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Abstract: In the present article, the Casimir energy was computed for the massless and 
Lorentz-violating scalar field, confined in a sphere with Dirichlet and Neumann boundary 
conditions. In 3 + 1 space-time dimensions, four violated directions to break the Lorentz 
symmetry are likely, according to which we presented the Casimir energy regarding all 
possible directions for the Lorentz violation and discussed the pure contribution to the 
Lorentz violation in a language of graphs. In the details of the calculation, a simple method 
was developed based on the direct mode summation and the sum-over-modes were 
performed via the contour integration in a complex plane of eigenfrequencies. The obtained 
result for all cases of Lorentz symmetry breaking was consistent with the expected physical 
basis. 
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1. Introduction 

When the system is affected by a boundary 
condition, the shift of the vacuum fluctuations of 
quantum fields causes a macroscopic event 
between the material boundaries, called Casimir 
force. The idea of Casimir force was first 
proposed by H. B. G. Casimir more than sixty 
years ago [1] and later on confirmed 
experimentally by Sparnaay [2]. The theoretical 
investigations to the Casimir force were 
considered in various works in the literature for 
different quantum fields, boundaries and space-
time dimensions [3, 4, 5, 6, 7, 8, 9]. Also, the 
computation of the radiative correction to the 
Casimir energy was previously conducted [10, 
11, 12, 13, 14]. Furthermore, this energy has 
even been investigated on the curved manifolds 
and as it is today known, it depends strongly on 
the geometry of the space-time and the imposed 
boundary conditions [15, 16].  

In recent works, Lorentz symmetry in 
quantum field theory and quantum gravity has 
been explored as a topic of interest for physicists 
[17, 18, 19]. Hence, many proposals on this 
subject were presented and different techniques 
were introduced about the violations in the 
Lorentz symmetry, such as space-time non-
commutativity [20, 21, 22], modifications of 
quantum gravity [23, 24] and the variation of 
coupling constants [25, 26, 27]. Kostelecky et al. 
(1989) showed that string theory allows for 
Lorentz symmetry to be spontaneously broken in 
the early universe [19, 28]. If Lorentz symmetry 
is spontaneously broken, small relic background 
fields would permeate the universe and point in 
spontaneously chosen directions. Later, Coleman 
and Glashow (1998) used a set of Lorentz-
violating interactions to show that the apparent 
observation of cosmic rays above a high-energy 
threshold might be due to Lorentz violation [29]. 
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In their study, the effects of rotation and 
violation of the Lorentz symmetry on the scalar 
field were considered from a geometrical point 
of view, which yielded the upper limit of the 
radial coordinate. By confining the scalar field to 
a hard-wall confining potential, the contributions 
to the relativistic spectrum of energy that stems 
from the Lorentz symmetry violation are given 
by the effective angular momentum and effective 
radius (for more details see Ref. [30]). It is 
difficult to conduct experimental measurements 
to find the effective value of Lorentz symmetry 
breaking in the system; the measurement of this 
quantity was usually explored in the physical 
quantity, for which the Casimir energy is a 
suitable credit. Hence, a large number of studies 
have been performed to investigate the effect of 
Lorentz-violating (Lv) fields on Casimir energy 
for multiple configurations [31, 32, 33]. The 
primary study, considering the Lv field in the 
Casimir energy, was conducted by Cruz et al. 
[34, 35]. In this work, the leading-order Casimir 
energy was first computed for real and Lv scalar 
field between two parallel plates [34]. Then, this 
quantity was developed for the spinor field with 
the MIT bag model [35]. Additionally, the 
radiative correction to the Casimir energy for Lv 
and self-interacting scalar field between two 
parallel plates was investigated [36]. One of the 
main similarities in these sorts of studies is that 
the Lorentz symmetry is being violated in the 
Cartesian coordinates [37, 38]. The other 
category of problem regarding Lorentz 
symmetry breaking was considered in the 
spherical symmetry. For instance, the Casimir 
energy of scalar field for D-dimensional sphere 
was conducted in Ref. [39]. In Ref. [39], the 
Lorentz symmetry breaking in the only two cases 
(radial and time-like cases) is investigated and 
using the Green's function technique, the Casimir 
energy for the scalar field confined by the 
Dirichlet boundary condition was obtained. In 
the present study, by breaking the Lorentz 
symmetry in all possible directions of the 
spherical coordinate, we computed the leading-
order Casimir energy for massless scalar field 
confined with Dirichlet and Neumann boundary 
conditions in a sphere. In 3 + 1 space-time 
dimensions, four directions are possible to break 
the Lorentz symmetry. One of these directions is 
time-like Lv and the three other ones are 
categorized as the space-like Lorentz violation. 
In Section 2, to describe these violated 
directions, we presented a model for Lorentz 

symmetry breaking in a spherical coordinate, 
together with a brief calculation of how to find 
the vacuum energy. In section 3, we focused on 
the numerical evaluation of the leading-order 
Casimir energy in the sphere. The paper was 
finalized with a discussion on the physical 
aspects of the obtained results. 

2. The Model 
In this section, a model was presented to 

compute the allowed modes regarding the Lv 
scalar field living inside and outside the sphere 
with radius ܽ. The calculations were conducted 
for two different boundary conditions. These 
boundary conditions are the Dirichlet Boundary 
Condition (DBC) and the Neumann Boundary 
Condition (NBC) and they were defined on the 
surface of the sphere. To present the model, we 
started with the Klein-Gordon Lagrangian with 
Lv term as follows:  

ℒ = ଵ
ଶ

[∂ఓ߶(ݔ) ∂ఓ߶(ݔ) + ݑ)ߚ ⋅ ଶ((ݔ)߶∂ −
 (1)                                                 ,[(ݔ)ଶ߶ଶܯ

where the parameter ܯ is the mass of the real 
scalar field and the coordinate ݔ = ,ݐ) ,ݎ ,ߠ ߮). 
The dimensionless coefficient ߚ shows the scale 
of the Lorentz symmetry breaking. The absolute 
value of this parameter is usually much smaller 
than 1 and encodes the Lorentz violation by 
multiplying the scalar field derivative with a 
vector ݑఓ  which determines the direction of 
Lorentz violation in space-time [34]. To get the 
Lorentz symmetry breaking in this model, the 
original scalar field ߶(ݔ) is interacting with the 
vector ݑఓ  as an external vector field. Indeed, this 
interaction breaks not only the Lorentz 
symmetry, but also the symmetry of spatial 
translations and rotational symmetry. This 
terminology allows the vector ݑఓ  to have an 
arbitrary and continuous value. However, 
choosing any desired value for the vector ݑఓ  
makes it very difficult to calculate the Casimir 
energy. Therefore, in this paper, to facilitate 
problem-solving, four distinct values in four 
specific directions were selected for the vector 
ఓݑ . If the vector ݑఓ  is selected as ݑఓ =
(1,0,0,0), the case of time-like Lorentz-violating 
(TL-Lv) can occur. Furthermore, three other 
violated directions in the space-like Lorentz 
symmetry breaking are possible. In the spherical 
coordinate, admitting the vector ݑఓ = (0,1,0,0) 
breaks the Lorentz symmetry in the radial 
direction, now called radial-like Lorentz-
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violating (RL-Lv). Additionally, admitting the 
vector ݑఓ = (0,0,1,0) and ݑఓ = (0,0,0,1) 
provides the Lorentz symmetry breaking in 
theta-like (ThL) and Phi-Like (PL) directions, 
respectively.  

2.1 TL Lorentz Violation 

In the case of TL Lorentz symmetry breaking, 
the equation of motion related to the Lagrangian 
shown in Eq. (1) reads as:  

(1 + (ߚ பమథ(௫)
ப௧మ − ଵ

௥మ
ப

ப௥
ቀݎଶ பథ(௫)

ப௥
ቁ −

ଵ
௥మୱ୧୬ఏ

ப
பఏ

ቀsinߠ பథ(௫)
பఏ

ቁ − ଵ
௥మୱ୧୬మఏ

பమథ(௫)
பఝమ +

(ݔ)߶ଶܯ = 0            (2) 

For the inner/outer region of the sphere, the 
orthonormal set of solutions to this equation is 
obtained as:  

⎩
⎪
⎨

⎪
⎧ Φℓ௦௠

(்௅)(ݔ) = ࣛℓ௦௠
(்௅)݁ି௜ఠℓೞ௧

ℓܲ
௠(cosߠ)݁௜௠ఝ݆ℓ(݇ℓ௦ݎ),

;݊݋݅݃݁ݎ ݎ݁݊݊ܫ
Φℓ௦௠

(்௅)(ݔ) = ℬℓ௦௠
(்௅)݁ି௜ఠℓೞ௧

ℓܲ
௠(cosߠ)݁௜௠ఝℎℓ

(ଵ)(݇ℓ௦ݎ),
,݊݋݅݃݁ݎ ݎ݁ݐݑܱ

 

                    (3) 

where ℓܲ
௠(cosߠ) is the associated Legendre 

function. The parameters ࣛℓ௦௠
(்௅)  and ℬℓ௦௠

(்௅)  are 
the normalization coefficients. Moreover, the 
parameter ݇ℓ௦ is the wave-vector of the quantum 
field. The allowed values for the wave-vector 
should be obtained from the boundary condition 
defined on the surface of the sphere (ݎ = ܽ). 
Therefore, we have:  

.ܦ .ܤ .ܥ → ቊ
݆ℓ(݇ℓ௦ܽ) = 0,

ℎℓ
(ଵ)(݇ℓ௦ܽ) = 0,

 ܰ. .ܤ .ܥ →

ቐ
ௗ

ௗ௥
݆ℓ(݇ℓ௦ݎ)|௥ୀ௔ = 0,

ௗ
ௗ௥

ℎℓ
(ଵ)(݇ℓ௦ݎ)|௥ୀ௔ = 0.

           (4) 

The index ݏ refers to the root number for a 
given value of ℓ. The dispersion relation 
originated from Eqs. (3) and (3) becomes,  

(1 + ℓ௦߱(ߚ
ଶ = ݇ℓ௦

ଶ + .ଶܯ ℓ = 0,1,2,3, . . . ݉ =
0, ±1, ±2, . . . , ±ℓ,            (5) 

where ߱ℓ௦ is the allowed wave-number. After 
performing the common procedure of the 
canonical quantization, we obtained the total 
zero-point energy as follows:  

.௏௔௖ܧ
(்௅)(ܽ) = ଵ

ଶඥఉାଵ
∑  ஶ

ℓୀ଴ (2ℓ + 1) ∑  ஶ
௦ୀଵ (݇ℓ௦

ଶ +

(ଶܯ
భ
మ.            (6) 

The vacuum energy expression was reported 
previously for the scalar field that preserves the 
Lorentz symmetry as confined in a sphere [40]. 
By scaling the time coordinate in Eq. (3) and 
eliminating the parameter ߚ in this equation, 
similar to the system without any Lorentz 
violation, the vacuum energy of the TL case can 
be obtained. A simple comparison between Eq. 
(6) and those of reported expressions shows that 
an extra factor ଵ

ඥఉାଵ
, as we see in Eq. (6), is 

multiplied to the vacuum energy when we have a 
TL-Lv scalar field. Therefore, to derive the 
Casimir energy contribution for the scalar field 
confined with DBC/NBC in a sphere, we only 
need to multiply the factor ଵ

ඥఉାଵ
 to their obtained 

results. This conclusion for the TL-Lv is 
corroborated in comparison with the result 
reported in [39]. 

2.2 PL Lorentz Violation 

The vector ݑఓ = (0,0,0,1) breaks the Lorentz 
symmetry in the azimuthal direction (߮ 
direction) of the spherical coordinates. We called 
this violated direction as PL-Lv. In this case, the 
equation of motion is obtained as:  
பమథ(௫)

ப௧మ − ଵ
௥మ

ப
ப௥

ଶݎ) பథ(௫)
ப௥

) −
ଵ

௥మୱ୧୬ఏ
ப

பఏ
(sinߠ பథ(௫)

பఏ
) − ଵିఉ

௥మୱ୧୬మఏ
பమథ(௫)

பఝమ +
(ݔ)߶ଶܯ = 0.            (7) 

For the inner/outer region of the sphere with 
radius ܽ, we obtained the orthonormal set of 
solutions to this equation as:  

⎩
⎪
⎨

⎪
⎧ Φℓ௦௠

(௉௅)(ݔ) = ࣛℓ௦௠
(௉௅)݁ି௜ఠℓೞ௧

ℓܲ
௠(cosߠ)݁௜௠′ఝ݆ℓ(݇ℓ௦ݎ),

;݊݋݅݃݁ݎ ݎ݁݊݊ܫ
Φℓ௦௠

(௉௅)(ݔ) = ℬℓ௦௠
(௉௅)݁ି௜ఠℓೞ௧

ℓܲ
௠(cosߠ)݁௜௠′ఝℎℓ

(ଵ)(݇ℓ௦ݎ),
.݊݋݅݃݁ݎ ݎ݁ݐݑܱ

 

        (8) 

Here, the parameter ݉ = 0, ±1, ±2, . . . , ±ℓ 
and ݉′ = ௠

ඥଵିఉ
. The functions ݆ℓ(ߙ) and ℎℓ

(ଵ)(ߙ) 
are the spherical Bessel function and Hankel 
function, respectively. The coefficients ࣛℓ௦௠

(௉௅)  
and ℬℓ௦௠

(௉௅)  are the normalization coefficients and 
according to Eq. (7) the wave-number is 
obtained as:  

߱ℓ௦
ଶ = ݇ℓ௦

ଶ + ,ଶܯ ℓ = 0,1,2,3, . . ..          (9) 

Here, ݇ℓ௦ is the wave-vector of quantum 
fields and it is determined by the DBC/ NBC 
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imposed on the surface of the sphere (Eq. (4)). 
After performing the usual process of finding the 
zero-point energy in the case of the PL-Lv 
system, we obtained:  

.௏௔௖ܧ
(௉௅) (ܽ) = ଵ

ଶ
∑  ஶ

ℓୀ଴ (2ℓ + 1) ∑  ஶ
௦ୀଵ [݇ℓ௦

ଶ + [ଶܯ
భ
మ.  

      (10) 

Note that the vacuum energy for the PL-Lv 
scalar field is exactly equivalent to the vacuum 
energy of the system in which the Lorentz 
symmetry is still preserved. Consequently, it is 
expected that the Casimir energy of these two 
cases is also equivalent. Therefore, the Casimir 
energy of PL-Lv scalar field confined in a sphere 
with radius ܽ with DBC/NBC can be written as 
[40]:  

.஼௔௦ܧ
(ࣞ,௉௅) = .஼௔௦ܧ

.஼௔௦ܧ  (ࣞ)
(ࣨ,௉௅) = .஼௔௦ܧ

(ࣨ) ,        (11) 

where ܧ஼௔௦.
.஼௔௦ܧ)  (ࣞ)

(ࣨ) ) is the Dirichlet (Neumann) 
Casimir energy for the system that preserves the 
Lorentz symmetry, while the superscript ࣞ(ࣨ) 
refers to the DBC (NBC).  

2.3 RL Lorentz Violation 

Admitting the vector ݑఓ = (0,1,0,0) allows 
the Lorentz symmetry to be broken in the radial 
direction of the spherical coordinate. This type 
of Lorentz symmetry breaking is called RL-Lv. 
In this case, the equation of motion related to the 
Lagrangian shown in Eq. (1) reads as:  
பమథ(௫)

ப௧మ − (1 − (ߚ ଵ
௥మ

ப
ப௥

ቀݎଶ பథ(௫)
ப௥

ቁ −
ଵ

௥మୱ୧୬ఏ
ப

பఏ
ቀsinߠ பథ(௫)

பఏ
ቁ − ଵ

௥మୱ୧୬మఏ
பమథ(௫)

பఝమ +
(ݔ)߶ଶܯ = 0.          (12) 

Assuming the productive form Φ(ோ௅) (ݔ) =
 ,for the quantum field (߮)ܳ(ߠ)ܲ(ݎ)ܴ(ݐ)ܶ
substituting it into Eq. (12) detaches the equation 
of motion into the following separate differential 
equations:  
ௗమொ(ఝ)

ௗఝమ + ݉ଶܳ(߮) = 0, ௗమ்(௧)
ௗ௧మ + ߱ଶܶ(ݐ) = 0,  

ଵ
ୱ୧୬ఏ

ௗ
ௗఏ

(sinߠ ௗ௉(ఏ)
ௗఏ

) + [ℓ(ℓ + 1) − ௠మ

ୱ୧୬మఏ
(ߠ)ܲ[ =

0,  

(1 − (ߚ ଵ
௥మ

ௗ
ௗ௥

ଶݎ) ௗோ(௥)
ௗ௥

) + (݇ଶ − ℓ(ℓାଵ)
௥మ (ݎ)ܴ( =

0.            (13) 

In Eqs. (13), the solution of the first two 
differential equations are elementary and the 
third one is the generalized Legendre equation. 
Its solution is the associated Legendre function 

and it implies the values ℓ = 0,1,2,3, . .. and 
݉ = 0, ±1, ±2, . . . , ±ℓ. To obtain the radial part 
of the quantum field (ܴ(ݎ)), we should put the 
last differential relation of Eqs. (13) in a standard 
form by the change of variables ݇ and ℓ as:  

݇′ = ௞
ඥଵିఉ

, ℓ′(ℓ′ + 1) = ℓ(ℓାଵ)
ଵିఉ

.         (14) 

This changing of variables for parameters ݇ 
and ℓ converts the radial part of the equation of 
motion given in the last line of Eqs. (13) into:  
ଵ

௥మ
ௗ

ௗ௥
ଶݎ) ௗோ(௥)

ௗ௥
) + (݇′ଶ − ℓᇱ(ℓᇱାଵ)

௥మ (ݎ)ܴ( = 0.   (15) 

The proper solution to Eq. (15) related to the 
inner (outer) region of a sphere with radius ܽ, 
leads to the spherical Bessel function ݆ℓᇱ(݇′ݎ) 
(the Hankel function ℎℓᇱ

(ଵ)(݇′ݎ)). The parameter 
݇′ = ݇ℓᇱ௦ is the allowed wave-vector of the 
quantum field which is determined from the 
DBC/NBC defined at the surface of the sphere 
with radius ܽ as follows:  

.ܦ .ܤ .ܥ → ቊ
݆ℓᇲ(݇ℓᇲ௦ܽ) = 0,

ℎℓᇲ
(ଵ)(݇ℓᇲ௦ܽ) = 0,

   

ܰ. .ܤ .ܥ → ቐ
ௗ

ௗ௥
݆ℓᇱ(݇ℓᇱ௦ݎ)|௥ୀ௔ = 0,

ௗ
ௗ௥

ℎℓᇱ
(ଵ)(݇ℓᇱ௦ݎ)|௥ୀ௔ = 0.

                   

             (16) 

The index ݏ refers to the root number for a 
given value of ℓ′. Therefore, the orthonormal set 
of solutions to Eq. (12) are obtained as:  

⎩
⎪
⎨

⎪
⎧ Φℓᇲ௦௠

 (ோ௅)(ݔ) = ࣛℓᇲ௦௠
 (ோ௅)݁ି௜ఠℓᇲೞ௧

ℓܲ
௠(cosߠ)݁௜௠ఝ݆ℓᇲ(݇ℓᇲ௦ݎ),

;݊݋݅݃݁ݎ ݎ݁݊݊ܫ
Φ

ℓ′௦௠
 (ோ௅)(ݔ) = ℬ

ℓ′௦௠
 (ோ௅)݁ି௜ఠ

ℓ′ೞ
௧

ℓܲ
௠(cosߠ)݁௜௠ఝℎ

ℓ′
(ଵ)൫݇ℓ′௦ݎ൯,

,݊݋݅݃݁ݎ ݎ݁ݐݑܱ

   

             (17) 

where ℓܲ
௠(cosߠ) is the associated Legendre 

function and ߱ℓᇱ௦
ଶ = (1 − ℓᇱ௦݇(ߚ

ଶ +  ଶ is theܯ
wave-number. Moreover, the parameters ࣛℓᇱ௦௠

(ோ௅)  
and ℬℓᇱ௦௠

(ோ௅)  are the normalization coefficients and 
݉ = 0, ±1, ±2, . . . , ±ℓ. Now, to obtain the zero-
point energy of the system, we expanded the 
field operator ߶(ݔ) as a function of an 
orthonormal set of solutions given in Eq. (17) 
and obtained:  

(ݔ)߶ =
∑  ℓ,௠,௦ [Φℓᇱ௦௠

 (ோ௅) (ݔ)܉ℓᇱ௦௠ + Φℓᇱ௦௠
 (ோ௅) ∗(ݔ)܉ℓᇱ௦௠

ற ],  

      (18) 
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where ܉ℓᇱ௦௠(܉ℓᇱ௦௠
ற ) is the annihilation (creation) 

operator of states and Φℓᇱ௦௠
(ோ௅)∗(ݔ) is the complex 

conjugate of Φℓᇱ௦௠
(ோ௅) (ݔ). Substituting the 

expansion form of the field operator given in Eq. 
(18) in the Hamiltonian operator and performing 
the usual process of canonical quantization 
resulted in the following expression for the total 
zero-point energy (for more details, see 
Appendix A),  

.௏௔௖ܧ
(ோ௅) (ܽ) = 〈0|ܪ|0〉 = ଵ

ଶ
∑  ஶ

ℓୀ଴ (2ℓ +

1) ∑  ஶ
௦ୀଵ [(1 − ℓᇱ௦݇(ߚ

ଶ + [ଶܯ
భ
మ.                  (19) 

Casimir energy is usually defined by 
subtracting the vacuum energies of the system in 
the presence and absence of the boundary 
condition. In this paper, by applying a slight 
modification to this definition, we defined the 
Casimir energy as:  

.஼௔௦ܧ = (ܽ).௏௔௖ܧ − ܽ).௏௔௖ܧ → ∞).       (20) 

The vacuum energy of a sphere with a large 
radius (ܧ௏௔௖.(ܽ → ∞)) was subtracted from the 
vacuum energy of the sphere with radius ܽ 
 In this approach to the Casimir .((ܽ).௏௔௖ܧ)
energy, the secondary sphere (the sphere with 
radius ܽ → ∞) plays the role of the Minkowski 
space (the space with no boundary condition). 
Hereafter, we follow the calculation of the 
Casimir energy for the massless scalar field with 
DBC/NBC. Therefore, using Eqs. (19) and (20), 
the Casimir energy for the massless scalar field 
in the RL-Lv system is obtained as:  

.஼௔௦ܧ
(ோ௅) =

ඥଵିఉ
ଶ

∑  ஶ
ℓୀ଴ (2ℓ + 1) ∑  ஶ

௦ୀଵ (݇ℓᇱ௦ − ത݇ℓᇱ௦)ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
୼࣭ℓᇲ

,  (21) 

where ݇ℓᇱ௦( ത݇ℓᇱ௦) is the allowed wave-vector of 
the quantum field related to the sphere with 
finite radius ܽ (infinite radius ܽ → ∞). For large 
values of ݏ and ℓ, both summations expressed in 
Eq. (21) go to infinity. To regularize and 
renormalize them, we used an integral 
representation; namely the Cauchy theorem [41, 
42] as:  

∑  ௡ ௡ݔ = ଵ
ଶగ௜ ∮  ஼ ݖݖ݀ ௗ

ௗ௭
ln݂(ݖ),         (22) 

Here, ݔ௡ is the root of the function ݂(ݔ). In 
the Cauchy theorem, the roots of a function are 
commonly enclosed with a counter-clockwise 
contour in the complex plane, then by integration 
on this contour, the sum of all the roots enclosed 

within this contour can be obtained. Whereas the 
wave-vector ݇ℓᇱ௦ originates from the roots of Eq. 
(16), we can define a contour ܥ in such a way 
that all wave-vectors lie inside the contour. 
Given the position of the roots (on the real axis 
of the complex plane), one can deform the 
contour ܥ consisting of two parts; the imaginary 
axis and a semicircle of a large radius in the right 
half-plane of the complex plane. For a specific 
radius of the semicircle, the contour integral ܥ 
gives a regularized value for the sum over wave-
vectors ݇ℓᇱ௦ that lie inside the contour. To obtain 
the sum over all wave-vectors ݇ℓᇱ௦ placed on the 
real axis of the complex plane, the radius of the 
semicircle in contour ܥ should be infinite. In this 
limit, the contribution of integral over the 
semicircle will cancel with its relevant integral 
that corresponds to the Minkowski space (the 
sphere with radius ܽ → ∞ in Eq. (21). Namely, 
no contribution remained from the integral over 
the semicircle of contour ܥ in the Casimir energy 
[for more details, see Ref. [40]]. Therefore, the 
only contribution that remained in the Casimir 
energy is associated with the integral over the 
imaginary axis of the contour ܥ. Hence, for the 
wave-vectors satisfying the DBC, the subtraction 
Δ࣭ℓᇱ denoted in Eq. (21) is obtained as:  

Δ࣭ℓᇱ
ࣞ = ଵ

గ ∫  ஶ
଴ ݕ݀ ቈln ௝ℓᇲ(௜௬௔)

௝ℓᇲ(௜௬௔→ஶ)
+ ln ௛ℓᇲ

(భ)(௜௬௔)

௛ℓᇲ
(భ)(௜௬௔→ஶ)

቉.     

             (23) 

The superscript ࣞ denotes the DBC. This 
quantity was obtained for the wave-vectors 
satisfying the NBC as:  

Δ࣭ℓᇱ
ࣨ = ଵ

గ ∫  ஶ
଴ ݕ݀ ቈln

೏
೏೤௝ℓᇲ(௜௬௔)

೏
೏೤௝ℓᇲ(௜௬௔→ஶ)

+

ln
೏

೏೤௛ℓᇲ
(భ)(௜௬௔)

೏
೏೤௛ℓᇲ

(భ)(௜௬௔→ஶ)
቉,          (24) 

where the superscript ࣨ refers to the NBC. The 
expression of Eqs. (23) and (24) should be 
simplified. To this end, we used the following 
relations for the modified Bessel function as:  

(ݖ)ఔܭ = ටଶ௜௭
గ

గ
ଶ

݅ఔାଵℎℓ
(ଵ)(݅ݖ), (ݖ)ఔܫ =

ටଶ௜௭
గ

݅ିఔ݆ℓ(݅ݖ),          (25) 

where ߥ = ℓ + ଵ
ଶ
. Moreover, the asymptotic form 

of the modified Bessel function like as ܫఔ(ݖ) ≈
௘೥

√ଶగ௭
 and ܭఔ(ݖ) ≈ ට గ

ଶ௭
݁ି௭  for large values of ݖ 
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with fixed ߥ were employed. Using Eq. (25) and 
the aforementioned asymptotic form of the 
modified Bessel function, a simplified form for 
the integrand of Eq. (23) is obtained. Then, by 
substituting the simplified result of Eq. (23) in 
Eq. (21), we obtain:  

.஼௔௦ܧ
(ࣞ,ோ௅) =

ඥଵିఉ
௔

∑  ஶ
ℓୀ଴

ఔ
గ ∫  ஶ

଴ ln[2ܫݕఔᇱ(ݕ)ܭఔᇱ(ݕ)]݀(26)   .ݕ 

In this equation, the Casimir energy was 
obtained for the massless and RL-Lv scalar field 
confined with DBC in a sphere with radius ܽ. 
This quantity for the NBC after implementing 
relation (25) and its asymptotic form on Eqs. 
(24) and (21) led to:  

.஼௔௦ܧ
(ࣨ,ோ௅) = ඥଵିఉ

௔
∑  ஶ

ℓୀ଴
ఔ
గ ∫  ஶ

଴ ln[1 −

ℳఔᇱ
ଶ ݕ݀[(ݕ) − .஼௔௦ܧ

(ࣞ,ோ௅) ,         (27) 

where ℳఔᇱ(ݕ) = ଶݕ ௗ
ௗ௬

(ଵ
௬

 .((ݕ)ఔᇱܭ(ݕ)ఔᇱܫ
Following the analytical computation of the 
Casimir energy via Eqs. (26) and (27) seems to 
be a cumbersome task. Therefore, we should 
follow the calculation numerically. Hence, in the 
next section, the numerical evaluation of the 
Casimir energy regarding both expressions given 
in Eqs. (26) and (27) is presented.  

2.4 ThL Lorentz Violation 

Admitting the vector ݑఓ = (0,0,1,0) in the 
Lagrangian shown in Eq. (1) and interacting the 
scalar field with this vector make the Lorentz 
symmetry broken in the theta direction of the 
spherical coordinate. We called this type of 
Lorentz symmetry breaking the theta-like (ThL) 
Lv. In this case, the equation of motion related to 
the Lagrangian indicated in Eq. (1) is obtained 
as:  
பమథ(௫)

ப௧మ − ଵ
௥మ

ப
ப௥

ଶݎ) பథ(௫)
ப௥

) − (1 −

(ߚ ଵ
௥మୱ୧୬ఏ

ப
பఏ

(sinߠ பథ(௫)
பఏ

)  − ଵ
௥మୱ୧୬మఏ

பమథ(௫)
பఝమ +

(ݔ)߶ଶܯ = 0.          (28) 

Assuming a prescribed form Φ෩ (்௛௅) (ݔ) =
෨ܶ(ݐ) ෨ܴ(ݎ) ෨ܲ(ߠ) ෨ܳ(߮) for the quantum field and 
substituting it into Eq. (28) detach the equation 
of motion into the following separate differential 
equations:  
ௗమொ෨(ఝ)

ௗఝమ + ݉′෪ଶ ෨ܳ(߮) = 0, ௗమ ෨்(௧)
ௗ௧మ + ߱ଶ ෨ܶ(ݐ) = 0,  

(1 − (ߚ ଵ
ୱ୧୬ఏ

ௗ
ௗఏ

(sinߠ ௗ௉෨(ఏ)
ௗఏ

) + [ℓ෨′(ℓ෨′ + 1) −
௠ᇱ෦ మ

ୱ୧୬మఏ
] ෨ܲ(ߠ) = 0,  

ଵ
௥మ

ௗ
ௗ௥

ଶݎ) ௗோ෨(௥)
ௗ௥

) + ( ෨݇ ଶ − ℓ෨ᇱ(ℓ෨ᇱାଵ)
௥మ ) ෨ܴ(ݎ) = 0.   (29) 

In Eqs. (29), the solution of the first two 
differential equations is elementary. However, 
the third one should be put in a standard form. 
For this purpose, we changed the variables ℓ′෩  
and ݉′෪ to:  

݉′෪ = ݉ඥ1 − ,ߚ ℓ෨′(ℓ෨′ + 1) = ℓ(ℓ + 1)(1 −   ,(ߚ
              (30) 

where ℓ = 0,1,2,3, . .. and ݉ = 0, ±1, ±2,
±3, . . . ., ±ℓ. This changing of variables converts 
the third differential equation written in Eqs. 
(29) to:  

ଵ
ୱ୧୬ఏ

ௗ
ௗఏ

(sinߠ ௗ௉෨(ఏ)
ௗఏ

) + [ℓ(ℓ + 1) − ௠మ

ୱ୧୬మఏ
] ෨ܲ(ߠ) =

0.            (31) 

This differential equation is the generalized 
Legendre equation and its solutions are the 
associated Legendre functions. In fact, the 
prescribed changing of variables written in Eq. 
(30) guarantees the orthogonality of the 
solutions. The general form of the last 
differential equation in Eqs. (29) is standard. Its 
solution for the inner region of the sphere with a 
specific radius led to the spherical Bessel 
function ݆ℓ෨ᇱ( ෨݇ݎ) and for the outer region of the 
sphere led to the Hankel function ℎℓ෨ᇱ

(ଵ)( ෨݇ݎ). 
Consequently, we can write the orthonormal set 
of solutions to Eq. (28) as:  

⎩
⎪
⎨

⎪
⎧ Φ෩ ℓ෨ᇱ௦௠෥ᇱ

(்௛௅)(ݔ) = ࣛℓ෨ᇱ௦௠෥ ᇱ
(்௛௅)݁ି௜ఠ௧

ℓܲ
௠(cosߠ)݁௜௠෥ᇱఝ݆ℓ෨ᇱ൫ ෨݇ݎ൯,

;݊݋݅݃݁ݎ ݎ݁݊݊ܫ
Φ෩ ℓ෨ᇱ௦௠෥ᇱ

(்௛௅)(ݔ) = ℬ
ℓ′෩௦௠′෪
(்௛௅)݁ି௜ఠ௧

ℓܲ
௠(cosߠ)݁௜௠෥ᇱఝℎℓ෨ᇱ

(ଵ)൫ ෨݇ݎ൯,
.݊݋݅݃݁ݎ ݎ݁ݐݑܱ

  

            (32) 

The coefficients ࣛℓ෨ᇱ௦௠෥ ᇱ
(்௛௅)  and ℬℓ෨ᇱ௦௠෥ ᇱ

(்௛௅)  are the 
normalization factors. Furthermore, ෨݇ = ݇ℓ෨ᇱ௦ 
refers to the allowed wave-vectors of the 
quantum field that should be obtained from the 
DBC/NBC imposed on the surface of the sphere. 
So, we have:  

.ܦ .ܤ .ܥ → ቊ
݆ℓ෨ᇱ(݇ℓ෨ᇱ௦ܽ) = 0,

ℎℓ෨ᇱ
(ଵ)(݇ℓ෨ᇱ௦ܽ) = 0,

   

ܰ. .ܤ .ܥ → ቐ
ௗ

ௗ௥
݆ℓ෨ᇱ(݇ℓ෨ᇱ௦ݎ)|௥ୀ௔ = 0,

ௗ
ௗ௥

ℎℓ෨ᇱ
(ଵ)(݇ℓ෨ᇱ௦ݎ)|௥ୀ௔ = 0.

        (33) 
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In these boundary condition expressions, the 
parameter ܽ is the radius of the sphere and the 
index ݏ refers to the root number of Bessel 
functions ݆ℓᇱ෩  and ℎℓᇱ෩

(ଵ) for a given value of ℓ′෩ . 
Moreover, using Eqs. (28) and (29), one can 
obtain the dispersion relation for the ThL-Lv 
system as follows:  

߱ℓ෨ᇱ௦
ଶ = ݇ℓ෨ᇱ௦

ଶ +  ଶ.          (34)ܯ

To obtain the vacuum energy of the system, 
we should promote the quantum field to the field 
operator. To this end, we expanded the field 
operator ߶(ݔ) as a function of an orthonormal 
set of solutions displayed in Eq. (32) as:  

(ݔ)߶ = ∑  ℓ,௠,௦ [Φℓ෨ᇱ௦௠෥ ᇱ
(்௛௅) (ݔ)܉ℓ෨ᇱ௦௠෥ ᇱ +

Φℓ෨ᇱ௦௠෥ ᇱ
(்௛௅) ∗(ݔ)܉ℓ෨ᇱ௦௠෥ ᇱ

ற ],          (35) 

where ܉ℓ෨ᇱ௦௠෥ ᇱ (܉ℓ෨ᇱ௦௠෥ ᇱ
ற ) is the annihilation 

(creation) operator and Φℓ෨ᇱ௦௠෥ ᇱ
(்௛௅)∗(ݔ) is the 

complex conjugate of Φℓ෨ᇱ௦௠෥ ᇱ
(்௛௅) (ݔ). To obtain the 

zero-point energy of the system, the expansion 
form of the field operator given in Eq. (35) was 
substituted in the Hamiltonian operator and then 
the common procedure of canonical quantization 
was performed. Afterward, the resulting vacuum 
energy of a sphere with radius ܽ reads as:  

.௏௔௖ܧ
(்௛௅) (ܽ) = 〈0|ܪ|0〉 = ଵ

ଶ
∑  ஶ

ℓୀ଴ (2ℓ +

1) ∑  ஶ
௦ୀଵ [݇ℓᇱ෩ ,௦

ଶ + [ଶܯ
భ
మ.         (36) 

To compute the Casimir energy of the 
massless and ThL-Lv scalar field, we firstly 
preferred to compare the vacuum energy of the 
RL-Lv scalar field given in Eq. (19) with Eq. 
(36). This comparison for the massless scalar 
field exposes two notable differences between 
them; the overall factor ඥ1 −  and the ߚ
difference in the values of ℓ′ and ℓ෨′. The 
expression of vacuum energy for the massless 
scalar field (ܯ = 0) given in Eq. (19) shows that 
when the overall factor ඥ1 −  is dropped and ߚ
the value of ℓ′ is replaced by ℓ෨′, the vacuum 
energy of the massless scalar field for the case of 
ThL Lorentz violation is obtained. Therefore, we 
expect that the Casimir-energy expression for the 
ThL-Lv scalar field confined with DBC in a 
sphere with radius ܽ. After employing the 
Cauchy theorem (such as what occurred in the 
case of RL-Lv), we obtained:  

.஼௔௦ ܧ
 (ࣞ,்௛௅) =

ଵ
௔

∑  ஶ
ℓୀ଴

ఔ
గ ∫  ஶ

଴ ln[2ܫݕఔᇱ෥ ఔᇱ෥ܭ(ݕ) ,ݕ݀[(ݕ) ෩′ߥ = ℓ′෩ +
ଵ
ଶ

, ߥ ݀݊ܽ = ℓ + ଵ
ଶ
          (37) 

where ℓ′෩(ℓ′෩ + 1) = (1 − ℓ(ℓ(ߚ + 1). 
Conducting the same process for the case of 
NBC leads to:  

.஼௔௦ ܧ
 (ࣨ,்௛௅) = ଵ

௔
∑  ஶ

ℓୀ଴
ఔ
గ ∫  ஶ

଴ ln[1 − ℳఔᇱ෥
ଶ ݕ݀[(ݕ) −

.஼௔௦ ܧ
 (ࣞ,்௛௅) ,           (38) 

where ℳఔ෥ᇱ(ݕ) = ଶݕ ௗ
ௗ௬

(ଵ
௬

 .In Eqs .((ݕ)ఔ෥ᇱܭ(ݕ)ఔ෥ᇱܫ
(37) and (38), superscript ࣞ(ࣨ) indicates the 
DBC (NBC). Meanwhile, since the analytical 
computation of the Dirichlet and Neumann 
Casimir energy displayed in Eqs. (37) and (38) 
seem to be impossible, the numerical evaluation 
of these expressions was carried out in the next 
section.  

3. Numerical Evaluation of the 
Casimir Energy 

In this section, we presented the numerical 
part of the Casimir-energy computation for the 
massless and Lv scalar field confined with 
DBC/NBC in the sphere. This numerical 
evaluation is divided into the following sub-
sections according to the type of boundary 
conditions (Dirichlet and Neumann).  

3.1 Dirichlet Boundary Condition (DBC) 
To obtain the Dirichlet Casimir energy for the 

RL-Lv scalar field, we started with Eq. (26). In 
this equation, the summation diverges when the 
value of ℓ goes to infinity. To reveal the type of 
this divergency, the summand in Eq. (26) was 
expanded for large values of ℓ as follows:  

࣫ℓ = ఔ
గ ∫  ஶ

଴ ln[2ܫݕఔᇱ(ݕ)ܭఔᇱ(ݕ)]݀ݕ  

≃ ିఔఔᇱ
ଶ

− ఔ
ଵଶ଼ఔᇱ

+ ଷହఔ
ଷଶ଻଺଼ఔᇱయ + ହ଺ହఔ

ଵ଴ସ଼ହ଻଺ఔᇱఱ +
 (39)           .(଻ି′ߥ)ࣩ

In this equation, the values of parameters are: 
′ߥ = ℓ′ + ଵ

ଶ
ߥ , = ℓ + ଵ

ଶ
, and ℓ′(ℓ′ + 1) = ℓ(ℓାଵ)

ଵିఉ
. 

The first two terms on the right-hand side of Eq. 
(39) give rise to divergence when summing up 
with respect to ℓ. To exclude these divergent 
parts from the integral result, we firstly defined 
࣫ℓ

 ே௢௥. = ఔ
గ ∫  ஶ

଴ ln[2ܫݕఔᇱ(ݕ)ܭఔᇱ(ݕ)]݀ݕ + ఔఔᇱ
ଶ

+
ఔ

ଵଶ଼ఔᇱ
 and then rewrote Eq. (26) as follows:  
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.஼௔௦ ܧ
 (ோ௅) =

ඥଵିఉ
௔

∑  ஶ
ℓୀ଴ ࣫ℓ

 ே௢௥. − ඥଵିఉ
௔

∑  ஶ
ℓୀ଴ (ఔఔᇱ

ଶ
+ ఔ

ଵଶ଼ఔᇱ
)ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

ℋ(ఉ)

.  

              (40) 

TABLE 1. For RL (ThL) Lorentz violation, the 
results of the numerical values of ࣫ℓ

ே௢௥. 
( ෨࣫ℓ

ே௢௥.) and ࣫ℓ
஺௦௬. ( ෨࣫

ℓ
஺௦௬.) are listed for a 

specific value of ߚ = 0.1. 
 ݊݋݅ݐ݈ܽ݋݅ݒ ݖݐ݊݁ݎ݋ܮ ܮܴ

ℓ ࣫ℓ
ே௨௠. ࣫ℓ

஺௦௬. 
0 0.0019128 0.0043488 
1 0.0003503 0.0003281 
2 0.0001379 0.0001361 
3 0.0000721 0.0000719 
4 0.0000442 0.0000441 
5 0.0000297 0.0000297 
 

ܶℎ݊݋݅ݐ݈ܽ݋݅ݒ ݖݐ݊݁ݎ݋ܮ ܮ 
ℓ ෨࣫ℓ

ே௨௠. ෨࣫
ℓ
஺௦௬. 

0 0.0019128 0.0043488 
1 0.0004516 0.0004115 
2 0.0001841 0.0001811 
3 0.0000975 0.0000971 
4 0.0000601 0.0000599 
5 0.0000406 0.0000405 

Practically, in Eq. (40), the sum over ࣫ℓ was 
replaced by the sum over the renormalized value 
of ࣫ℓ; namely ࣫ℓ

ே௢௥., and all divergent 
contributions were gathered in the function 
ℋ(ߚ). The value of ߚ is usually set much 
smaller than one. To compute the function 
ℋ(ߚ), we expanded its summand as follows:  

ℋ(ߚ) 
ఉ→଴
ሱ⎯ሮ ∑  ஶ

ℓୀ଴ [(ିఔమ

ଶ
− ଵ

ଵଶ଼
) + −)ߚ ఔమ

ସ
−

ଵ
ଵ଴ଶସఔమ + ଵ଻

ଶହ଺
) + −)ଶߚ ଷ

ଵ଺ଷ଼ସఔర − ଷ
ଵ଺

ଶߥ +
ଽ

ଶ଴ସ଼ఔమ + ଷଷ
ଵ଴ଶସ

)] +  (41)         .(ଷߚ)ࣩ

Notably, the analytic continuation value of 
ℋ(ߚ) for the system preserving the Lorentz 
symmetry is zero. However, in the RL-Lv 
system, it is not equated to zero. So, to obtain 
this function, by applying the analytic 
continuation technique and using the meaning of 
the Hurwitz zeta function, we have:  

ℋ(ߚ) = ∑  ஶ
ℓୀ଴ (ఔఔᇱ

ଶ
+ ఔ

ଵଶ଼ఔᇱ
)  

ఉ→଴ 
ሱ⎯⎯ሮ ିఉ

ଵ଴ଶସ
,2)ߞ ଵ

ଶ
) − ଷఉమ

ଵ଺ଷ଼ସ
,4)ߞ ଵ

ଶ
) + ଽఉమ

ଶ଴ସ଼
,2)ߞ ଵ

ଶ
) −

ହఉయ

ଵଷଵ଴଻ଶ
,6)ߞ ଵ

ଶ
) + ଵଽఉయ

ଷଶ଻଺଼
,4)ߞ ଵ

ଶ
) + ଵ଻ఉయ

଼ଵଽଶ
,2)ߞ ଵ

ଶ
) +

 (42)           ,(ସߚ)ࣩ

where ߙ)ߞ, (ݖ = ∑  ஶ
௡ୀ଴ (݊ +  ఈ is the Hurwitzି(ݖ

zeta function. The first summation on the right-
hand side of Eq. (40) is convergent due to the 
well-known behavior of the modified Bessel 
functions ܫఔ(ݕ) and ܭఔ(ݕ). Moreover, Table (1) 
demonstrates that the numerical values of ࣫ℓ

ே௢௥. 
and ࣫ℓ

஺௦௬. = ଷହఔ
ଷଶ଻଺଼ఔᇱయ + ହ଺ହఔ

ଵ଴ସ଼ହ଻଺ఔᇱఱ become 
rapidly close to each other and for ℓ > 5, the 
difference between ࣫ℓ

ே௢௥. and ࣫ℓ
஺௦௬. is verily 

insignificant. Hence, in the calculation of the 
first summation on the right-hand side of Eq. 
(40), the sum over the numerical value of ࣫ℓ

ே௢௥.  
up to ℓ = 5 was conducted. In the following, for 
ℓ > 5, the sum over the asymptotic form of 
࣫ℓ

 ே௢௥.; namely ࣫ℓ
஺௦௬., was replaced. Therefore, 

the final form of expression for the Casimir 
energy regarding the RL-Lv scalar field confined 
with DBC in a sphere with radius ܽ was obtained 
as:  

.஼௔௦ܧ
(ோ௅) = ඥଵିఉ

௔
[∑  ହ

ℓୀ଴ ࣫ℓ
ே௢௥. + ∑  ஶ

ℓୀ଺ ቂ ଷହఔ
ଷଶ଻଺଼ఔᇱయ +

ହ଺ହఔ
ଵ଴ସ଼ହ଻଺ఔᇱఱ +. . . ቃ − ℋ(ߚ)].         (43) 

To obtain the Dirichlet Casimir energy for the 
ThL-Lv scalar field, we start with Eq. (37). It is 
expected that for large values of ߥ෤′, the behavior 
of summand in Eq. (37) would be the same as 
the form of expansion shown in Eq. (39). The 
first two terms on the right-hand side of Eq. (39) 
give rise to infinity when summing up with 
respect to ℓ. Hence, we excluded these two terms 
from the summand of Eq. (37) and rewrote it as 
follows:  

.஼௔௦ܧ
(ࣞ,்௛௅) =

ଵ
௔

∑  ஶ
ℓୀ଴ ൦ఔ

గ ∫  ஶ
଴ ln[2ܫݕఔ෥ᇱ(ݕ)ܭఔ෥ᇱ(ݕ)]݀ݕ + ఔఔ෥ᇱ

ଶ
+ ఔ

ଵଶ଼ఔ෥ᇱᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
෨࣫ℓ

 ಿ೚ೝ.

൪ −

ଵ
௔

∑  ஶ
ℓୀ଴ ቂఔఔ෥ᇱ

ଶ
+ ఔ

ଵଶ଼ఔ෥ᇱ
ቃᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

ℋ෩(ఉ)

          (44) 

In this equation, we remind that the values of 
parameters are: ߥ෤′ = ℓ෨′ + ଵ

ଶ
ߥ , = ℓ + ଵ

ଶ
 and 

ℓ෨′(ℓ෨′ + 1) = (1 − ℓ(ℓ(ߚ + 1). The first 
summation on the right-hand side of Eq. (44) is 
convergent. However, the second one diverges 
and to find a finite contribution from this term, 
the analytic continuation technique should be 
applied. For this purpose, we expanded the 
summand of function ℋ෩ ߚ in the limit (ߚ) → 0 
as follows:  
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∑  ஶ
ℓୀ଴ ℋ෩ (ߚ) = ∑  ஶ

ℓୀ଴ ቂ(ఔమ

ଶ
+ ଵ

ଵଶ଼
) + −)ߚ ఔమ

ସ
−

ଵ
ଵ଴ଶସఔమ + ଵ଻

ଶହ଺
) )ଶߚ+ ଷ

ଵ଺ଷ଼ସఔర − ଷ
ଵ଺

ଶߥ −
ଵଵ

ଶ଴ସ଼ఔమ + ଷହ
ଵ଴ଶସ

)ቃ +  (45)         .(ଷߚ)ࣩ

Then, by using the analytic continuation 
technique and the meaning of the Hurwitz zeta 
function, we obtained:  

ℋ෩ (ߚ) = ∑  ஶ
ℓୀ଴ (ఔఔ෥ᇱ

ଶ
+ ఔ

ଵଶ଼ఔ෥ᇱ
) 

ఉ→଴ 
ሱ⎯⎯ሮ ିఉ

ଵ଴ଶସ
,2)ߞ ଵ

ଶ
) +

ଷఉమ

ଵ଺ଷ଼ସ
,4)ߞ ଵ

ଶ
) − ଵଵఉమ

ଶ଴ସ଼
,2)ߞ ଵ

ଶ
) − ହఉయ

ଵଷଵ଴଻ଶ
,6)ߞ ଵ

ଶ
) +

ଷଵఉయ

ଷଶ଻଺଼
,4)ߞ ଵ

ଶ
) + ଺ଷఉయ

଼ଵଽଶ
,2)ߞ ଵ

ଶ
) +  (46)        ,(ସߚ)ࣩ

 

 
FIG. 1. The plot of the leading-order Casimir energy for the massless and Lv scalar field confined with DBC in a 

sphere with radius ܽ; in this plot, the Casimir energy values for a sequence of cases of Lorentz violation are 
displayed. The value of ߚ in all graphs is ߚ = 0.1.  

 

where ߙ)ߞ, (ݖ = ∑  ஶ
௡ୀ଴ (݊ +  ఈ is the Hurwitzି(ݖ

zeta function. For a specific value of ߚ, as Table 
(1) demonstrates, the numerical value of ෨࣫ℓ

ே௢௥. 
approached its asymptotic form; namely, 
෨࣫

ℓ
஺௦௬. = ଷହఔ

ଷଶ଻଺଼ఔᇱ෥ య + ହ଺ହఔ
ଵ଴ସ଼ହ଻଺ఔᇱ෥ ఱ. This approaching 

manner holds for all values of ߚ < 1 as well. 
This behavior prompted us to calculate the sum 
in Eq. (44) by numerically conducting the sum 
over ෨࣫ℓ

ே௢௥. up to ℓ = 5 and replacing the value 
of ࣫ℓ

ே௢௥. with ࣫ℓ
஺௦௬. for ℓ > 5. Therefore, the 

final Casimir-energy value for the ThL-Lv scalar 
field confined with DBC in a sphere with radius 
ܽ was obtained as:  

.஼௔௦ܧ
(்௛௅) = ଵ

௔
ቂ∑  ହ

ℓୀ଴ ෨࣫ℓ
ே௢௥. + ∑  ஶ

ℓୀ଺ ቂ ଷହఔ
ଷଶ଻଺଼ఔᇱ෥ య +

ହ଺ହఔ
ଵ଴ସ଼ହ଻଺ఔᇱ෥ ఱ +. . . ቃ − ℋ෩  ቃ.         (47)(ߚ)

In Fig. (1), for a specific value of ߚ, the 
Casimir energy for massless scalar field confined 
with DBC in a sphere with radius ܽ as a function 
of its radius was plotted. In this Figure, the 
Casimir energy was displayed regarding the 
system that preserves the Lorentz symmetry 
along with TL, PL, RL and ThL Lorentz 

violation. In this set of graphs, multiple types of 
Lorentz violations are compared with each other. 
For a specific value of ߚ, the distance between 
graphs could indicate the rate of influence of the 
Lorentz symmetry breaking on the Casimir 
energy.  

3.2 Neumann Boundary Condition (NBC) 
In this sub-section, the numerical 

computation of the Casimir energy was 
presented regarding the massless and Lv scalar 
field subjected to the NBC on the sphere. To 
evaluate the Casimir energy for the RL-Lv scalar 
field, we should start with Eq. (27). Large values 
of ℓ render the summation of Eq. (27) to infinity. 
To discover the source of divergency, we 
expanded the summand in the large value of ℓ as 
follows: 

ℓ࣪ = ఔ
గ ∫  ஶ

଴ ln[1 − ℳఔᇱ
ଶ ݕ݀[(ݕ) = ିଵଽఔ

଺ସఔᇱ
−

ଵହଷఔ
ଵ଺ଷ଼ସఔᇱయ − ଻ଵଽ଻ఔ

ଶమభఔᇱఱ +  (48)         ,(଻ି′ߥ)ࣩ

where ߥ′ = ℓ′ + ଵ
ଶ
 and ℓ′(ℓ′ + 1) = ℓ(ℓାଵ)

ଵିఉ
. The 

first term on the right-hand side of Eq. (48) is 
divergent when summing up to infinity with 
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respect to ℓ is computed. To eliminate its 
divergent contribution, we subtracted this term 
from ℓ࣪, and defined ℓ࣪

ே௢௥. = ℓ࣪ + ଵଽఔ
଺ସఔᇱ

. 
Therefore, we can rewrite Eq. (27) as:  

.஼௔௦ܧ
(ࣨ,ோ௅) = ඥଵିఉ

௔
∑  ஶ

ℓୀ଴ ቂఔ
గ ∫  ஶ

଴ lnൣ1 −

ℳఔᇲ
ଶ ݕ൧݀(ݕ) + ଵଽఔ

଺ସఔᇲቃ − ඥଵିఉ
௔

∑  ஶ
ℓୀ଴

ଵଽఔ
଺ସఔᇲᇣᇧᇧᇤᇧᇧᇥ

ℛ(ఉ)

−

.஼௔௦ܧ
(ࣞ,்௅).           (49) 

Unlike the convergent contribution of the first 
summation in Eq. (49), the second one is 
divergent. To remove its divergency, we used the 
analytic continuation technique. To imply this 
technique, we expanded the summand in ℛ(ߚ) 
in the limit ߚ → 0 as follows:  

ℛ(ߚ) = ∑  ஶ
ℓୀ଴ ቂଵଽ

଺ସ
+ ( ଵଽ

ଵଶ଼
− ଵଽ

ହଵଶఔమ)ߚ + ( ଵଽ
ହଵଶ

−
ହ଻

଼ଵଽଶఔర + ଵଽ
ଵ଴ଶସఔమ)ߚଶ + ( ଵଽ

ଵ଴ଶସ
− ଽହ

଺ହହଷ଺ఔల +
ହ଻

ଵ଺ଷ଼ସఔర + ଵଽ
ସ଴ଽ଺ఔమ)ߚଷቃ +  (50)        .(ସߚ)ࣩ

Then, by use of the zeta function and analytic 
continuation techniques, we obtained:  

ℛ(ߚ) = − ଵଽఉ
ହଵଶ

,2)ߞ ଵ
ଶ
) + ቂ− ହ଻

଼ଵଽଶ
,4)ߞ ଵ

ଶ
) +

ଵଽ
ଵ଴ଶସ

,2)ߞ ଵ
ଶ
)ቃ ଶߚ + ቂ− ଽହ

଺ହହଷ଺
,6)ߞ ଵ

ଶ
) +

ହ଻
ଵ଺ଷ଼ସ

,4)ߞ ଵ
ଶ
) + ଵଽ

ସ଴ଽ଺
,2)ߞ ଵ

ଶ
)ቃ ଷߚ +  (51) ,(ସߚ)ࣩ

TABLE 2. For RL (ThL) Lorentz violation, the 
results of the numerical values of ℓ࣪

ே௢௥. 
( ෨࣪ℓ

ே௢௥.) and ℓ࣪
஺௦௬. ( ෨࣪

ℓ
஺௦௬.) are listed for a 

specific value of ߚ = 0.1. 
 ݊݋݅ݐ݈ܽ݋݅ݒ ݖݐ݊݁ݎ݋ܮ ܮܴ

ℓ ℓ࣪
ே௢௥. ℓ࣪

஺௦௬. 
1 -0.2114802 -0.0922623 
2 -0.0041191 -0.0041392 
3 -0.0013519 -0.0013516 
4 -0.0006599 -0.0006705 
5 -0.0004011 -0.0004009 
6 -0.0002669 -0.0002668 
  

ܶℎ݊݋݅ݐ݈ܽ݋݅ݒ ݖݐ݊݁ݎ݋ܮ ܮ 
ℓ ෨࣪ℓ

ே௢௥. ෨࣪
ℓ
஺௦௬. 

1 -0.2114802 -0.0922623 
2 -0.0055882 -0.0056279 
3 -0.0018513 -0.0018514 
4 -0.0009089 -0.0009194 
5 -0.0005502 -0.0005499 
6 -0.0003661 -0.0003659 

where ߙ)ߞ,  is the Hurwitz zeta function. It is (ݖ
hard to perform the numerical computation of 
the first summation in Eq. (49) for all numbers 
of ℓ. Therefore, considering a specific accuracy 
for the result, we replaced the expression ℓ࣪

ே௢௥. 
with its asymptotic form; namely, ℓ࣪

஺௦௬. =
ଵହଷఔ

ଵ଺ଷ଼ସఔᇱయ + ଻ଵଽ଻ఔ
ଶమభఔᇱఱ. As Table (2) demonstrates, 

with increasing the value ℓ, the values of ℓ࣪
ே௢௥. 

and ℓ࣪
஺௦௬. approache rapidly each other. This 

table also shows that the difference between 
values ℓ࣪

ே௢௥. and ℓ࣪
஺௦௬. for ℓ > 5 is highly 

insignificant. Hence, for ℓ > 5, we replaced the 
numerical evaluation of ℓ࣪

ே௢௥. with the analytical 
form of ℓ࣪

஺௦௬.. Therefore, the Casimir-energy 
expression for the RL-Lv scalar field confined 
with NBC in a sphere with radius ܽ is obtained 
as:  

.஼௔௦ܧ
(ࣨ,ோ௅) = ඥଵିఉ

௔
ൣ∑  ହ

ℓୀ଴ ℓ࣪
ே௢௥. + ∑  ஶ

ℓୀ଺ ℓ࣪
஺௦௬. −

ℛ(ߚ)൧ − .஼௔௦ܧ
(ࣞ,ோ௅) .          (52) 

To obtain the Casimir energy for the ThL-Lv 
scalar field confined with NBC in the sphere, we 
refer to the form of expressions given in Eqs. 
(27) and (38). According to the expression of the 
Casimir energy given in Eq. (27), the Casimir 
energy of massless scalar field for the case of the 
ThL Lorentz violation is obtained when the 
overall factor ඥ1 −  is dropped and the value ߚ
of ℓ′ is replaced by ℓ෨′. Therefore, the same 
calculation procedure is conducted here 
regarding the ThL-Lv. Ultimately, the final 
result regarding the Casimir energy for the 
massless and ThL-Lv scalar field confined with 
NBC in a sphere with radius ܽ is obtained as:  

.஼௔௦ܧ
(ࣨ,்௛௅) = ଵ

௔
ቄ∑  ହ

ℓୀ଴ ቂఔ
గ ∫  ஶ

଴ ln[1 − ℳఔ෥ᇱ
ଶ ݕ݀[(ݕ) +

ଵଽఔ
଺ସఔ෥ᇱ

ቃ + ∑  ஶ
ℓୀ଺ ቂ ଵହଷఔ

ଵ଺ଷ଼ସఔᇱ෥ య + ଻ଵଽ଻ఔ
ଶమభఔᇱ෥ ఱቃ − ℛ෨(ߚ)ቅ −

.஼௔௦ܧ
(ࣞ,்௛௅),           (53) 

where ߥ′෩ = ℓ′෩(ℓ′෩ + 1) and ℓ′෩(ℓ′෩ + 1) = (1 −
ℓ(ℓ(ߚ + 1). Furthermore, the function ℛ෨(ߚ) 
reads as:  

ℛ෨(ߚ) = − ଵଽఉ
ହଵଶ

,2)ߞ ଵ
ଶ
) + ቂ ହ଻

଼ଵଽଶ
,4)ߞ ଵ

ଶ
) −

ହ଻
ଵ଴ଶସ

,2)ߞ ଵ
ଶ
)ቃ ଶߚ + ቂ− ଽହ

଺ହହଷ଺
,6)ߞ ଵ

ଶ
) +

ଶ଼ହ
ଵ଺ଷ଼ସ

,4)ߞ ଵ
ଶ
) − ଶ଼ହ

ସ଴ଽ଺
,2)ߞ ଵ

ଶ
)ቃ ଷߚ +  (54) .(ସߚ)ࣩ
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FIG. 2. The plot of the leading-order Casimir energy for the massless and Lv scalar field confined with NBC in a 

sphere with radius ܽ. In this plot, the Casimir energy values are displayed for a sequence of cases of Lorentz 
violation. The value of ߚ in all graphs is ߚ = 0.1. 

 
FIG. 3. The plot of the relative changes in the Casimir energy for the massless and Lv scalar field confined with 
DBC/NBC in a sphere with radius ܽ. In this plot, the relative changes are displayed in the Casimir energy values 

for a sequence of cases in Lorentz violation. This sequence of cases consists of TL, RL and ThL Lorentz 
violations. According to Eq. (11), for all values of ߚ, the expression Δܧ஼௔௦.

(௉௅) /ܧ஼௔௦.
(௉௅)  is exactly equated to zero.  

 

Fig. (2) shows the Casimir energy of the 
massless scalar field confined with NBC in a 
sphere as a function of its radius. This figure 
shows the Casimir energy for systems in which 
the Lorentz symmetry is broken in the TL, RL, 
ThL and PL directions. Besides, Fig. (3) shows 
the relative energy changes of the Casimir for 
each of the types of Lorentz symmetry breaking 
and boundary conditions. Note that in the case of 
TL-Lv for both DBC and NBC, the amount of 
Casimir energy is changed by only one general 
factor ଵ

ඥଵାఉ
. Therefore, the relative changes of 

the Casimir energy are the same for both types of 
boundary conditions. As it is clear in Figs. (1) 

and (2), the most influential effect of the Lorentz 
violation in the relative changes of the Dirichlet 
(Neumann) Casimir energy due to the Lv is 
related to the ThL-Lv (RL-Lv) scalar field. 
Furthermore, it is shown that by increasing ߚ, 
the effects of Lorentz violation increase on the 
Casimir energy. In contrast to the result reported 
in Ref. [40], we did not obtain any critical value 
for the Lv parameter (β) that returned the sign of 
the Casimir energy/force. For the DBC/NBC, 
Figs. (1) and (2) show that all obtained results 
for the Casimir energy are positive/negative and 
same as in the system without Lv, the related 
force is still repulsive/attractive. 
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4. Conclusion 
In this paper, the Casimir energy was 

calculated for the massless and Lv scalar field 
confined in a sphere with DBC/NBC. All 
possible violated directions to the Lv scalar field 
were studied. To present the pure contribution of 
each case of Lorentz violation, the relative 
changes in the Casimir energy were obtained. 
Finding the analytic form of the pure influences 
of Lorentz violation on the Casimir energy is a 
cumbersome task. Therefore, we calculated these 
effects numerically and compared the effects of 
Lorentz symmetry breaking for each of its states 
in the language of graphs. In the DBC, for a 
given value of ߚ, the maximum change due to 
Lorentz violation on the Casimir energy is 
related to the ThL-Lv scalar field, while for the 
NBC, this change is related to the RL-Lv state. 
In the case of RL-Lv, all obtained results for the 

Casimir energy have the same sign as the system 
without Lv and it seems that there is no critical 
value to invert the sign of the Casimir energy. 
For both types of boundary conditions, the 
Casimir energy of the PL-Lv scalar field 
remained unchanged with respect to the system 
without Lorentz violation. For the case of TL-Lv 
scalar field, the Casimir energy with respect to 
the Lorentz preserving system was disturbed 
only by the overall factor ଵ

ඥଵାఉ
.  
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Appendix A: Calculation of the Zero-point Energy 

At the first step, the normalization factor ࣛℓᇱ௦௠
(ோ௅)  displayed in Eq. (17) should be found. To do so, 

for the function Φℓᇱ௠௦
(ோ௅)  given in Eq. (17), we started by the following integration:  

∫  Φℓᇱభ௠భ௦భ

(ோ௅) (ݔ)Φℓᇱమ௠మ௦మ

(ோ௅)∗ ߮݀ߠ݀ݎ݀ߠଶsinݎ(ݔ) = ௦భ௦మߜ௠భ௠మߜℓభℓమߜ ,                      (A.1) 

where ߜ௜௝ is the Kronecker delta function. The normalization factor ࣛℓᇱ௦௠
(ோ௅)  after calculating the above 

normalization equation was obtained as:  

ࣛℓᇱ௦௠
(ோ௅) = ට

(ଶℓାଵ)(ℓି௠)!
ଶగ௔య(ℓା௠)!௝ℓᇲశభ

మ (௞ℓᇲೞ௔)
                         (A.2) 

Note that the parameter ℓ′(ℓ′ + 1) = ℓ(ℓାଵ)
ଵିఉ

 and ℓ = 0,1,2,3, . ... Indeed, for every integer value of 
ℓ, there is an effective angular momentum called ℓ′. The one by one relation between ℓ and ℓ′ makes 
us be still able to use the following orthogonality functions: 

∫  ௔
଴ ݆ఔ(ߙఔ௣ߩ/ܽ)݆ఔ(ߙఔ௤ߩ/ܽ)ߩଶ݀ߩ = ௔య

ଶ
[݆ఔାଵ(ߙఔ௣)]ଶߜ௣௤ ,  

∫  గ
଴ ௣ܲ

௠(cosߠ) ௤ܲ
௠(cosߠ)sinߠ݀ߠ = ଶ

ଶ௤ାଵ
(௤ା௠)!
(௤ି௠)!

௣௤ߜ ,  

∫  ଶగ
଴ ݁௜(௠భି௠మ)ఝ݀߮ = ௠భ௠మߜߨ2 .                         (A.3) 

The Hamiltonian operator for this case reads as:  

ܪ = ∫  ݀ ଷܠℋ = ∫  ݀ ଷܠ[ଵ
ଶ

Πଶ + ଵ
ଶ

(∇߶)ଶ + ଵ
ଶ

݉ଶ߶ଶ],                       (A.4) 

where  

Π(ݔ, (ݐ = ∑  ஶ
ℓୀ଴ ∑  ℓ

௠ୀିℓ ∑  ஶ
௦ୀଵ

ି௜ࣛℓᇲೞ೘
 (ೃಽ) ඥఠℓᇲ೘ೞ

√ଶ
[݁௜௠ఝ݁ି௜ఠℓᇲ೘ೞ௧

ℓܲ
௠(cosߠ)݆ℓᇱ(݇ℓᇱ௦ݎ)܉ℓ௠ − .ܥ .ܥ ],  

,ݔ)߶ (ݐ = ∑  ஶ
ℓୀ଴ ∑  ℓ

௠ୀିℓ ∑  ஶ
௦ୀଵ

ࣛℓᇲೞ೘
 (ೃಽ) 

ඥଶఠℓᇲ೘ೞ
[݁௜௠ఝ݁ି௜ఠℓᇲ೘ೞ௧

ℓܲ
௠(cosߠ)݆ℓᇱ(݇ℓᇱ௦ݎ)܉ℓ௠ + .ܥ .ܥ ].              (A.5) 

Substituting Eq. (A.5) in Eq. (A.4), we obtain:  
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ܪ = ∫  ∫  ∫ ߮݀ߠ݀ݎ݀ߠଶsinݎ  ∑  ℓభ௠భ௦భ
∑  ℓమ௠మ௦మ

ࣛℓᇲభೞభ೘భ
(ೃಽ) ࣛℓᇲమೞమ೘మ

(ೃಽ) ∗
ඥఠℓᇲభ೘భೞభఠℓᇲమ೘మೞమ

ଶ
  

[݁௜(௠భି௠మ)ఝ݁ି௜(ఠℓᇲభ೘భೞభିఠℓᇲమ೘మೞమ)௧
ℓܲభ

௠భ(cosߠ) ℓܲమ

௠మ(cosߠ)݆ℓᇱభ(݇ℓᇱభ௦భݎ)݆ℓᇱమ(݇ℓᇱమ௦మݎ)  

× ℓభ௠భ܉)
ற ℓమ௠మ܉ + 1) + ݁ି௜(௠భି௠మ)ఝ݁௜(ఠℓᇲభ೘భೞభିఠℓᇲమ೘మೞమ)௧

ℓܲభ

௠భ(cosߠ) ℓܲమ

௠మ(cosߠ)  

× ݆ℓᇱభ(݇ℓᇱభ௦భݎ)݆ℓᇱమ(݇ℓᇱమ௦మݎ)܉ℓభ௠భ
ற  ℓమ௠మ],                   (A.6)܉

where the following canonical commutation relation was applied:  

ℓభ௠భ௦భ܉] , ℓమ௠మ௦మ܉
ற ] = ௦భ௦మߜ௠భ௠మߜℓభℓమߜ ℓభ௠భ௦భ܉]  , , [ℓమ௠మ௦మ܉ = ℓభ௠భ௦భ܉]

ற , ℓమ௠మ௦మ܉
ற ] = 0.               (A.7) 

Now, using Eqs. (A.6) and (A.7), the Hamiltonian operator can be written as follows:  

ܪ = ∑  ℓ௠௦ ߱ℓ௠௦(܉ℓ௠௦
ற ℓ௠௦܉ + ଵ

ଶ
).                    (A.8) 

The zero-point energy associated with the above Hamiltonian operator is obtained as:  

ܧ = 〈0|ܪ|0〉 = ∑  ℓ௠௦
ଵ
ଶ

߱ℓᇱ௠௦ ,                     (A.9) 

where ߱ℓᇱ௠௦
ଶ = (1 − ℓᇱ௦݇(ߚ

ଶ +  .ଶ is the allowed wave numberܯ
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