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Abstract: The fractional form of the electromagnetic interaction into the Lagrangian 
density Fermi field is introduced using the left-right Riemann-Liouville fractional 
derivative. Agrawal procedure is employed to obtain Euler-Lagrange equations in the 
Riemann-Liouville fractional form. Then, the fractional Hamiltonian for these systems is 
constructed, which is used to find Hamilton's equations of motion in the same manner as 
those obtained by using the formulation of Euler-Lagrange equations from variational 
problems. It is found that the classical findings are derived as a special case of the 
fractional formulation for Euler-Lagrange and Hamiltonian equations in the limit n =1. 
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1. Introduction 

The concept of fractional calculus goes back 
to Leibniz, Liouville, Riemann, Grunwald, and 
Letnikov [1-3]. Derivatives and integrals of 
fractional order have found many applications in 
recent studies in mechanics and physics. In a 
relatively brief span of time, the range of these 
applications has grown significantly. This 
includes their utilization in areas such as the 
mechanics of fractal media, quantum mechanics, 
physical kinetics, plasma physics, mechanics of 
non-Hamiltonian systems, theory of long-range 
interaction, and many other physical topics [4-
20]. Nowadays, derivatives of arbitrary orders 
(fractional derivatives) are playing a significant 
role in physics, mathematics, and engineering 
[21, 22]. Riewe [23, 24] employed fractional 
calculus to develop a novel approach applicable 
to both conservative and nonconservative 
systems. This approach allows the inclusion of 
fractional derivatives  in both the Lagrangian and 
the Hamiltonian, whereas traditional Lagrangian 
mechanics primarily deals with first-order 
derivatives. In a sequel to Riewe’s work, 

Agrawal [25] presented Euler-Lagrange 
equations for unconstrained and constrained 
fractional variational problems and developed a 
formulation of Euler-Lagrange equations for 
continuous systems. In addition to that, Agrawal 
presented the transversality condition for 
fractional variational problems. Recently, Diab 
et al. [26] introduced the concept of classical 
fields with fractional derivatives using the 
fractional Hamiltonian formulation. They 
obtained the fractional Hamilton's equations for 
two classical field examples. The presented 
formulation and the resulting equations are very 
similar to those appearing in classical field 
theory. The innovative concepts provided in this 
manuscript include the following qualities: 
• The Hamilton equations are found by rewriting 

the Fermi electrodynamics with a fractional 
derivative. This is the first time 
electromagnetic interaction into the 
Lagrangian density Fermi field motion 
equations has been generated in terms of 
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fractional derivative using Fermi field 
electrodynamics and Hamilton's equation. 

• Because the current formulation uses the 
fractional derivative, it is more difficult to 
solve in practice. To address this issue, we 
offer a successful and one-of-a-kind strategy. 

• Our formulas are generalized in this approach 
so that they can be applied to continuous 
systems with first-order derivatives. The 
purpose of the strategy is to obtain Fermi’s 
generalized electrodynamics. 

The objective of this paper is to reformulate 
electromagnetic interaction into the Lagrangian 
density Fermi field in a fractional form in terms 
of the Riemann-Liouville fractional derivative 
and to obtain equations of motion. Furthermore, 
it aims to make a comparison between the 
equations of motion obtained in this context and 
Hamilton's equations of motion in fractional 
form. 

The remainder of this paper is organized as 
follows: In Sec. 2, the definitions of fractional 
derivatives are discussed briefly. In Sec. 3, the 
fractional form of the Euler–Lagrangian equation 
is presented. Section 4 is devoted to the 
equations of motion in terms of Hamiltonian 
density in fractional form. In Sec. 5, one 
illustrative example is examined. Then, in Sec. 6 
we introduce the fractional form of the 
electromagnetic interaction into the Lagrangian 
density Fermi field using the Euler-Lagrange 
equations. The work closes with some 
concluding remarks (Sec. 7). 

2. Basic Definitions 
Several definitions of a fractional derivative 

have been proposed. These definitions include 
Riemann–Liouville, Caputo, Marchaud, and 
Riesz fractional derivatives [1]. In this section, 
we briefly present some fundamental definitions 
used in this work. The left and right Riemann–
Liouville fractional derivatives are defined as 
follows: 

௔ܦ ௫
ఈ݂(ݔ) =

ଵ
୻(௡ିఈ) ቀ ௗ

ௗ௫
ቁ

௡
∫ ݔ) − ߬)௡ିఈାଵ݂(߬)݀߬.௫

௔         (1) 

The right Riemann–Liouville fractional 
derivative is defined as  

௫ܦ ௕
ఈ݂(ݔ) = ଵ

୻(௡ିఈ) ቀ− ௗ
ௗ௫

ቁ
௡

∫ (߬ −௕
௫

  ௡ିఈାଵ݂(߬)݀߬.             (2)(ݔ

where Γ denotes the Gamma function and ߙ is 
the order of the derivative satisfying the 
condition where ݊ −  1 < ߙ  <  ݊. If ߙ is an 
integer, these derivatives are defined in the usual 
sense, i.e.: 

௔ܦ ௫
ఈ݂(ݔ) = ቀ ௗ

ௗ௫
ቁ

ఈ
 (3)             (ݔ)݂

௫ܦ ௕
ఈ݂(ݔ) = ቀ− ௗ

ௗ௫
ቁ

ఈ
ߙ (ݐ)݂ = 1,2, ..            (4) 

3. Fractional Euler–Lagrange 
Equation Interaction into the 
Lagrangian Density Fermi Field 

Recently, Agrawal has obtained the fractional 
Euler–Lagrange equations for variational 
problems [4]. A continuous system with 
Lagrangian density characterized in terms of 
dynamical field variables, generalized 
coordinates, and its derivative as 

ℒ = ℒ ቂ ܣఓ , ௔ܦ ௫ഋ
ఈ ఙܣ , ௫ഋܦ ௕

ఉܣఙቃ            (5) 

Euler-Lagrange equation for such Lagrangian 
density in fractional form can be given as  

ቈ డℒ
డ஺഑

+ డℒ
డ ஽ೌ ೣഋ

ഀ ஺഑
+ డℒ

డ ஽ೣഋ ್
ഁ஺഑

቉             (6) 

Using the variational principle, we can write 

ܵߜ = ∫  (7)           0=ݔℒ ݀ସߜ
Using Eq. (5), the variation of ℒ is: 

ℒߜ = ቈ డℒ
డ஺഑

ఙܣߜ + డℒ
డ ஽ೌ ೣഋ

ഀ ஺഑
ߜ ௔ܦ ௫ഋ

ఈ ఙܣ +

డℒ

డ ஽ೣഋ ್
ഁ஺഑

ߜ ௫ഋܦ ௕
ఉܣఙ቉             (8) 

Substituting Eq. (8) into Eq. (7), and using 
Eq. (9)  

අ
ߜ ௔ܦ ௫ഋ

ఈ ఙܣ = ௔ܦ ௫ഋ
ఈ ఙܣߜ

ߜ ௫ഋܦ ௕
ఉܣఙ = ௫ഋܦ ௕

ఉܣߜఙ
ඉ            (9) 

we get 

∫

⎣
⎢
⎢
⎢
⎢
⎡

డℒ
డ஺഑

ఙܣߜ + డℒ
డ ஽ೌ ೣഋ

ഀ ஺഑
௔ܦ ௫ഋ

ఈ ఙܣߜ
ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ

ୱୣୡ୭୬ୢ

+ డℒ

డ ஽ೣഋ ್
ഁ஺഑

௫ഋܦ ௕
ఉܣߜఙ

ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
୲୦୧୰ୢ ⎦

⎥
⎥
⎥
⎥
⎤

݀ସݔ = 0    (10) 

Integrating by parts the second and the third 
terms in Eq. (10) leads to the Euler–Lagrange 
equation: 
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൤
డℒ

డ஺഑
− ௔ܦ ௫ഋ

ఈ డℒ
డ ஽ೌ ೣഋ

ഀ ஺഑
− ௫ഋܦ ௕

ఉ డℒ

డ ஽ೣഋ ್
ഁ஺഑

൨ = 0.  
(11) 

The above equation illustrates the fractional 
form of the Euler-Lagrange equation in terms of 
Lagrangian density. 

It is worth mentioning that for α = β = 1, 
௔ܦ ௫ഋ

ఈ = ∂ఓ, ௫ഋܦ ௕
ఉ = − ∂ఓ ,  Eq. (11) reduces to 

the usual Euler-Lagrange equation for the 
classical fields [20]: 
డℒ

డ஺഑
− ∂ఓ

డℒ
డ൫பഋ஺഑൯ = 0            (12) 

4. Fractional Hamiltonian of 
Electromagnetic Interaction into the 
Lagrangian Density Fermi Field 

To construct the fractional Hamiltonian 
equation within Riemann–Liouville fractional 
derivative from fractional electromagnetic 
interaction into the Lagrangian density Fermi 
field, we consider the Lagrangian depending on 
fractional time derivatives of coordinates in the 
form: 

ℒ = ℒ ቈ
଴ܣ  , ௜ܣ , ௝ܣ , ௔ܦ

 
௧
ఈܣ௝, ௔ܦ

 
௧
ఈܣ௜

௔ܦ
 

௧
ఈܣ଴, ௔ܦ

 
௫೔
ఈ ௝ܣ , ௔ܦ

 
௫ೕ
ఈ ௜ܣ , ௔ܦ

 
௫೔
ఈ ,଴ܣ t 

቉   (13) 

The Hamiltonian depending on the fractional 
time derivatives reads as: 

ℒ = ℒ ቈ
଴ܣ  , ௜ܣ , ௝ܣ , ௔ܦ

 
௧
ఈܣ௝, ௔ܦ

 
௧
ఈܣ௜

௔ܦ
 

௧
ఈܣ଴, ௔ܦ

 
௫೔
ఈ ௝ܣ , ௔ܦ

 
௫ೕ
ఈ ௜ܣ , ௔ܦ

 
௫೔
ఈ ,଴ܣ t 

቉  (14) 

We introduce the generalized momenta as 
[27]: 

⎩
⎪
⎨

⎪
ఈಲబߨ⎧

ଵ = డℒ
డ൫ ஽ೌ ೟

ഀ஺బ൯
,

ఈಲ೔ߨ
ଵ = డℒ

డ൫ ஽ೌ ೟
ഀ஺೔൯

ఈಲೕߨ
ଵ = డℒ

డ൫ ஽ೌ ೟
ഀ஺ೕ൯

,           (15) 

The Hamiltonian depending on the fractional 
time derivatives reads as: 

H= ߨఈಲబ ௔ܦ
 

௧
ఈܣ଴ + ఈಲ೔ߨ  

௧ܦ
ఈܣ௜ + ఈಲೕ௔ߨ

௔ܦ 
 

௧
ఈܣ௝ −

 Lቈ
଴ܣ  , ௜ܣ , ௝ܣ , ௔ܦ

 
௧
ఈܣ௝ , ௔ܦ

 
௧
ఈܣ௜

, ௔ܦ
 

௧
ఈܣ௜ , ௔ܦ

 
௫೔
ఈ ௝ܣ , ௔ܦ

 
௫ೕ
ఈ ௜ܣ , ௔ܦ

 
௫೔
ఈ ,଴ܣ t

቉     (16) 

Calculating the total differential of this 
Hamiltonian, we get: 

ܪ݀ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ )ఈಲబ݀ߨ ௔ܦ

 
௧
ఈܣ଴) + ௔ܦ

 
௧
ఈܣ଴݀ ቀߨఈಲబቁ

ఈಲ೔݀൫ߨ+ ௔ܦ
 

௧
ఈܣ௜൯ + ௔ܦ

 
௧
ఈܣ௜݀ ቀߨఈಲ೔ቁ

 
ఈಲೕߨ + ݀൫ ௔ܦ

 
௧
ఈܣ௝൯ + ௔ܦ

 
௧
ఈܣ௝݀ ቀߨఈಲೕቁ 

− డ௅
డ௧

ݐ݀ − డ௅
డ൫ ஽ೌ

 
೟
ഀథ൯ ݀( ௔ܦ

 
௧
ఈ߶)

− డ௅
డቀ ஽ೌ

 
ೣೕ
ഀ థቁ

݀ ቀ ௔ܦ
 

௫ೕ
ఈ ߶ቁ

− డ௅
డቀ ஽ೌ

 
ೣೕ
ഀ థ∗ቁ

݀ ቀ ௔ܦ
 

௫ೕ
ఈ ߶∗ቁ 

ఈಲೕߨ݀+ ൫ ௔ܦ
 

௧
ఈܣ௝൯  − డ௅

డ஺ೕ ௝ܣ݀

− డு
డ஺೔ ௜ܣ݀ − డு

డ஺బ ଴ܣ݀

− డ௅
డቀ ஽ೌ

 
ೣೕ
ഀ ஺೔ቁ

݀൫ ௔ܦ
 

௫ೕ
ఈ ௜൯ ܣ

ఈಲ೔൫ߨ݀− ௔ܦ
 

௧
ఈܣ௜൯ − డு

డ஺ೕ ௝ܣ݀

− డ௅
డቀ ஽ೌ

 
ೣ೔
ഀ ஺ೕቁ

݀൫ ௔ܦ
 

௫೔
ఈ ௝൯ܣ

− డ௅
డቀ ஽ೌ

 
ೣ೔
ഀ ஺బቁ

݀൫ ௔ܦ
 

௫೔
ఈ  ଴൯ܣ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

(17)  

But the Hamiltonian is a function of the form: 

H =  H ൥
,଴ܣ  ௜ܣ , ௝ܣ , ,ݐ ఈಲబߨ  ,

ఈಲ೔ߨ  , ఈಲೕߨ , ௔ܦ
 

௫೔
ఈ ,଴ܣ ௔ܦ

 
௫೔
ఈ ,௝ܣ ௔ܦ

 
௫ೕ
ఈ   ௜൩ܣ

(18) 

Thus, the total differential of the Hamiltonian 
takes the form: 

ܪ݀ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

 
பୌ

ப஠ಉఽబ
dπ஑ఽబ + பୌ

ப஠ಉఽౠ
dπ஑ఽౠ

+ பୌ
ப஠ಉఽ౟

dπ஑ఽ౟ + பୌ
ப୅ౠ ௝ܣ݀

+ డு
డ஺೔ ௜ܣ݀ + డு

డ஺బ ଴ܣ݀ + డு
డ௧

ݐ݀

+ డு
డቀ ஽ೌ

 
ೣ೔
ഀ ஺బቁ

݀൫ ௔ܦ
 

௫೔
ఈ ଴൯ܣ

+ డு
డቀ ஽ೌ

 
ೣ೔
ഀ ஺೔ቁ

 ݀൫ ௔ܦ
 

௫೔
ఈ ௜൯ܣ

+ డு
డ( ஽ೌ

 
ೣೕ
ഀ ஺ೕ)

݀൫ ௔ܦ
 

௫ೕ
ఈ ௝൯ܣ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

         (19) 

Comparing Eq. (17) and Eq. (19), we get the 
Hamilton’s equations of motion: 

⎩
⎪
⎨

⎪
⎧

డு
డగഀಲೕ

= ௔ܦ
 

௧
ఈܣ௝  డு

డగഀಲ೔
= ௔ܦ

 
௧
ఈܣ௜

 

డு
డగഀಲబ

= ௔ܦ
 

௧
ఈܣ଴  డு

డ௧
= − డℒ

డ௧
 

        (20) 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧

డு
డቀ ஽ೌ

 
ೣ೔
ഀ ஺బቁ

= − డ௅
డቀ ஽ೌ

 
ೣ೔
ഀ ஺బቁ

 
 

డு
డቀ ஽ೌ

 
ೣ೔
ഀ ஺ೕቁ

=  − డ௅
డቀ ஽ೌ

 
ೣ೔
ഀ ஺ೕቁ

.
 

డு
డቀ ஽ೌ

 
ೣೕ
ഀ ஺೔ቁ

= − డ௅
డቀ ஽ೌ

 
ೣೕ
ഀ ஺೔ቁ

.
.
 

         (21) 

⎩
⎪
⎨

⎪
⎧

డு
డ∅

= − డ௅
డ஺బ

 
డு
డ஺೔ = − డ௅

డ஺೔

డு
డ஺ೕ = − డ௅

డ஺ೕ

           (22)  

5. Illustrative Example 
Fractional the Electromagnetic Interaction 
into the Lagrangian Density Fermi Field 

The most general form of Lagrangian density 
for a four-vector field is given by the so-called 
electromagnetic interaction into the Lagrangian 
density Fermi field [28]: 

ܮ =
− ଵ

ସ
(ݔ)ఓఔܨ(ݔ)ఓఔܨ − ଵ

ଶ
ቀ ఓ߲ܣఓ(ݔ)ቁ ቀ߲௩ܣఓ(ݔ)ቁ  

(23) 

where ܨఓఔ  is a four dimension antisymmetric 
second rank tensor and ܣఓ  is a four-vector 
potential. ܬఓ = ,ܿߩ)  ݆) is the usual four-vector 
current. 

These relationships are used to rebuild the 
electromagnetic interaction as a Riemann–
Liouville fractional Lagrangian density Fermi 
field. 

ቈ
ఓఔܨ = ௔ܦ ௫ഋ

ఈ ௩ܣ − ௔ܦ ௫ೡ
ఈ ఓܣ

ఓఔܨ = ௔ܦ ௫ഋ
ఈ ௩ܣ − ௔ܦ ௫ೡ

ఈ ఓܣ
቉         (24)  

൥ ఓ߲ = ௔ܦ ௫ഋ
ఈ = ൫ ௔ܦ ௧

ఈ , ௔ܦ ௫೔
ఈ ൯

߲ఓ = ௔ܦ ௫ഋ
ఈ = ൫ ௔ܦ ௧

ఈ , − ௔ܦ ௫೔
ఈ ൯

൩        (25)  

ఓఔܨఓఔܨ =
2 ቂ ௔ܦ ௫ഋ

ఈ ௩ܣ ௔ܦ ௫ഋ
ఈ ௩ܣ − ௔ܦ ௫ഋ

ఈ ௩ܣ ௔ܦ ௫ೡ
ఈ   ఓቃ  (26)ܣ

ቈ
A஑ = ൫ϕ, Aሬሬ⃗ ൯

A஑ = ൫ϕ, −Aሬሬ⃗ ൯
቉         (27)  

where ߤ = 0, ݅ = ݒ ݀݊ܽ 1,2,3 = 0, ݆ = 1,2,3  
Expand μ, ν, in termes of 0, i and 0, j and use 

the definition of the left Riemann–Liouville 
fractional derivative. The fractional 

electromagnetic Lagrangian density formulation 
takes the form:  

ℒ = − ଶ
ସ

⎣
⎢
⎢
⎢
⎡ −൫ Dୟ ୲

஑A୨൯
ଶ

+ Dୟ ୲
஑A୨ Dୟ ୶ౠ

஑ ϕ

−൫ Dୟ ୶౟
஑ ϕ൯

ଶ
+ Dୟ ୶౟

஑ ϕ Dୟ ୲
஑A୧

+൫ Dୟ ୶౟
஑ A୨൯

ଶ
− Dୟ ୶౟

஑ A୨ Dୟ ୶౟
஑ A୧⎦

⎥
⎥
⎥
⎤

+

ଵ
ଶ

 ൫ Dୟ ୲
஑ϕ − Dୟ ୶౟

஑ A୧൯ ቀ Dୟ ୲
஑ϕ − Dୟ ୶ౠ

஑ A୨ቁ  
(28) 

6. Fractional Form of Euler-Lagrange 
Equations of the Electromagnetic 
Interaction into the Lagrangian 
Density Fermi Field  

Let us start with the definition of fractional 
Lagrangian density and use the generalization 
formula of Euler–Lagrange Eq. (11) to obtain the 
equations of motion from of the electromagnetic 
interaction into the Lagrangian density Fermi 
field. 

Take the first field variable ߶, then: 

൤
డℒ
డథ

− ௔ܦ ௧
ఈ డℒ

డ ஽ೌ ೟
ഀథ

− ௔ܦ ௫೔
ఈ డℒ

డ ஽ೌ ೣ೔
ഀ థ൨ = 0       (29)  

Calculating these derivatives ߶ yields 

൞

డℒ
డథ

= Dୟ ୲
஑ϕ − Dୟ ୶౟

஑ A୧ − Dୟ ୶ౠ
஑ A୨

డℒ
డ ஽ೌ ೟

ഀథ
= 0

 
.

        (30) 

൜
డℒ

డ ஽ೌ ೣ೔
ഀ థ

= −൫− ௔ܦ ௫೔
ఈ ߶ + ௔ܦ ௧

ఈܣ௜൯        (31) 

Substituting Eqs. (30) and (31) in Eq. (29) we 
get: 

൥
Dୟ ୲

஑ϕ − Dୟ ୶౟
஑ A୧ − Dୟ ୶ౠ

஑ A୨ =

−൫− ௔ܦ ௫೔
ఈ ߶ + ௔ܦ ௧

ఈܣ௜൯
൩         (32) 

This represents the first non-homogeneous 
equation in fractional form. 

Now use the general formula (11) to obtain 
other equations of motion from the other fields' 
variables ܣ௜ and ݆ܣ. 

0 = ൤
డℒ
డ஺೔

− ௔ܦ ௧
ఈ డℒ

డ ஽ೌ ೟
ഀ஺೔

− ௔ܦ ௫೔
ఈ డℒ

డ ஽ೌ ೣ೔
ഀ ஺೔

൨       (33) 

Calculating these derivatives yields: 
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⎩
⎪
⎨

⎪
⎧

డℒ
డ஺೔

= ௜ܬ−

డℒ
డ ஽ೌ ೣ೔

ഀ ஺೔
= − Dୟ ୲

஑ϕ + Dୟ ୶౟
஑ A୨

         (34) 

ቄ
డℒ

డ ஽ೌ ೟
ഀ஺೔

= − ଶ
ସ

൫ ௔ܦ ௫೔
ఈ ߶൯         (35) 

Substituting Eqs. (35) and (34) in Eq. (33) we 
get: 

ቂ−ܬ௜ = ଶ
ସ

௔ܦ ௧
ఈ൫ ௔ܦ ௫೔

ఈ ߶൯ − Dୟ ୲
஑ϕ + Dୟ ୶౟

஑ A୨ቃ (36)  

and 

0 = ൤
డℒ

డ஺ೕ
− ௔ܦ ௧

ఈ డℒ
డ ஽ೌ ೟

ഀ஺ೕ
− ௔ܦ ௫೔

ఈ డℒ
డ ஽ೌ ೣ೔

ഀ ஺ೕ
൨      (37)  

Calculating these derivatives yields to: 

ቄ
డℒ

డ஺ೕ
= 0            (38) 

⎩
⎪
⎨

⎪
⎧

డℒ
డ ஽ೌ ೟

ഀ஺ೕ
= − ଶ

ସ
ቀ ௔ܦ ௫ೕ

ఈ ߶ + 2 ௔ܦ ௧
ఈܣ௝ቁ

డℒ
డ ஽ೌ ೣ೔

ഀ ஺ೕ
= − ଶ

ସ
ቀ2 ௔ܦ ௫೔

ఈ ௝ܣ − ௔ܦ ௫ೕ
ఈ ௜ቁܣ

           (39)  

Substituting Eqs. (38) and (39) in Eq. (37) we 
get:  

⎣
⎢
⎢
⎡0 = ଶ

ସ
௔ܦ ௧

ఈ ቀ ௔ܦ ௫ೕ
ఈ ߶ + 2 ௔ܦ ௧

ఈܣ௝ቁ

+ ଶ
ସ

௔ܦ ௫೔
ఈ ቀ2 ௔ܦ ௫೔

ఈ ௝ܣ − ௔ܦ ௫ೕ
ఈ ௜ቁܣ ⎦

⎥
⎥
⎤
        (40) 

Add Eqs. (36) and (40) to get: 

቎
௜ܬ− = ଶ

ସ
௔ܦ ௧

ఈ൫ ௔ܦ ௫೔
ఈ ߶൯ + ଶ

ସ
௔ܦ ௫೔

ఈ ቀ ௔ܦ ௫ೕ
ఈ ௝ቁܣ

+ ଶ
ସ

௔ܦ ௫೔
ఈ ቀ2 ௔ܦ ௫೔

ఈ ௝ܣ − ௔ܦ ௫ೕ
ఈ ௜ቁܣ

቏ (41)  

This represents the second non-homogeneous 
equation in fractional form.  

If ߙ goes to 1, Eqs. (40) and (41) go to the 
standard equations. 

The conjugate momenta is defined as 

⎩
⎪
⎨

⎪
⎧ ଵߨ

ଵ =  డ௅
డ൫ ஽ೌ ೟

ഀథ൯ 

ଵߨ
ଶ =  డ௅

డ൫ ஽ೌ ೟
ഀ஺೔൯ 

ଵߨ
ଷ =  డ௅

డ൫ ஽ೌ ೟
ഀ஺ೕ൯ 

          (42)  

Then, using Eq. (16), the Hamiltonian density 
can be written as: 

ܪ  = ଵߨ 
ଵ ௔ܦ ௧

ఈ߰ఘ(ݔ, (ݐ + ଵߨ
ଶ ௔ܦ ௧

ఈ߰ఘ(ݔ, (ݐ +
ଵߨ

ଷ ௔ܦ ௧
ఈ߰ఘ(ݔ, (ݐ − ℒ          (43)  

By using the fields’ variables ൫࡭૙, ,࢏࡭  ൯ so࢐࡭
that we can re-write Eq. (22), we get: 
డℋ
డథ

= ൤− ௔ܦ ௧
ఈ డℒ

డ ஽ೌ ೟
ഀథ

− ௔ܦ ௫೔
ఈ డℒ

డ ஽ೌ ೣ೔
ഀ థ൨            (44) 

డℋ
డ஺೔

= ൤− ௔ܦ ௧
ఈ డℒ

డ ஽ೌ ೟
ഀ஺೔

− ௔ܦ ௫೔
ఈ డℒ

డ ஽ೌ ೣ೔
ഀ ஺೔

൨           (45) 

డℋ
డ஺ೕ

= ൤− ௔ܦ ௧
ఈ డℒ

డ ஽ೌ ೟
ഀ஺ೕ

− ௔ܦ ௫೔
ఈ డℒ

డ ஽ೌ ೣ೔
ഀ ஺ೕ

൨          (46) 

Using Hamiltonian Eq. (44), by taking the 
derivative with respect to ߶, we get: 

Dୟ ୲
஑ϕ − Dୟ ୶౟

஑ A୧ − Dୟ ୶ౠ
஑ A୨ = −൫− ௔ܦ ௫೔

ఈ ߶ +
௔ܦ ௧

ఈܣ௜൯           (47) 
Eq. (47) is exactly the same as the equation 

that has been derived by Eq. (32) in fractional 
form. 

Using Hamiltonian Eq. (45) by taking the 
derivative with respect to ܣ௜, we get: 

ቂ−ܬ௜ = ଶ
ସ

௔ܦ ௧
ఈ൫ ௔ܦ ௫೔

ఈ ߶൯ − Dୟ ୲
஑ϕ + Dୟ ୶౟

஑ A୨ቃ (48)  

Next, using Eq. (46), with respect to ܣ௝ , we 
get: 

቎
௜ܬ− = ଶ

ସ
௔ܦ ௫೔

ఈ ቀ ௔ܦ ௫ೕ
ఈ ௝ቁܣ +

+ ଶ
ସ

௔ܦ ௫೔
ఈ ቀ2 ௔ܦ ௫೔

ఈ ௝ܣ − ௔ܦ ௫ೕ
ఈ ௜ቁܣ

቏        (49) 

This result is the same as that obtained by 
Euler-Lagrange, see Eq. (41). 

Add Eqs. (48) and (49) to obtain: 

቎
௜ܬ− = ௔ܦ ௧

ఈ൫ ௔ܦ ௫೔
ఈ ߶൯ + ଶ

ସ
௔ܦ ௫೔

ఈ ቀ ௔ܦ ௫ೕ
ఈ ௝ቁܣ +

+ ଶ
ସ

௔ܦ ௫೔
ఈ ቀ2 ௔ܦ ௫೔

ఈ ௝ܣ − ௔ܦ ௫ೕ
ఈ ௜ቁܣ

቏  

(50) 

This represents the second non-homogeneous 
equation in fractional form.  

7. Conclusion  
This study is a generalization of 

electromagnetic interaction into the Lagrangian 
density Fermi field on Hamilton's formula using 
fractional derivatives. The Hamiltonian 
formulation of the electromagnetic interaction 
into the Lagrangian density Fermi field systems 
is developed and the Hamilton equations are 
presented. Also, the Euler-Lagrange is derived. 
Hamilton's equations of motion are obtained for 
the electromagnetic interaction into the 
Lagrangian density Fermi field. The results are 
consistent with those derived using the 
formulation of Euler- Lagrange. 
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