁ
ഊమ

ఒඥெభఉ
−

ఒ௘
ಾభഁ
ഊమ ெభାඥெభఉ√గ௘௥௙௜൬

ඥಾభഁ
ഊ ൰ெభ

(ெభఉ)
య
మ

  

(60) 

ܩ =
ଷఒ௘

ಾభഁ
ഊమ ெభ

మିଷඥெభఉ√గ௘௥௙௜൬
ඥಾభഁ
ഊ ൰ெభ

మ

ଶ(ெభఉ)
ఱ
మ

        (61) 

4. Results and Discussion 
4.1 Results 

The calculation of the mass spectra of HQS 
such as charmonium and bottomonium is carried 
out using the following relation [56-58] 

2 nlM m E             (62) 

where m is quarkonium mass and nlE is energy 
eigenvalues. 

By substituting Eq. (26) into Eq. (62) we 
obtain the mass spectra for CYP as: 

ܯ = 2݉ +
3
ߜ
൭
ܾ݉஽

ଶ (ܶ)
2 − 1.33݉஽

ଷ (ܶ)൱

−
ܾ݉஽

ଷ (ܶ)
ଶߜ − ܾ݉ ವ(ܶ) − 2ܿ݉஽

ଶ (ܶ)

−
ℏଶ

ߤ8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ߤ6

ℏଶߜଶ ቆ
ܾ݉஽

ଶ (ܶ)
2 − 1.33݉஽

ଷ (ܶ)ቇ

ℏଶߤ2+ (ܽ − ܾ − 2ܿ݉஽(ܶ)) −
஽ܾ݉ߤ8

ଷ (ܶ)
3ℏଶߜଷ

݊ + 1
2 +

⎷
⃓⃓
⃓⃓
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ለ⃓
ቀ݈ + 1

2ቁ
ଶ
+ ߤ2
ℏଶߜଷ൭

ܾ݉஽
ଶ (ܶ)
2

−1.33݉஽
ଷ (ܶ)

൱

஽ܾ݉ߤ−
ଷ (ܶ)
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ℏଶ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
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⎥
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ଶ

 

(63) 
The accuracy of the predicted results are 

tested via a Chi-square function [51]: 

 Exp . .
2

1

1
Theos i i

i i

M M

s







          (64) 

where s runs over selected samples of HQS,
exp .

iM  is the experimental mass of heavy 

quarkonium, while Th
iM  is the corresponding 

theoretical prediction. The i  quantity is the 
experimental uncertainty of the masses. 
Intuitively, i  should be one.  

4.2 Thermodynamic properties plots 

In this subsection we present plots of 
thermodynamic properties. 
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FIG. 1. Plots of the partition function Z( )  against temperature ( ). 

 
FIG. 2. Plots of the mean energy U( )  against temperature ( ). 

 
FIG. 3. Plots of the mean free energy F( )  against temperature ( ). 
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FIG. 4. Plots of the entropyS( )  against temperature ( ). 

 
FIG. 5. Plots of the heat capacityC( )  against temperature ( ). 

TABLE 1. Mass spectra of charmonium in (GeV)  

1.209 ,  0.6045 ,    19.045 ,    5.885 ,  
  1.188 ,  0.23 , ( )  1.52 ,  1
c

D

m GeV GeV a GeV b GeV
c GeV GeV m T GeV




     
      

 

State Present work AIM [17] LTM [23] SEM [45] Experiment [60] 
1S 3.096 3.096 3.0963 3.095922 3.096 
2S 3.686 3.686 3.5681 3.685893 3.686 
1P 3.522 3.214 3.5687 - 3.525 
2P 3.773 3.773 3.5687 3.756506 3.773 
3S 4.040 4.275 4.0400 4.322881 4.040 
4S 4.267 4.865 4.5119 4.989406 4.263 
1D 3.763 3.412 4.0407 - 3.770 
2D 4.146 - - - 4.159 
1F 3.962 - - - _ 
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TABLE 2. Mass spectra of bottomonium in (GeV)  

4.823 ,  2.4115 ,    1.591 ,    8.875 ,  
  11.153 ,  0.23 , ( )  1.52 ,  1
b

D

m GeV GeV a GeV b GeV
c GeV GeV m T GeV




     
      

 

State Present work AIM [17] LTM [23] SEM [45] Experiment [60] 
1S 9.460 9.460 9.745 9.515194 9.460 
2S 10.023 10.023 10.023 10.01801 10.023 
1P 9.761 9.492 10.025 - 9.899 
2P 10.258 10.038 10.303 10.09446 10.260 
3S 10.355 10.585 10.302 10.44142 10.355 
4S 10.577 11.148 10.580 10.85777 10.580 
1D 9.989 9.551 10.303 - 10.164 
2D 10.336 - - - _ 
1F 10.279 - - - _ 

 
4.3 Discussion of Results 

The reduced mass is defined as
2
m  . For 

bottomonium and charmonium, the numerical 
values of these masses are bm   4.823GeV  and 

cm   1.209GeV , whereas the corresponding 

reduced masses are b   2.4115GeV  and 

c  0.6045GeV [59]. The Debye mass 

( )Dm T  takes the value of 1.52 GeV and 
potential parameters are also calculated by fitting 
with experimental data. Experimental data are 
taken from [60]. 

We observed that the results obtained from 
the prediction of mass spectra of charmonium 
and bottomonium for different quantum states 
are in excellent concurrence with experimental 
data and other reports from the literature as 
shown in Tables 1 and 2. The predictions are 
improved in comparison with other reports like 
Refs. [17, 23, 46] with a maximum error of 
0.0045 GeV. It was noticed that degeneracy was 
removed in the newly predicted states. 

Furthermore, the partition function was 
determined followed by other TP. In Fig. 1 the 
partition function ( )Z   was noticed to decrease 
exponentially with increasing temperature ( )
for different values of maximum quantum 
number (MQN). In Fig. 2 the mean energy 

( )U  decreases as the temperature increases 
with diverse values of MQN. Figure 3 reveals 
that mean free energy ( )F  increases with an 
increase in temperature. The variation of entropy

( )S  as a function of temperature  and the 
MQN is shown in Fig. 4. Upward shift in the 

entropy ( )S   as the temperature increases was 
observed. Figure 5 depicts a decrease in specific 
heat as temperature increases.  

5. Conclusion  
In this study, a CYP was adopted for quark-

antiquark interaction. The screening parameter 
was replaced with the Debye mass  ( )Dm T  to 
make it temperature-dependent. The SE was 
solved analytically via the NU method. The 
approximate solutions of the energy equation 
and wave functions in terms of Laguerre 
polynomials were obtained. Three special cases 
were considered, which resulted in IQYP, HP, 
and CoP. We applied the results to predict the 
HQS such as charmonium and bottomonium for 
different quantum states with a maximum error 
of 0.0045 GeV. Furthermore, we obtained and 
plotted the following TPs:  mean free energy, 
specific heat, mean energy, and entropy. The 
results obtained showed an improvement in 
comparison with the works of other researchers.  

Appendix A: Review of Nikiforov-
Uvarov (NU) Method 

The NU method [61-64] is used to solve the 
second-order differential equation, which takes 
the following form: 

߰ᇳ(ݖ) + ఛ෤(௭)
ఙ(௭)

߰ᇱ(ݖ) + ఙ෥(௭)
ఙమ(௭)

(ݖ)߰ = 0         (A1) 

where     and z z  are polynomials of 

maximum second degree and  z is a 
polynomial of maximum first degree. The exact 
solution of Eq. (A1) takes the form: 

(ݖ)߰ =  (A2)         (ݖ)߯(ݖ)߶
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Substituting Eq. (A2) into Eq. (A1), we 
obtain: 

(ݖ)ᇳ߯(ݖ)ߪ + (ݖ)ᇱ߯(ݖ)߬ + (ݖ)߯ߣ = 0           (A3)  

where the function  z  satisfies the following 
relation:  
థᇲ(௭)
థ(௭)

= గ(௭)
ఙ(௭)

           (A4) 

and  z  is a hypergeometric-type function, 
whose polynomial solutions are obtained from 
the Rodrigues relation 

ݕ ೙
(ݖ) = ஻೙

ఘ(௭)
ௗ೙

ௗ௭೙
 (A5)              [(ݖ)ߩ(ݖ)௡ߪ]

where nB is the normalization constant and 

 z the weight function which satisfies the 
condition below:  
ௗ
ௗ௭
൫(ݖ)ߩ(ݖ)ߪ൯ =  (A6)        (ݖ)ߩ(ݖ)߬

where also   

(ݖ)߬ = (ݖ)̃߬ +  (A7)         (ݖ)ߨ2

For bound solutions, it is required that 
ௗఛ(௭)
ௗ௭

< 0          (A8) 

We can then obtain the eigenfunction and 
eigenvalues using the definition of the following 
function  z and parameter λ, given as: 
(ݖ)ߨ =

ఙᇲ(௭)ିఛ෤(௭)
ଶ

±ටቀఙ
ᇲ(௭)ିఛ෤(௭)

ଶ
ቁ
ଶ
− (ݖ)෤ߪ +    (ݖ)ߪ݇

(A9) 
and   

ߣ = ݇ +  (A10)     (ݖ)ᇱߨ

The value of k  can be calculated if the 
function under the square root in Eq. (A9) is the 
square of a polynomial. This is possible if its 
discriminant is equal to zero. As such, the new 
eigenvalues equation can be given as  

௡ߣ + ݊߬ᇱ(ݖ) + ௡(௡ିଵ)
ଶ

(ݖ)ᇱᇱߪ = 0 (A11)       

References 
[1] Florkowski, W., J. Phys. G: Nucl. Part. Phys., 

38 (2010) 112. 
[2] Stowe, K, "An Introduction to 

Thermodynamics and Statistical Mechanics", 
2nd edn., (Cambridge University Press, New 
York, 2007) p.1101. 

[3] Ikot, A.N., Lutfuoglu, B.C., Ngweke, M.I., 
Udoh, M.E., Zare, S. and Hassanabadi, H., 
Eur. Phys. J. Plus, 131 (2017) 419. 

[4] Ikot, A.N., Chukwuocha, E.O., Onyeaju, 
M.C., Onate, C.N., Ita, B.I. and Udoh, M.E., 
Pramana J. Phys., 90 (2018) 45. 

[5] Rampho, G.J., Ikot, A.N., Edet, C.O. and 
Okorie, U.S., Mol. Phys., 19 (5) (2021) 
e1821922. 

[6] Ikot, A.N., Edet, C.O., Amadi, P.O., Okorie, 
U.S., Rampho, G.J. and Abdullah, H.Y., Eur. 
Phys. J. D, 74 (2020) 159. 

[7] Song, X., Wang, C. and Jia, C.S., J. Chem. 
Phys. Lett., 45 (2017) 50. 

[8] Jia, C.S., Zhang, L.H. and Wang, C.W., 
Chem. Phys. Lett., 66 (2017) 667. 

[9] Okorie, U.S., Ikot, A.N., Onyeaju, M.C. and 
Chukwucha, E.O., J. Mol. Mod., 24 (2018) 
289. 

[10] Ikot, A.N., Okorie, U.S., Onate, C.A., 
Onyeaju, M.C. and Hassanabadi, H., J. Theo. 
Phys., 54 (2018) 90. 

[11] Abu-Shady, M., Abdel-Karim, T.A. and 
Ezz-Alarab, Y., J. Egypt. Math. Soc., 23 
(2019) 145. 

[12] Miranda, M.G., Sun, G.H. and Dong, S.H., 
Inter. J. Mod. Phys. E, 19 (2010) 123. 

[13] Modarres, M. and Mohamadriejad, A., 
Phys. Part. Nucl. Lett., 10 (2013) 99. 

[14] Anisiu, M.C., Didact. Math., 33 (2015) 9. 
[15] Mocsy, A., Eur. Phys. J., 61 (2009) 705. 
[16] Vega, A. and Flores, J., Pramana J. Phys., 

87 (2016) 467. 
[17] Ciftci, H. and Kisoglu, H.F., Pramana J. 

Phys., 89 (2018) 467. 
[18] Abu-Shady, M., Bos. J. Mod. Phys., 55 

(2015) 789. 
[19] Al-Jamel, A. and Widyan, H., Canad. Cent. 

Sci. Educ., 4 (2012) 29. 
[20] Al-Oun, A., Al-Jamel, A. and Widyan, H., 

Jordan J. Phys., 40 (2015) 464. 
[21] Kumar, R. and Chand, F., Comm. Theor. 

Phys., 59 (2013) 467. 



The Effect of Debye Mass on the Mass Spectra of Heavy Quarkonium System and Its Thermal Properties with Class of Yukawa Potential 

 339

[22] Mansour, H. and Gamal, A., Adv. High 
Ener. Phys., 65 (2018) 1324 .  

[23] Abu-Shady, M., Abdel-Karim, T.A. and 
Khokha, E.M., J. Quan. Phys., 45 (2018) 587. 

[24] Abu-Shady, M., Int. J. Appl. Math. Theor. 
Phys., 2 (2016) 16. 

[25] Al-Jamel, A. and Widyan, H., Appl. Phys. 
Res., 4 (2012) 94. 

[26] Abu-Shady, M., Abdel-Karim, T.A. and 
Khokha, E.M., J. Theor. Phys., 45 (2018) 
567. 

[27] Edet, C.O. and Okoi, P.O., Rev. Mex. Fis., 
65 (2019) 333. 

[28] Okoi, P.O.,  Edet,  C.O.,  Magu, T.O. 
and Inyang, E.P., Jordan J. Phys., 15 
(2022) 148. 

[29] William, E.S., Obu, J.A., Akpan, I.O., 
Thompson, E.A. and Inyang, E.P., Eur. J. 
Appl. Phys., 2 (6) (2020) 1.  

[30] Inyang, E.P. and Obisung, E.O., East 
Eur. J. Phys., 3 (2022) 32.  

[31] Inyang, E.P., Ntibi, J.E., Inyang, E.P, 
Ayedun, F., Ibanga, E.A., Ibekwe, E.E. and 
William, E.S., Appl. J. Phys. Sci., 3 (2021) 
108. 

[32] Okoi, P.O., Edet, C.O. and Magu, T.O., 
Rev. Mex. Fis., 66 (2020) 124. 

[33] Akpan, I.O., Inyang, E.P., Inyang, E.P. and 
William, E.S., Rev. Mex. Fis., 67 (2021) 490. 

[34] Inyang, E.P., William, E.S. and Obu, J.A., 
Rev. Mex. Fis., 67 (2021) 205. 

[35] William, E.S., Inyang, E.P., Ntibi, J.E., 
Obu, J.A. and Inyang, E.P., Jordan J. Phys., 
15 (2022) 193. 

[36] Ikot, A.N., Edet, C.O., Amadi, P.O., Okorie, 
U.S., Rampho, G.J. and Abdullah, H.Y., Eur. 
Phys. J. D, 74 (2020) 1. 

[37] Inyang, E.P., Okon, I.B., Faithpraise, F.O., 
William, E.S., Okoi, P.O. and Ibanga, E.A., J. 
Theor. and Appl. Phys., 17 (2023) 13.  

[38] Inyang, E.P., Ita, B.I. and Inyang, E.P., Eur. 
J. Appl. Phys., 3 (2021) 45 . 

[39] Inyang, E.P., Ikot, A.N., Inyang, E.P., 
Akpan, I.O., Ntibi, J.E., Omugbe, E. and 
William, E.S., Result in Physics, 2022 (2022) 
105754.  

[40] Inyang, E.P., Inyang, E.P., Ntibi, J.E., 
Ibekwe, E.E. and William, E.S., Ind. J. Phys., 
95 (2021) 2733.  

[41] William, E.S., Inyang, E.P. and Thompson, 
E.A., Rev. Mex. Fis., 66 (2020) 730. 

[42] Inyang, E.P., Iwuji, P.C., Ntibi, J.E., 
William, E.S. and Ibanga, E.A., East Eur. J. 
Phys., 1 (2022) 11.  

[43] Ikot, A.N., Okorie, U.S., Amadi, P.O., Edet, 
C.O., Rampho, G.J. and Sever, R., Few-Body 
Syst., 62 (2021) 9. 

[44] Inyang, E.P., Inyang, E.P., Akpan, I.O., 
Ntibi, J.E. and William, E.S., Eur. J. Appl. 
Phys., 2 (2020) 26.  

[45] Ibekwe, E.E., Okorie, U.S., Emah, J.B., 
Inyang, E.P. and Ekong, S.A., Eur. Phys. J. 
Plus, 87 (2021) 136. 

[46] Inyang, E.P., Inyang, E.P., Kamiliyus, J., 
Ntibi, J.E. and William, E.S., Eur. J. Appl. 
Phys., 3 (2021) 55. 

[47] Inyang, E.P., Iwuji, P.C., Ntibi, J.E., 
William E.S. and Ibanga E.A., East Eur. J. 
Phys., 1 (2022) 11. 

[48] Inyang, E.P., Inyang, E.P., William, E.S., 
Ibekwe, E.E. and Akpan, I.O., (2020) arXiv: 
2012.10639. 

[49] Khokha, E.M., Abushady, M. and Abdel-
Karim, T.A., Int. J. Theor. Appl. Math., 2 
(2016) 86. 

[50] Omugbe, E., Osafile,, O.E., Inyang, E.P. 
and Jahanshir, A., Physica Scripta, 96 (2021) 
125408. 

[51] Ali, M.S., Yasser, A.M., Hassan, G.S. and 
Moustakidis, C.C., Quan. Phys. Lett., 5 
(2016) 14. 

[52] Yukawa, H.M., Proc. Phys. Math. Soc. Jap., 
17 (1935) 48. 

[53] Hellmann, H., J. Chem. Phys., 3 (1935) 61. 
[54] Ita, B.I. and Ikeuba, A.I., J. Atom. Mol. 

Phys., 56 (2013) 121 .  
[55] Falaye, B.J., Cent. Eur. J. Phys., 10 (2012) 

1153. 
[56] Inyang, E.P., Inyang, E.P., Ntibi, J.E. and 

William, E.S., Bull. Pure Appl. Sci., 40 (D1) 
(2021) 14.  

[57] Inyang, E.P., Inyang, E.P., William, E.S. 
and Ibekwe, E.E., Jordan J. Phys., 14 (2021) 
345. 



Article  Inyang et al. 

 340

[58] Omugbe, E., Osafile, O.E., Okon, I.B., 
Inyang, E.P., William, E.S. and Jahanshir, A., 
Few-Body Syst., 63 (2022) 7. 

[59] Barnett, R.M., Carone, C.D., Groom, D.E., 
Trippe, T.G. and Wohl, C.G., Phys. Rev. D, 
92 (2012) 656. 

[60] Tanabashi, M., Carone, C.D., Trippe, T.G. 
and Wohl, C.G., Phys. Rev. D, 98 (2018) 
546. 

[61] Nikiforov, A.F. and Uvarov, V.B., "Special 
Functions of Mathematical Physics", 
(Birkhäuser, Basel, 1988).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[62] Inyang, E.P., Inyang, E.P., Akpan, I.O., 
Ntibi, J.E. and William, E.S., Can. J. Phys., 
99 (2021) 990. 

[63] Inyang, E.P., William, E.S., Obu, J.A., Ita, 
B.I., Inyang, E.P. and Akpan, I.O., Mol. Phys. 
119 (2021) e1956615. 

[64] Inyang, E.P., William, E.S., Omugbe, E., 
Inyang, E.P., Ibanga, E.A., Ayedun, F., 
Akpan, I.O. and Ntibi, J.E., Rev. Mex. Fis., 
68 (2022) 14. 


