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Abstract: In this paper, the unitary solutions of the Quantum Yang–Baxter Equation 
derived via the quantization-deformation of a Poisson Lie group associated to an r-matrix 
(solution of a classical Yang-Baxter equation) are introduced. The solutions of the 
algebraic and braided Quantum Yang-Baxter equations that are explored contain a 
deformation parameter h , and will be used to perform quantum entanglement when acting 
on bipartite quantum states.  
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1. Introduction 

Quantum entanglement is one of the most 
interesting properties of quantum mechanics. It 
has been discussed in the early years as a special 
quantum mechanical non-local correlation [1, 2]. 
Quantum entanglement plays a key role in 
several areas of quantum information, such as: 
quantum teleportation [3,4], quantum 
cryptography [5, 6], quantum dense coding [7 - 
9] and quantum computation [10, 11]. 

Given the great importance of entanglement, 
the quantification and characterization of the 
amount of entanglement have attracted much 
attention [12]. For quantifying the amount of 
entanglement, various measures have been 
proposed. Concurrence is the most commonly 
used measure of entanglement. For the two-qubit 
case, an elegant formula for the concurrence was 
derived analytically by Wootters and Hill [13, 
14]. 

L. Kauffman and S. Lomonaco have 
constructed a topological quantum gate entangler 
for two-qubit state [15]. These topological 
operators are called braiding operators that can 
entangle quantum states. These operators are 
also unitary solutions of quantum Yang-Baxter 
equation. The complex relationship among 

topological entanglement, quantum 
entanglement and quantum computational 
universality has been explored in a series of 
papers [16 - 24].  

One way to study topological entanglement 
and quantum entanglement is to try making 
direct correspondences between patterns of 
topological linking and entangled quantum 
states. One approach of this kind was initiated by 
Aravind [25], suggesting that observation of a 
link would be modelled by deleting one 
component of the link.  

On the other side, the development of the 
quantum inverse scattering method (QISM) [26] 
intended for investigation of integrable models 
of the quantum field theory and statistical 
physics gives rise to some interesting algebraic 
constructions. Such investigation allows to select 
a special class of Hopf algebras [27] now known 
as quantum groups and quantum algebras [28 - 
32]. 

The main reason that quantum groups are of 
such great importance is that they are closely 
related to the so-called quantum Yang-Baxter 
equation [33, 34], which plays a prominent role 
in many areas of research, such as: knot theory, 
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solvable lattice models, conformal field theory, 
quantum integrable systems and quantum 
information. 

Quantum groups are defined as a non-abelian 
Hopf algebras [35]. A way to generate them 
consists of deforming the abelian algebra of 
smooth functions on the group into a non-abelian 
one (*-product), using the so-called deformation 
quantization or star-quantization [36 - 40]. A 
star-quantization method is used also to develop 
a theory of (topological) quantum groups in [41 - 
46], to realize deformed Yangian algebras in 
[47] and quasi-triangular quasi-Hopf algebras in 
[48]. 

There are many applications of quantum 
algebra in physics [49, 50]. A relationship 
between quantum groups and quantum 
entanglement can be found in references [51, 
52]. The quantum algebra using the FRT 
(Faddeev, Reshetikhin and Takhtajan) 
construction of Yang–Baxterization of the Bell 
matrix is presented in [53]. 

The main objective of this work is to show 
explicitly that the universal R -matrix (solution 
of the algebraic quantum Yang-Baxter equation) 
obtained from the quantization-deformation of a 
Poisson Lie group can be considered as quantum 
gate which can perform topological 
entanglement when acting on quantum states. 

This paper is organized as follows: the second 
section is devoted to a review of some basic 
definitions of the quantization-deformation of a 
Poisson Lie group associated to an r -matrix 
(solution of classical Yang-Baxter equation), to 
present the Drinfeld-Takhtajan approach to 
construct quantum algebras and to derive unitary 
solutions of the quantum Yang-Baxter equation. 
Section 3 introduces quantum operators, 
solutions of the algebraic quantum Yang-Baxter 
equation that can perform quantum entanglement 
of multi-qubit quantum states. In section 4 
quantum gate entanglers from a star product on 
the Poisson Lie group (2)SL  are cinstructed, 
and it is shown that these quantum operators 
entangle states on a vector space considered as 
the space of representation of the Lie algebra 

(2)sl .  

2. Quantization of a Poisson Lie Group 
Let G  be a Lie group with Lie algebra 

])[,,(g . Denoted by )( iX  is a basis of g  and 

)(gU  is the universal enveloping algebra of g . 
If gr 2 , the elements 231312 ,, rrr  of 

)()()( gUgUgU   are defined by:  

1=12  ji
ij XXrr  

ji
ij XXrr 1=13  

ji
ij XXrr 1=23  

where ji
ij XXrr = . It is said that r  satisfies 

the Classical Yang-Baxter Equation (CYBE) if:  

0=],[],[],[ 231323121312 rrrrrr               (1) 

Such an element is called an r -matrix. To 
each r , a Poisson structure on G  is associated 
by putting:  

{ , } = ( ( ) ( ) ( ) ( ))   

 , ( )

ij r r
i j i jr X X X X

C G

     

  

 


 

 

 
           

                                                                       (2) 

where ) .( r
ji XrespX   are the left-invariant (resp. 

right-invariant) vector fields on G  
corresponding to ) .( ji XrespX .  

Definition 1 (Poisson Lie group) [54] 

A Poisson-Lie group ),( G is a Lie group 
endowed with a Poisson structure defined by a 
two-contravariant antisymmetric tensor )( on 
Lie Group G such that multiplication in G is 
Poisson morphism.  

A particular Poisson-Lie group is a Lie group 
}){,,(G  endowed with a Poisson structure }{,  

associated to an r -matrix satisfying the CYBE.  

The quantization-deformation of a Poisson-
Lie group }){,,(G  is a deformation of the 
commutative algebra )(GC  which turns it into 
a new non-commutative algebra ]][)[( hGC , 
where h  is a deformation parameter. It is 
assumed that 1|<| h . In the limit 

]][)[(0, hGCh   reduces to the commutative 
algebra )(GC . The algebra ]][)[( hGC  as a 
vector space coincides with )(GC , but has a 
new product   called a star product defined as 
shown for example in [36 - 40])  
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Definition 2 (Star product) 

A star product on a Poisson-Lie Group G  is 
a bilinear map:  

]][)[()()(: hGCGCGC    

i
i

i
hC ),(.=

1=
   

such that, for all )(,, GC  : 

1) when the above map is extended to 
( )[[ ]]C G h

, it is formally associative: 

    )(=)(    

2) the two-cochain ),( iC  is a bidifferential 

operator on )(GC  (bilinear map which is 
differential operator with respect to each 
argument)  

 =1=1 3)   

},{=),( 4) 1 C .  

Since G  is a group, there is a natural 
comultiplication   on  

)()()( GCGCGC   :  

).,),((    )(=),)(( GyxGCxyyx    

The problem of the quantization is to get a 
star-product on the group G  such that the 
compatibility relation:  

))()((=)(                               (3) 

is satisfied, where the star-product on the right 
side is canonically defined on )()( GCGC    
by:  

).*()*(=)()( ''''      (4) 

The corresponding star product was built by 
V. Drinfeld and L. Takhtajan in a purely 
algebraic way. They first look for a formal 
element ]][)[()( hgUgUF   given by 

i
ii
hFF  


1

1= , ))()(( gUgUFi   such 
that the product:  

))()()((= 1    FF r                     (5) 

is a star product, (where   is the usual 
multiplication on )(GC

 the algebra of smooth 

functions over the group G ). The associativity 
axiom of the star product looks:  

).(1)(=1).()( 00 FFidFFid  ,(6) 

where 0 :  )()( gUgU )( gU  is the 
coproduct of the enveloping algebra )( gU , id: 

)(gU )( gU is the identity map of the 
algebra )( gU and 1 be the identity of the 
enveloping algebra )( gU . 

Now, if the following element given by 
Drinfeld in [55] is introduced: 

FFRF .= 1
21
   ,                                                 (7) 

where PFPF ..= 1221 , (In this paper, P  will 
always denote the flip operator (swap operator) 
which acts linearly on the second tensor power 
of a module by abbaP  )( ), 

then it can easily be shown that FR  defines a 
quasitriangular structure on the quantized 
enveloping algebra ]][[)( hgU , given by:  

.).()(=)( 2313 FFFF RRRid  

.).()(=)( 1213 FFFF RRRid   
where 1)( 12  FF RR , FF RR 1)( 23 , 

)1)(1)(1()( 13 PRPR FF   and F  is 
the coproduct of the quantized enveloping 
algebra   hgU )(  given by: 

FXFXF ).(.=)( 0
1   . 

For more details, the reader is asked to refer 
to paper [45] and references therein. 

It is possible to show that the universal R-
matrix FR  gratifies the algebraic quantum 
Yang-Baxter equation:  

12 13 23

23 13 12

( ) .( ) .( ) =
( ) .( ) .( ) .

F F F

F F F

R R R
R R R





                            (8) 

From the fact that  =1=1   for all 
)(GC , it can be deduced that:  

1;=)(=)( FidFid                             (9) 

where   is the counit map: )(gU C  given 
by )()()( vuuv    and 1)1(   with C  
being the field of complex numbers. 
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Consequently, 
1.=))((=))(( FF RidRid                  (10) 

From the definition in (7), it can be deduced 
that FR  gratifies the unitary condition: 

1.=.)( 21 FF RR                                               (11) 

The releveance of the previous peocedure is 
that one can get many concrete solutions of the 
QYBE by taking different representations of the 
universal R-Matrix .FR  

Thus, if one now considers a finite 
dimensional vector space H  and lets 

)(: HEndg C  be a finite dimensional 
representation of the Lie algebra g  on H , then 
the R -matrix ))((= FRR   taking values 
in )( HHEnd C  satisfies the algebraic 
quantum Yang-Baxter equation with no spectra 
parameter (QYBE)  

...=.. 121323231312 RRRRRR                              (12) 

And the unitary condition is: 

 1.=.)( 21 RR  

It is assumed that },...,,{ 110 neee  is a basis of 
H  over the Field C  and the basis of the 
tensorial product HH   is denoted as 

1}}{0,1,...,,/{  njiee ji . Using this 
basis, one may describe the operator R  by its 
action on the generators of )( HH    

)(=)( lk
kl
ijji eeReeR  . 

The algebraic Yang-Baxter equation (12) can 
be rewritten as:  

lm
de

ak
lf

bc
mk

mn
ef

ic
dn

ab
im RRRRRR ..=..  

and if the matrix PRB =  is introduced, where 
P  is now considered as the permutation operator 
on the tensor vector space HH   
( j

k
i
l

ij
klP = ), then it can be shown that the 

matrix B  satisfies the Braided quantum Yang-
Baxter Equation: 

lm
de

jc
mf

ab
lj

mn
ef

aj
dm

bc
jm BBBBBB ..=..                           (13) 

which can be rewritten in a compact form as: 

( ).( ).( ) =
.

( ).( ).( )
B id id B B id

id B B id id B
   

   
              (14) 

It is remarked that the braided Yang-Baxter 
equation bears a close resemblance to the 
relation:  

111 =  iiiiii   

of the Artin braid group defined explicitly by 
Emil Artin in [56] by:  

Definition 3 The Artin braid group on n-strands 
is denoted by nB  and is generated by 

1}1|{  nii . The group nB  consists of 

all words of the form 11

2

1

1
... 

njjj   modulo 

the following relationships.  

11 allfor  = 111  niiiiiii   

1|>|such that = jiijji  . 

A unitary solution B  of the braided Yang-
Baxter equation yields a unitary representation 
  of the braided group nB  on the space nH   
for every n  defined by:  

11=)(   ini
i IBI . 

Moreover, this representation of braid group 
is unitary, since B  is also unitary operator, 
solution of braided Yang-Baxter equation which 
indicates that this operator can perform 
topological entanglement when acting on 
quantum states and can be considered as 
quantum gate. 

3. The R -Matrices and Quantum 
Entanglement 

An essential step in the study of the 
entanglement of quantum states is the 
establishment of appropriate separability criteria. 
That is, to determine criteria that enable us to tell 
if a given quantum state is separable or 
entangled. Mathematically, a pure state >|  of 
a composite quantum system lives in a linear 
space, it is constructed by a tensor product of 
vector spaces referring to its subsystems. Such 
tensor vector spaces contain states that cannot be 
factorized into pure states of their individual 
components. These states are called entangled 
states. 
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The criteria of quantum entanglement for a 
quantum state is given by the following 
definition (see for example [57] and references 
therein).  

Definition 4 A pure state in the tensor product 
Hilbert space )...(>| 21 nHHH   of a 
quantum system )...( 21 nAAA   is called 
fully separable with respect to this system if it 
can be written in the form:  

>|...>|>|>=| 21 n  , 

where >| i  is a pure state from Hilbert space 

iH ; and >|  is called entangled with respect 
to the system )...( 21 nAAA   otherwise.  

Particularly, a bipartite pure state >|  in the 
tensor product Hilbert space )( HH  is 
separable if it can be written as a single tensor 
product of states:  

>|>|>=| 21   . 

And every non-separable state vector is called 
entangled and has the form:  

>|>|>=| jiij    

with at least two non-zero complex coefficients 
ij . 

Hereafter, let H be a complex vector space of 
dimension two that can hold a single qubit of 
information. It is spanned with two orthonormal 

basis vectors 









0
1

>0|  and 









1
0

>1| (Dirac 

notation). 

In the computational basis 
>}11|>,10|>,01|>,00{| , of the tensor 

product Hilbert space )( HH , the normalized 
pure state >|  is expressed as:  

00 01

10 11

| >= | 00 > |

01> |10 > |11>,

  

 

 


  
                       (15) 

where 1,,0  jiij  are complex numbers 
satisfying the normalization condition  

1.=|||||||| 2
11

2
10

2
01

2
00    
Since entanglement is a crucial resource for 

many applications in quantum information, it is 

important to quantify the amount of 
entanglement in a given system. However, there 
is a diversity of possible correlations. 
Concurrence is the most commonly used 
measure. It was introduced by Wootters and Hill 
in [13, 14] as a measure of the entanglement of a 
bipartite state of two qubits. The concurrence for 
a two-qubit state |  given in Eq. (15), which 
goes from 0 to 1, may be written as: 

||2=|~||=)(| 10011100  C , (16) 

where   |)(=~| yy  represents the 

spin-flip plus phase flip operation. |  and y  

are the complex conjugate of |  in the 
standard basis such as }11|,10|,01|,00{|   
and pauli operator in local basis }1|,0{|  , 
respectively.  

Now, basic definitions about quantum gates 
are briefly reviewed. For more details, the reader 
is advised to refer to the text of Nielsen and 
Chuang [10] and the text of Kauffman 
Lomonaco [58]. 

Definition 5 A two-qubit quantum gate R is a 
unitary linear mapping R: 

)( HHHH  , where H is a two-
dimensional complex vector space spanned 
with two orthonormal basis vectors >0|  and 

>1| .  

In the work [59], the Brylinskis give a general 
criterion of the quantum gate R to be universal. 
They prove that a two-qubit gate R is universal if 
and only if it is entangling. The entanglement of 
quantum gate R is defined by: 

Definition 6 Let R  be a unitary operator on 
)( HH   being a quantum gate for the 

composite system; R  is called entangling if 
there exists a product state >,| 21 uu  such 
that the state >),|( 21 uuR  is entangled.  

Consider now again the two-qubit pure state 
|  given in (15) expressed in the standard 

basis }11|,10|,01|,00{|   of )( HH   and 
written in a compact form as:  

  jiijijij
ji

|=||,|=|
1

0=,
            (17) 
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and let R  be an arbitrary Unitary (4x4) R-
Matrix satisfying the following relations:  

21. = 1R R , 

121323231312 ..=.. RRRRRR . 

The R -matrix having the form:  

,=

11
11

11
10

11
01

11
00

10
11

10
10

10
01

10
00

01
11

01
10

01
01

01
00

00
11

00
10

00
01

00
00





















RRRR
RRRR
RRRR
RRRR

R  

acts on the tensor product  ji ||  as follows:  

  klij kl
ij

lk
|=|

1

0=

1

0=

RR .                                  (18) 

The Brylinskis’ theorem [59] says that it is a 
universal quantum gate when it is a quantum 
entangling operator which transforms a separable 
state denoted ss|  into an entangling state 
denoted es|  with  

 esss  =||R . 
More explicitly:  
1 1 1

, =0 , =0 , =0

1

00 01
, =0

10 11

( | ) = | =

| = | 00 > | 01 >

|10 > |11 >

kl
ij ij ij

i j i j k l

kl
k l

ij R kl

d kl d d

d d

  
  




  

 



  

       (19) 

where the coefficients ij  satisfy 

10011100 =   and the coefficients kld  are 
defined by:  

ij
kl
ij

ji
kld R

1

0=,
= ,                                             (20) 

satisfying 10011100 dddd  . 

The criteria of quantum entanglement are 
determined by the concurrence of the 
corresponding quantum states >)(|C  and 

>=| >)|( RC , (see [13, 14]). For the pure 
2-qubit states:  

00 01

10 11

| >= | 00 > |
01 > |10 > |11 >
  

 
 

  
 

00 01 10 11

| >= (| >) =
| 00 > | 01> |10 > |11>d d d d

 
   

 R
 

the concurrences are given, respectively, by:  

=|~||=)(|  C |,|2 10011100    (21) 

=|~||=)(| C  |,|2 10011100 dddd   (22) 

In this work, in order to judge whether the 
unitary R -matrix is a universal quantum gate 
according to the Brylinskis’ theorem [59], the 
concurrence of the initial state is chosen equal to 
zero 0=>)(|C (so that the initial state is 
unentangled) and it is proven that 

0)>>)|(( RC  (the final state is entangled). 

4. Quantum Entangler Based on a Star 
Product on (2)SL  Lie Group  

In a work on finite-dimensional complex Lie 
algebras, it often makes sense to first study the 
Lie algebra sl(2), because the properties of (2)sl  
algebras are crucial in deriving important 
properties of any semisimple Lie algebra g and 
its representations. The representation theory of 
sl(2) has attracted much interest in both physics 
and mathematics [60] and gives a way to higher 
dimensional cases [61]. To investigate this 
algebraic object could be a foundation for further 
investigation of higher dimensional objects. 

The classical Lie algebra (2)sl  is rank one 
and has generators and relations: 

;2],[   XXH  HXX    ] ,[   
The associated Lie group (2)SL  is endowed 

with a Poisson-Lie structure by defining an r -
matrix r~  which verifies the classical YBE: 

))2((    =~ 2 slXHHXr   ,     (23) 

where ),( HX  , the generators of the Lie 
algebra (2)sl , are expressed in a two-
dimensionnal fundamental representation 

)(),2()2(: HEndCMsl C  by:  









 00

10
=X ; 








10
01

=H .                     (24) 
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So, the corresponding Poisson bracket on 
(2)SL  has the following form: 

{ , } = ( ) ( ) ( ) ( )
.

( ) ( ) ( ) ( )r r r r

X H H X
X H H X

     

   
 

 

 


  

   

 (25) 

The matrix 1,2=,)(= jiijtT  of coordinate 

functions on (2)SL  is considered; i.e., the 
functions ijij ggt =)( , where, for Gg , by ijg  
its matrix elements are denoted. 

Let:  

.==
2221

1211
















dc
ba

tt
tt

T  

Left and right actions of G  on matrix 
coordinates on G  are given by: 

kjik
k

ijij XgtgXgtX )(=)(=))((   

)(=)(=))(( gtXXggtX kjik
k

ijij
r  .             (26) 

With these notations, the Poisson bracket 
looks like:  

)(=},{,=},{  ,1=},{ 22 daccbccaaba   

2

2

{ , } = 1,{ , }
.

= ,  { , } = ( )
b d d c d

c a d c a d
 


   
            (27) 

These relations define completely the 
Poisson-Lie group (2)SL  with r -matrix r~ , 
since any )(GC  can be approximated by 
polynomial functions in a , b , c , d . 

To construct unitary solutions of the quantum 
Yang-Baxter equation associated to the 
quantization deformation of the Poisson-Lie 
group (2)SL  endowed with the Poisson-Lie 
structure defined by the r-matrix given in 
equation (23), the star product on (2)SL  given 
by Ohn in [62] is first introduced: 

0

0

0

1= [ ( )
2

( )1 (
2

( )( )) ]
( ( ))

hX

hX

F exp H

sinh hXH e
hX

h Xsinh hXe H
hX sinh h X

 





 






  



  
 

 

                                                                       (28) 

where 0  is the usual comultiplication of the 
enveloping algebra )(2)(slU . 

Following the construction investigated by 
Drinfeld in [55], the element FFRF .= 1

21
  is a 

solution of algebraic triangular quantum Yang-
Baxter equation:  

.).().()(=).().()( 121323231312 FFFFFF RRRRRR  

In the two-dimensional representation of the 
Lie algebra (2)sl  defined above, FR  is 
presented by the R-matrix (denoted R ) given by: 
























1000
100
010

1

=

2

h
h

hhh

R                                (29) 

which satisfies the algebraic quantum Yang- 
Baxter equation: 

.).().()(=).().()( 121323231312 RRRRRR         (30) 

1.=.)( 21 RR  

where 
12 13

23

= ,
= ( )( )( ),
=

R R Id R
Id P R Id Id P R

Id R

 
   
 

 

and P  denotes the swap operator. With respect 
to the standard basis }11|,10|,01|,00{|   of 

)( HH  , the swap permutation matrix P  is 
represented by the matrix (see for example the 
text of Lomonaco [63]): 

.

1000
0010
0100
0001

=



















P

                                      

(31) 

On the other side, the relations of the matrix 
element bialgebra A(R) are obtained from the 
well-known FRT matrix relation [64] 

RTTTRT 1221 =  
as: 

,=,= 22 hcdccdhcacca 
),(1= 2dhbddb  ),(1= 2ahbaab   

,= hdchacbccb  .= hdchacadda   
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It’s not hard to see that R  is a unitary 
solution of the algebraic quantum Yang-Baxter 
equation:  

1

2

21 =

1000
010
100

1

== 

























R
h

h
hhh

PRPR  

Note also that R is a unitary solution to the 
algebraic Yang-Baxter equation if and only if B 
matrix RPB =  given by:  
























1000
010
100

1

=

2

h
h

hhh

B                                (32) 

is a solution to the quantum Yang-Baxter 
equation (braided Yang-Baxter equation): 

( )( )( ) =
( )( )( )

B I I B B I
I B B I I B

   
   

.                  (33) 

Then, the B matrix can be seen either as a 
braiding matrix or as a quantum gate in a 
quantum information as will be shown later. 

Being triangular; i.e., IRR =21 , this R -
matrix is trivially Hecke, with:  

( 1)( 1) = 0B B  .                                       (34) 

The matrix RPB =  has a spectral 
decomposition,  

,=   PPB                                                 (35) 

where )(
2
1= IBP   is a rank 3 projector and 

)(
2
1= IBP   is a rank 1 projector.  

The point of this case study is that the 
universal R -matrix (solution of the algebraic 
quantum Yang-Baxter equation) obtained from 
the quantization-deformation of a Poisson-Lie 
group, being unitary, can be considered as a 
quantum gate, and since RPB =  is a solution to 
the quantum Yang-Baxter equation (braided 
Yang-Baxter equation) and can give a unitary 
representation of the braid group, it can be 
considered as an operator that performs 
topological entanglement. It shall be seen that 

the R -matrix given by Eq. (29) and the matrix 
RPB =  given by Eq. (31) can perform 

quantum entanglement in their action on 
quantum states. 

For this purpose, one should regard each 
matrix R  or RPB =  as acting on the standard 
basis {|00>, |01>, |10>, |11>} of HH  , where 
H  is the two-dimensional complex vector space 
spanned with orthonormal basis vectors >0|  
and >1|  (Dirac notation). 

The action of the R -Matrix R  defined in 
(29) on the basis state 

>}11|>,10|>,01|>,00{|  of the tensor 
product HH   gives the following:  

2

| 00 >=| 00 >,
|11 >= | 00 > | 01 > |10 > |11 >

R
R h h h




   
| 01 >= | 00 > | 01>,
|10 >= | 00 > |10 >

R h
R h

  
 

 

In the same way, the action of the R-matrix 
PRB =  (solution of the braided Yang-Baxter 

equation) is given by:  

2

| 00 >=| 00 >,
|11 >= | 00 > | 01 > |10 > |11 >

B
B h h h




   
| 01 >= | 00 > |10 >,
|10 >= | 00 > | 01 >

B h
B h

 
  

 

Here is an elementary proof that both 
operators R  and B  can entangle quantum 
states. In the general case, the unentangled state 

|  denoted by:  

1

, =0

00 01

10 11

| = |

= | 00 > | 01 >
|10 > |11 >

ij
i j

ij 

 
 

  
 
  



                   (36) 

is chosen with 00 11 10 01=    , and it is shown 
that the states >)(|>=|  R  and 

>)(|>=| B  are entangled. 

In fact, by direct computation, it is obtained 
that::  
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00 01

10 11

00 01

10 11

| > = (| >)
= ( | 00 > | 01>

|10 > |11>)
= | 00 > | 01>

|10 > |11> .

R
R

d d
d d


 
 

 
   
 
  

 

And the action of the matrix B  is given by:  

00 01

10 11

00 01

10 11

| >= (| >)
= ( | 00 > | 01>

|10 > |11>)
= | 00 > | 01>

|10 > |11>

B
B

d d
d d


 
 

 
   
  

    

 

where: 
2

1110010000 = hhhd   ; 

110101 =  hd  ; 111010 =  hd    
and 1111 =d  

2
1110010000 = hhhd   ; 

111001 =  hd  ; 110110 =  hd    
and 1111 =d   

The concurrences of the final states 
>)(|>=| R  and >)(|>=| B  given, 

respectively, by:  

00 11 01 10

2 2
11 10 01 11

(| >) = 2 | |

4 ( ) 4

C d d d d
h h   

  


   
      (37) 

00 11 01 10

2 2
11 01 10 11

(| >) = 2 | |

4 ( ) 4

C d d d d
h h   

     


   
      (38) 

 

are not zero for the case of 011  . Hence, the 
unitary R-matrix B  and R  are considered as 
quantum states entangler except for the 
unentangled states with 11  = 0. Thus, it can be 
concluded (in view of definition (6) ) that the 
states >)(|>=| R  and >)(|>=| B  are 
entangled as quantum states.  

At the end, it is important to note that the four 
orthonormal Bell states which have the forms:  

1| = (| 00 |11 ),
2

1| = (|10 | 01 ).
2









   

  


                            (39) 

are transformed under the action of the quantum 
gates R  and B  as follows:  

| =| |

| =| |
2| =| | 00  

2
2| = | | 00

2
| =|
| =|

h

h

R h
B h

hR

hB

R
B

  

  

 

 

 
 

  

  

 

 

 

 

   


    

   


    


  
  

                        (40) 

where ).11|00|)((1
2

1=| 2  hh  This 

implies that the entanglement is preserved under 
the action of the universal gates R  and B .  
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