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Abstract: Within the framework of the covariant theory of gravitation (CTG), the energy is 
calculated for a system with continuously distributed matter, taking into account the 
contribution of the gravitational and electromagnetic fields and the contribution of the 
pressure and acceleration fields. The total energy of all the fields is equal to zero, and the 
system’s energy is formed from the energy of the particles, which are under the influence 
of these fields. From the expression for the energy, the inertial M and gravitational mg 
masses of the system are found. These masses are compared with mass mb, obtained by 
integrating the density over the volume, and with the total mass m’ of the body particles 
scattered to infinity in order to make the energy of macroscopic fundamental fields equal to 
zero. The ratio for the masses is obtained: m’ = M < mb = mg. From this the possibility of 
non-radiative ideal spherical collapse follows, when the system’s mass M does not change 
during the collapse. In addition, the mass of the system is less than the gravitational mass. 
In contrast, in the general theory of relativity (GTR), the ratio for masses is obtained in a 
different form: M = mg < mb < m’. In CTG, the electromagnetic field energy reduces the 
gravitational mass; whereas in GTR, on the contrary, the electromagnetic field energy 
increases the gravitational mass. In order to verify the obtained results, it is suggested to 
conduct an experiment on measuring the change of the gravitational mass of the body with 
increasing its electrical charge.  
Keywords: Relativistic energy; Mass; Acceleration field; Pressure field; Covariant theory 

of gravitation (CTG). 
 

 
Introduction 

Modern physical theories usually describe the 
energy, momentum and mass of a system in 
four-dimensional formalism and introduce 
various 4-vectors and 4-tensors to be taken into 
consideration. In order to simplify comparison of 
the obtained expressions, it is convenient to turn 
to such a weak field limit, that most of the 
formulae could be written in the same form as in 
the special theory of relativity, without loss of 
accuracy. In this work, this will be done for the 
covariant theory of gravitation and general 
theory of relativity; particular attention will be 
paid to the meaning acquired by the mass in 
these theories. 

 

Energy and Mass in the Covariant 
Theory of Gravitation 

We will calculate the relativistic energy for 
the body in the form of a sphere with the 
uniform density of mass and charge, moving at 
velocity v  along the axis OX  of the reference 
frame K . The body under consideration is a set 
of identical particles moving randomly in 
different directions within the specified sphere 
with the radius a . We will assume that all of 
these particles are held together by the force of 
gravitation. In order to simplify, we will assume 
that the spaces between the particles are so small 
that integration over the volume of all the 
particles is equivalent to integration over the 
volume of the sphere. The sphere is at rest in the 
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co-moving reference frame K , associated with 
the center of mass, and the velocities of particles 
in K  are equal to v  and depend on the 
coordinates. 

The Hamiltonian for continuously distributed 
matter in the covariant theory of gravitation is 
obtained from the Lagrangian with the help of 
Legendre transformations. This Hamiltonian is 
equal to the relativistic energy of the system and 
has the form [1-2]: 
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Here, c  is the speed of light, 0  is the mass 
density of an arbitrary point particle in the 
reference frame pK  associated with the particle, 
  is the scalar potential of the acceleration field, 
  is the scalar potential of the gravitational 
field, 0q  is the charge density in the reference 

frame pK ,   is the scalar potential of the 
electromagnetic field,  is the scalar potential 

of the pressure field, 0u  denotes the timelike 
component of the 4-velocity of the particle, 

g  includes the determinant g  of the metric 

tensor with the minus sign, 1 2 3dx dx dx  is an 
element of the three-dimensional volume in the 
reference frame K , G  is the gravitational 
constant, Φ  is the gravitational tensor, 0  is 

the vacuum permeability, F  is the 

electromagnetic tensor, u  is the acceleration 

tensor, f  is the pressure field tensor,   and 
  are constants. 

For our purposes, it suffices to consider the 
expression for relativistic energy (1) in the case 
when the sphere under consideration is at rest in 
K . Then, all the calculations can be performed 
in the reference frame K  associated with the 
system’s center of mass. Let us assume that the 
gravitational field is small and the covariant 
theory of gravitation turns into the Lorentz-
invariant theory of gravitation. In this case, the 
metric tensor g  no longer depends on the 
coordinates and is transformed into the metric 
tensor of Minkowski spacetime   which is 

used in the special theory of relativity. For the 
case of the single fixed system, the expressions 
for physical quantities are as follows: 
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where the Lorentz factor is 
2 2

1
1 v c

  


, 

v  is the particle’s velocity in K , Γ  is the 
gravitational field strength, Ω  is the torsion 
field vector, E  is the electric field strength, B  
is the magnetic field induction, 0  is the vacuum 
permittivity, C  is the pressure field strength, I  
is the solenoidal vector of the pressure field, S  is 
the acceleration field strength, N  is the 
solenoidal vector of the acceleration field. 

Substituting expressions (2) into (1) gives the 
following: 
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               (3) 

First, we will calculate the first integral in (3). 
According to [2], the Lorentz factor    for the 
particles inside the fixed sphere is function of the 
current radius r : 
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where 
2 2

1
1

c

cv c
 


 is the Lorentz factor for 

velocities cv  of the particles in the center of the 
sphere, and due to the smallness of the argument 
the sine can be expanded to the second-order 
terms. 

For the first term in the first integral in (3) 
with regard to (4) in spherical coordinates, we 
can write: 
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                                  (5) 

In (5), the mass m  is the product of the 
density of the particles’ mass 0  by the volume 

bV  of the sphere which is at rest in the reference 

frame K . The origin of the factor 2
c  in (5) can 

be understood from the following. The quantity 

0 c   is the mass density of the particles in the 
center, which can be seen in the reference frame 
K . Then, the product 0 c b c cV m m     
gives the mass of the particles in the sphere for 
the observer in K  in the case, as if all the 
particles were in the center of the sphere. It is 
obvious that 0c bm m V  . In (5), it occurs 

that 2 2 2
c c cmc m c  , meaning that the total 

energy of the particles, increased due to the 
internal motion of the particles, is regarded by 
the Lorentz factor c . The second term in (5) 
appears due to the radial gradient of mean 
velocities of the particles inside the sphere and 
takes into account that not all the particles are 
located in the center of the sphere. 

The scalar potential of the gravitational field 
in (3) inside the sphere, according to [2], is equal 
to: 
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Based on the similarity of the gravitational 
and electromagnetic fields, we can write for the 
electric potential, similarly to (6): 
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                                                                       (7) 
The scalar potential of the pressure field 

inside the sphere equals: 
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where c  denotes the potential of the pressure 
field in the center of the sphere. 

Substituting (6), (7) and (8) into (3), taking 
into account (4), we find: 
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With regard to (5) and (9-11), the first 
integral in (3) will equal: 
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The gravitational field strength and the 

torsion field inside the sphere are given by the 
formulae: 

t
 
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
DΓ ,  Ω D ,         (13) 

where D  is the vector potential of the 
gravitational field. 

The vector potential of each particle is 
directed along its velocity, and due to random 
directions of the particles’ velocities, the total 
vector potential D  inside and outside the sphere 
is zero. Consequently, the torsion field will also 
be zero: 0Ω . Substituting the scalar potential 
(6) into (13), we find the gravitational field 
strength: 
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Taking into account (14) and the equality 
0Ω  for the integral of the first term in the 

second integral in (3), we have: 
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According to [2], the potential of the 
gravitational field outside the sphere equals: 
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2

31
10g c

mm m
ac



 

  
 

. 

Using (13), with 0D , we find the field 
strength: 
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Substituting oΓ  into (3), using the equation 
0Ω , we find for the gravitational field 

outside the sphere: 
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The sum of (15) and (16) equals: 
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The calculation of the term with the 
electromagnetic field in (3) is done similarly and 
gives for uniformly charged particles inside the 
stationary sphere the following: 
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where the charge q  is the product of the charge 
density 0q  of an arbitrary particle in the 

reference frame pK  associated with the particle 

by the volume bV  of the stationary sphere. 

In Minkowski space, the 4-velocity of the 
stationary sphere is ˆ ( ,0,0,0)u u c   , and 
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0Π , where b  denotes the density inside the 
stationary sphere. In this case, the scalar 
potential , density b  and pressure inside the 
sphere bp  are functions of the current radius 
inside the sphere, and the equality 0Π  for the 
vector potential of the pressure field in this case 
follows from the absence of ordered motion of 
particles inside the sphere. In view of this and 
(8) for , the vectors C  and I  inside the 
sphere are expressed as follows: 

t


   

ΠC , 0 I Π . 

In case of uniform mass density 0 , 
calculations for the vector of the pressure 
strength inside the sphere give the following: 

02
0

3

0

0

sin 4
4

cos 4

4 .
3

 
  


 

   


 


   
              

 

c

c

c r
cc

r rr
c

C

r

r

 

Using this, we calculate the integral for the 
pressure: 

2 2 2 1 2 3

2
4 2

0 02 2
0

6 2
0 20

0 03 2
0

2 2

1 ( )
8

1sin 4 cos 4
2 4

42 2 1sin 4 sin 4
8 4

.
10

 

 
   

  

    
   

 

 

   

                   


            
     


 




c

c

c

C c I dx dx dx

c c r rr d r
c c r

c a a a
c c c a c

m
a

   (19) 
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We have to calculate one more term in the 
second integral in (3). The components of 
vectors S  and N  for the acceleration field are 
found as follows: 

t
 

  

US ,  N U , 

where the scalar potential   and the vector 
potential U  are part of the 4-potential of the 

acceleration field ,u
c
   
 

U , which is a 

covariant 4-velocity.  
In the limit of special theory of relativity 

 ,u c    v , where 
2 2

1
1 v c

 


 is the 

Lorentz factor for the velocity v  of the particle’s 
motion. In the reference frame K , the particle’s 
velocities inside the sphere are equal to v  and 
   should be used instead of  . Then, the 
potentials of an arbitrary particle will be 

2c   ,   U v . We need the total 
potentials of the acceleration field inside the 

sphere, emerging due to direct interaction of the 
particles with each other and due to the influence 
of fields. In case of random motion of particles, 
the velocities v  are directed in different 
directions, and therefore, inside the sphere 

0U  and 0N . However, the total Lorentz 
factor of particles    is a function of the current 
radius, and the total scalar potential 2c    is 
not equal to zero. With regard to (4), for   , it 
gives the following: 

2

02
0

3

0

0

sin 4
4

cos 4

4 .
3



 
 

 

 


  


   
              

 

c

c

c
c r

cc
r rr

c

S

r

r

 

We will calculate the last integral: 

2 2 2 1 2 3

2
4 2

0 0 2
0

4 2 2
2

0 0
00

2 2

1 ( )
8

1sin 4 cos 4
2 4

2sin 4 sin 4
2 2 44 4

.
10




   

  


   

   

 

   

                   


            
     


 




c

c

c

S c N dx dx dx

c c r rr d r
c c r

c a c a c a
c a c

m
a

   (20) 

Substituting (12), (17), (18), (19) and (20) 
into (3), we find the relativistic energy of the 
system: 

2 2 2 2
2 2

2 2 2 2

0
2 2 2 2

0
2 2 2 2

3 3
5 2

3 3
8 10
3 3

5 20

.
10 10

  


  


 


   


   




    


  

  


c c
b c

c c
c c

c c

c c

m G mE mc
a a

q mm
a a

G m q
a a

m m
a a

        (21) 

In [2], the coefficients   and   were 
calculated for the case under consideration: 

2

2
0

33
4

qG
m

 


   .         (22) 

If we substitute (22) into (21), we will see 
that the field energies are canceled completely. 
Only the energy of particles in corresponding 
fields remains: 
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2 2
2 2

2 2 2 2

0

2 2

3
5

3 3
2 8

3
10

 


 


 



  


  


  


c
b c

c c

c
c c

mE mc
a

G m q
a a

mm
a

.         (23) 

Equation (22) fixes a definite relation 
between the pressure field, acceleration field and 
gravitational and electromagnetic fields. This 
relation according to [2] reveals the fact that the 
conserved integral 4-vector, which is the result 
of integrating the equations of motion, is equal to 
zero. In this case, condition (22) appears, and 
within the given model the 4/3 problem is 
explained. 

Let us estimate the total mass of particles in 
the sphere, for which, taking into account (4), we 
integrate the mass density 0b     of 
particles in K   over the sphere’s volume: 

2
0

0
0

0

02
0

0

2

sin

4 sin 4
4

sin 4
4

cos 4

31 .
10

    

  
 

 

 
 


 





   

  
                
 

   
  





b

c

c

c

m r dr d d

c r rdr
c

c a
cc

aa
c

mm
ac

(24) 

Hence, by solving the quadratic equation, we 

obtain: 
2

2

3
10

b
c b

c

mm m
ac





  . Similarly, we can 

link the charge q  with the charge bq  of the 
sphere, which is found by the observer in K  : 

2

2

3
10

b
c b

c

qq q
ac





  . We will substitute this 

into (23), given    from (22): 

2
2

2 2

0

3
5

3 3
2 8







  



    

b
b b c

b b
b c

mE m c
a

G m q m
a a

.        (25) 

From (8), we will express the scalar potential 

c  of the pressure field in the center in terms of 

the potential s  near the surface of the sphere, 
and will consider the ratio 

2

2

3
10

b
c b

c

mm m
ac





  : 

2
02

3

2 2

   

  


   



   


c
c s

c b
s s

a

m m
a a

.        (26) 

Similarly, from (4), we will express c  in 
terms of the Lorentz factor s  of the particles 
near the surface of the sphere: 

2
0
2

2 2

2
3

2 2

  
 

  
 


  



   


c
c s

c b
s s

a
c

m m
ac ac

.        (27)  

If we take into account (27) and (22) into 
(24), we can specify the relation between bm  
and m : 

2 2

2

2

2 2

2 2
0

31
10 2

5
3 3
5 20








 
    

 
  



   


b
b s

s

s

mmm m
ac ac

mm
ac

G m qm
ac ac

.        (28) 

Substitution of (22), (26) and (27) in (25) 
gives the following: 

2

2
2

2

0

3
10

3
40






 
  



   


b

b
b s

b
b s

E M c
G mm c

a
q m

a

.         (29) 

(29) shows that when the covariant theory of 
gravitation in the weak field limit turns into 
Lorentz- invariant theory of gravitation, all fields 
in the system, including the acceleration field, 
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pressure field, electromagnetic and gravitational 
fields compensate each other so that the 
relativistic energy depends only on the mass, the 
energy of gravitational and electromagnetic 
fields, the energy of the surface pressure and the 
velocity of particles on the surface. 

The scalar potential of the pressure field near 
the sphere’s surface is connected with the 

pressure by relation: s
s

s

p


  , where sp  and 

s  denote, respectively, the pressure and the 
mass density near the surface of the sphere. 
Using the relation b bm V , where   is the 
average density with respect to the sphere’s 

volume, we find: b s s b s b
s

m p V p V


   . For 

those massive bodies, in which we can assume 
1s   and neglect the pressure sp  on the 

surface, (29) becomes a simple expression: 
2 2

2

0

3 3
10 40

b b
b b

G m qE m c
a a

   .        (30) 

From (29), we will express the mass of the 
system consisting of the matter mass bm  and the 
mass of the four fields associated with this 
system: 

2 2

2 2 2
0

3 3
10 40

s b b
b s

G m qM m
c ac ac


 

     
 

.(31) 

The mass M  is identical, at rest and in 
motion, and it is the invariant inertial mass of the 
system. Above, we found from the formula for 
the external gravitational potential o  that the 
gravitational mass of the sphere is the quantity 

2

31
10g c

mm m
ac


 
  

 
. Comparison with (24) 

shows that the sphere’s mass bm  according to 
our assumptions is equal to the gravitational 
mass gm . According to (31), the system’s 
inertial mass M  increases relative to the mass 

bm  by the value of mass-energy of the surface 
pressure, and to a certain share of the mass-
energy of the electromagnetic field, but it 
decreases due to the same share of the mass-
energy of the gravitational field. 

 

Relations between the Energies 
We will compare the different energy 

components that make up the total relativistic 
energy (29). We will denote by f gE , f eE , f pE  

and f aE  the energy components of the 
electromagnetic and gravitational fields, the 
pressure field and the acceleration field, 
respectively. As the measurement unit of energy, 
we will use the sum f g eE  of the energy 
components of the electromagnetic and 
gravitational fields from (17) and (18). Taking 
into account (24), (19), (20) and (22), we find: 

2 2 2 2

0

2 2

0

3 3
5 20

3 3
5 20

 
 

 


  
  


 


f g e f g f e

c c

b b

E E E

G m q
a a

G m q
a a

.        (32) 

2 2 2 1
10 10 2

c b
f p f g e

m mE E
a a

  
      , 

2 2 2 1
10 10 2

c b
f a f g e

m mE E
a a

  
      . 

According to (32), the energy components of 
the pressure field and acceleration field are twice 
less than the sum f g eE  of the energy 
components of the gravitational and 
electromagnetic fields and have a different sign. 
As a result, the sum of field energy components 
in (21) is equal to zero. 

We will now consider the energy components 
of the matter particles which are under the 
influence of fields. We will denote these 
components by p gE , p eE , p pE  and p aE , as the 
energy components of the particle in the 
electromagnetic and gravitational fields, the 
pressure field and the acceleration field, 
respectively. According to (9), (10), (11), (26), 
(5) and (27), we have the following: 

2 2 23 3
2 2

c b
p g

G m G mE
a a


    , 

2 2 2

0 0

3 3
8 8

c b
p e

q qE
a a


   
  ,  
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2 2

0

3 3 5
2 8 2

b b
p g pe f g e

G m qE E E
a a

      , 

2 2

2

2

3
10

3
10

5

 







   




   


  

   

c
p p c c

b
b c

b
b s

b s f g e

mE m
a

mm
a

mm
a

m E

,         (33)  

2 2
2 2

2
2

2
2

2

3
5

3
10

5

 









  




  


 

  

c
p a c

b
b c

b
b s

b s f g e

mE mc
a

mm c
a

mm c
a

m c E

. 

Now, we will sum up the energy components 
in (32) and (33) separately for each field: 

3
2g e f g f e p g p e f g eE E E E E E      , 

1
2p f p p p b s f g eE E E m E     , 

2 1
2a f a p a b s f g eE E E m c E    .         (34) 

The quantity g eE  denotes the sum of the 
energy components of the gravitational and 
electromagnetic fields, including the energy 
components of the fields themselves and of 
particles in these fields. The definition of f g eE  
is given in (32). The sum of all the energy 
components in (34) equals the relativistic energy 
of the system (29): 

2 1
2



   



    

b g e p a

b s f g e b s

E E E E

m c E m
.        (35) 

If in (35) we neglect the product b sm   due 
to the small pressure on the body surface and 
disregard the rest energy 2

b sm c  , then the 
energy value remains, which is equal to: 

 
2 2

0

3 31
2 10 40

b b
f g e

G m qW E
a a 

     .  

In classical mechanics, in which the rest 
energy is not considered, the total energy of the 
gravitational and electromagnetic fields for a 
sphere with uniform distribution of mass and 
charge is equal to: 

2 2

0

3 3
5 20

b b
g e

G m qW
a a

   . 

According to the virial theorem, it is 
considered that the internal kinetic energy should 
equal half the absolute value of the energy of 

fields: 1
2i g eW W  . The total energy is 

composed of the energy of fields and the internal 
energy: 

2 2

0

1
2

3 3
10 40

   

  


i g e g e

b b

W W W W

G m q
a a

.        (36) 

This shows that the total energy W  in 
classical mechanics coincides with the 
relativistic energy (35), if we exclude from the 
latter the rest energy and the energy of the 
surface pressure. Thus, the transition is 
performed of the covariant theory of gravitation 
into classical mechanics. However, in classical 
mechanics, it is not determined how the internal 
pressure makes contribution to the mass and 
energy of the system. 

We will now specify how in our model the 
virial theorem is realized, particularly for field 
energies and particle energies. We have the 
energy f pE  of the pressure field and the energy 

f aE  of the acceleration field, and the sum of 
these energies, according to (32), is equal to the 
absolute value of the sum of energies f g eE  of 
the gravitational and electromagnetic fields. As a 
result, the sum of fields’ energies is equal to 
zero.  

The situation for the energies of particles in 
fields is different. The energy of a particle in the 
field in the absence of the vector potential is 
defined by the product of the mass (charge) by 
the scalar potential. The sum of the energies of 
particles in the gravitational and electromagnetic 
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fields, according to (33), is equal to 5
2 f g eE , 

the energy of particles in the pressure field is 
b s f g em E   and the energy of particles in the 

acceleration field is 2
b s f g em c E  . From the 

energy of particles in the pressure field, we can 
distinguish the energy f g eE  and the energy 

f g eE  – from the energy of particles in the 
acceleration field. But, the sum of these energies 
is 5 4  times less than the absolute value 

5 5
2 2f g e f g eE E   of the sum of energies of 

particles in the gravitational and electromagnetic 
fields. At the same time, the excess energy of 
particles in the gravitational and electromagnetic 

field, which is equal to 1
2 f g eE , is 

compensated by the fact that the gravitational 
mass energy of the system increases from 2M c  
to 2

b sm c  . 

Relation with the Cosmological 
Constant 

In [1], we obtained a relation that connects 
the cosmological constant   with the 4-
potentials of fields, which are included in the 
Lagrangian: 

2 2 2

2 2

 
 

 
 

    


  

c k u J D J

A j J
.        (37) 

Let us expand the products of 4- vectors: 

0ˆ ( )u J 
     v U , 

0ˆ ( )D J 
     v D ,  

0ˆ ( )qA j     v A , 

0ˆ ( )J 
    v Π . 

Here, 0J u   is the mass 4-current; 

0qj u   is the charge (electromagnetic) 4-
current; U , D , A  and Π  denote the vector 
potentials of the acceleration field, gravitational 
and electromagnetic fields and pressure field, 
respectively; and we use the approximation of 
the special theory of relativity, in which 

 ˆ ˆ,u c   v , where 
2 2

1ˆ
1 v c

 


, v  is 

the velocity of motion of the body’s arbitrary 
particle. 

Let us consider the situation in the reference 
frame K  , which is stationary relative to the 
body in question. In K  , the particle velocities 
are equal to v  and the Lorentz factor 

2 2

1
1 v c

  


 should be used instead of ̂ . 

As a result, (37) can be rewritten as follows: 

0

0

0

0

( )
( )
( )

( )

  
  
  

 

      
    
    
    

q

c k v U
v D
v A

v Π

.         (38) 

In relation (38), the cosmological constant   
has its own value for each particle of the body. 
We intend to integrate (38) over the volume of 
the body in the form of a fixed sphere, which is 
filled with moving particles as tightly as 
possible, and which has uniform density of mass 
and charge in the entire volume of the sphere. In 
the absence of general rotation or directed matter 
flows, the particles’ velocities v  are directed 
randomly in different directions. Then, after 
integrating (38), the contribution of vector 
products containing v  will be zero, and the total 
vector potentials U , D , A  and Π  inside the 
sphere will be zero as well. Therefore, the 
integral of (38) over the volume is as follows: 

1 2 3 2

0 0 1 2 3

0 0

     
    

  


   
        




q

c k dx dx dx m c

dx dx dx
. 

 

The quantity c k   in our opinion is the 
energy density of each particle, and the integral 
of this density over the volume gives a certain 
energy constant 2m c , which is associated with 
all the particles of the system. In the right side of 
the equation, there is the integral that we have 
already calculated in (12). With this in mind, we 
can write: 
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2 2
2 2 2

2 2 2 2

0

2 2

3
5

3 3
2 8

3
10

 


 


 



   


  


  


c
c

c c

c
c c

mm c mc
a

G m q
a a

mm
a

.        (39) 

If we compare (39) with (21), we see that the 
quantity 2m c  is part of the relativistic energy 

bE  of the system and denotes the sum of energy 
components of the particles under the influence 
of fields. The energy bE  also includes the 
energy components associated with the fields 
themselves. But according to (23) in case of a 
spherical body, all these components cancel each 
other. Therefore, we can assume that for a sphere 

2 2
bE M c m c    and   M m . 

In (39), the mass m  is some constant mass, 
which denotes the total mass of body particles, 
excluding the contribution from the mass-energy 
of macroscopic fields associated with this body. 
If we divide the total body matter by particles 
and scatter them from each other to infinity, then 
for the matter at rest there will be no 
electromagnetic and gravitational fields 
associated with the interaction of these particles 
with each other. There will be no internal 
pressure from the particles’ influence on each 
other. In this case, with regard to (38) written for 
a single particle, the mass m  will consist of the 
total mass of all the particles in view of the 
energy of particles’ proper fields, the energy of 
their internal pressure and the internal kinetic 
energy. We considered such mass in [4] as the 
total mass of the body parts, scattered from each 
other and located at infinity at zero absolute 
temperature. At infinity, 1   , 2c   and then 
the system’s mass M  turns into the mass m . 

From (29-30), it follows that the system mass 
is less than the body mass: bM m , and the 

body mass bm  is equal to the gravitational mass 

gm . Since the mass m  is constant and 
associated with the cosmological constant, and 
M m , it turns out that the gravitational mass 

g bm m  of the system in (29) can change, 
when in the system there is a change in the 
energy of the pressure field or the energy of the 

electromagnetic and gravitational fields. From 
(28), we find that bm m , and M  is in the 

middle between m  and bm . As a result, the ratio 
of the masses is as follows: 

b gm m M m m    .         (40) 

Discussion of Results 
The Masses 

According to (40), in the weak field the 
inertial mass M  of the system in the form of a 
sphere with particles, taking into account the 
field energies, the internal pressure and the 
internal kinetic energy, can be described either 
by formula (29) or by the system mass m  from 
(39). The equality M m  means conservation 
of the system’s energy, regardless of whether the 
system’s parts are at infinity and do not interact 
with each other, or these parts come into close 
contact and form a coupled system. This is 
possible in case of ideal spherical collapse, when 
there are no emission and matter ejections from 
the system at any stage of the collapse or the 
matter accumulation. We discussed this question 
in [2] in connection with the problem of energy 
in spherical supernova collapse. There, we 
explained the possibility of low energy emission 
by neutrinos based on the fact that almost all the 
work of the gravitational forces during the matter 
compression can come on increasing the kinetic 
energy of the stellar matter motion and the 
pressure energy, as well as on creating the 
internal pressure gradients and particle’s 
velocities.  

Earlier in [5], we found the expression for the 
masses, which differs from (40): 

b gm M m m m     . We can explain this by 
a different accepted gauge of the cosmological 
constant – in this paper we use the formulae 
obtained with the gauge according to [1] – which 
differs from the gauge in [5]. Also, we are 
currently using for analysis another physical 
system in the form of a sphere, consisting of a 
set of particles moving inside the sphere, which 
are held together by gravitation. In such a 
system, inevitably there is difference between 
the masses m  and bm  as a consequence of the 
radial gradient of the Lorentz factor    inside 
the sphere and as a consequence of the 
difference between the density 0  of the 
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particles in the reference frame pK  and the 

density b  of particles from the standpoint of 
the reference frame K  , associated with the 
system’s center of mass. The mass m  in (40) in 
its meaning has technical nature, since it is 
determined only mathematically by multiplying 
the density 0  by the sphere’s volume. We will 
note that the density 0  is included in the 
system’s Lagrangian with the 4-vector of the 
gravitational (mass) current density in the form 

0J u  . The density 0  is also included in 
the equation of motion of a point particle and in 
the field equations in [1]. 

According to (29) and (40), the mass gm  is 
greater than the mass M . This means that the 
gravitational mass of the system is always 
greater than the inertial mass of the system by 
half of the absolute value of the gravitational and 
electromagnetic field energy minus the mass-
energy of the surface pressure. 

According to (40), the gravitational mass gm  
is also greater than the mass m  of the system’s 
parts, scattered to infinity. We can explain this in 
the following way. As we know, for a ball, the 
absolute value of the potential energy of the 
gravitational field is equal to the total work on 
the matter transfer from infinity to the surface 
and inside the ball. It is assumed that the ball is 
formed by gradual growth due to layering of 
spherical shells as the matter is transferred. But, 
beside the fact that the matter is transferred from 
infinity inside the body, which results in an 
increase of the absolute value of the potential 
energy of the body’s gravitational field, the force 
of gravitation performs other actions; it increases 
the kinetic energy of the particles inside the body 
as well as the energy of the particles’ pressure on 
each other and creates the gradients of pressure 
and kinetic energy of the particles inside the 
body. All these types of work of the gravitation 
force on the body formation increase the body 
mass from m  to gm . The main contribution to 
the gravitational mass increase is made by the 
emerging motion; at infinity the particles were 
stationary, but inside the body the particles move 
at velocities v . 

If we consider the virial theorem, connecting 
half the absolute value of gravitational and 
electromagnetic energies with the internal energy 

of the body, then it turns out that half of the 
work of the gravitational and electromagnetic 
fields on the body formation is transformed into 
the internal energy of the body. The total energy 
W  of the body, according to (36), is negative 
and with the help of it (35), (39) and (29) can be 
written as follows:  

2 2 2
b b s b sE M c m c W m m c       .  (41) 

Since W  is equal to half the sum of the 
gravitational and electrical energies, then we can 
see that half of the work of the gravitational and 
electromagnetic fields on the body formation is 
transformed into the mass increase from 
M m  to the value b gm m . 

From the virial theorem, the approximate 
equality follows between the absolute value of 
the total system’s energy W  (36), the internal 
body energy iW  and the binding energy, if we 
define it in (41) as the difference between the 
rest energy 2

b s b sm c m    for the mass bm  
and the rest energy of the initial state at infinity 

2m c . However, in usual interpretation of the 
binding energy it is not so, since the binding 
energy is defined as the difference between the 
total energy of the individual parts of the system 
and the energy of the system made up of these 
parts into a whole. This definition of the binding 
energy in this case gives us the relation: 

2 2 0m c M c   ; i.e., in case of ideal spherical 
collapse, the system’s energy at the beginning 
and the end of the process is the same and the 
binding energy is equal to zero. Despite the 
equality of the binding energy to zero, the 
system does not fall apart, because the masses 
are always attracted. The total energy W  (36) of 
the system remains negative. 

The invariant mass M  of the system is the 
measure of inertia of the system as a whole and 
the measure of the relativistic energy of the 
system. This means that the system’s 
acceleration under the influence of forces should 
depend on the mass M . The mass bm  can be 

calculated as the integral of the density b  over 
the volume of the sphere. The gravitational mass 

gm  is equal to bm  and can be determined by 
means of gravitational experiments near the 
body on the gravitational effect on the test 
bodies. According to (31), at an infinitely large 
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radius of the body, the mass of the spherical 
system M m  becomes equal to the 
gravitational mass of the body ( )b gm m  . 
Equation (31) can be regarded as the quadratic 
equation to determine the gravitational mass gm  
depending on the body radius a , on its electrical 
charge bq  and the total mass of the fixed parts of 
this body m M  , when these parts are 
motionless and infinitely distant from each other: 

2

2
0

2

31
40

b
g

s
s

qm M
ac

c
 

 
    

. 

Energies and Masses in the General Theory of 
Relativity 

In the general theory of relativity (GTR), the 
system’s mass M  is considered to be less than 
the total mass of the body’s parts m  [6-7]. In 
GTR, there is gravitational mass of the system 
from the standpoint of a distant observer, 
calculated as the volume integral of the sum 

NnM e , where n  is the concentration of 
matter nucleons, NM  is the mass of one 
nucleon, e  is the density of the body’s internal 
mass-energy [8]. The inertial mass of the system 
is also considered, which is calculated with the 
volume integral of the timelike component of the 
stress-energy tensor, which is then divided by 
the square of the speed of light and equated to 
the gravitational mass based on the principle of 
equivalence. Accordingly, to determine the 
system’s mass M  we need either to know the 
internal energy of the body which is not 
precisely known, or use the stress-energy tensor, 
which however does not include the gravitational 
field energy in principle. The latter is due to the 
fact that in GTR the gravitational field is 
understood as a metric field and is described by 
the stress-energy pseudotensor. As a result, 
calculation of the relativistic energy and the 
system’s mass in GTR is much more difficult 
and involves a number of conditions. For 
example, for calculating the energy the 
coordinates of the reference frame at infinity 
should transfer into the coordinates of 
Minkowski space. 

The mass of the system, with regard of the 
gravitational and electromagnetic fields, 
according to [6] and [9], in GTR in the weak 

field in our notation relative to the mass, density 
and radius of the body is equal to: 

00

2

2 2 2
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2 2
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2 2
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         
   


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T dV M

c
dV

c v E

G mm E
c ac

q dV
ac c

 (42) 

where 00T  is the mass tensor, turning after 
multiplying by the square of the speed of light 
into the stress-energy tensor of the system; the 
body mass b bm dV  ; b  and bq  are the 
density of mass and charge, respectively; 

21
2k bE v dV   is the kinetic energy;   is 

the pressure energy per unit mass, and the case 
of uniform density is considered. 

In [6] also the invariant mass density    is 
used, which implies such mass density, which 
does not change under the influence of the 
pressure or gravitational field. It is assumed that 
such invariant density    is part of the 
continuity relation in the curved spacetime: 

( ) 0g u
     , here g  is the determinant 

of the metric tensor, u  is the 4-velocity. We 
will note in this regard that in the covariant 
theory of gravitation, the continuity relation is 
written not for    but for 0  [1], and 0  can 
vary and depend on any factors, including the 
pressure and gravitational field. 

In the weak field for the fixed body in GTR 
may be written: 

2

2 2

31
2b
v
c c

   
   

 
.         (43) 

We will assume that 
2 2

2 2
0

3 3
10 40

b b
k

Gm qE
ac ac

  , as it should be 

expected due to virial theorem. If we substitute 
(43) into (42), we obtain the relation: 

*
bm M m  , so that the mass M  of the 
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system is greater than the mass * *m dV  . 
After substituting (43) into (42), we obtain the 
expression for the mass-energy of the system, 
which is similar to those presented in [7] and 
[10] (in contrast to [6], in [10]   is an invariant 

density and    denotes the mass density 
corresponding to our density b ). 

We will assume that the mass of the system in 
(42) according to GTR is calculated precisely 
and is equal to our mass of the system in (31):  
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.       (44) 

From the left side of (44), we see that in GTR 
the gravitational energy is included in the 
equation with the increased weight relative to the 
electromagnetic energy, and in the right side 
both energies have the same weight due to the 
similarity of equations for the fields. This is due 
to the fact that in GTR the gravitational field is 
replaced by the effect of the action of the metric 
field of the metric tensor. As a result, the entire 
metric contains gravitation and the 
electromagnetic field and pressure remain 
independent.  

If we neglect the contribution of 2
s

s c



  to 

(44) and consider this quantity as a unity, then 
with regard to the expression 

2 2

2 2
0

3 3
10 40

b b
k

Gm qE
ac ac

   from (44), we can 

estimate the pressure energy in GTR: 
23

5
b

b
GmdV

a
   . 

In (42), the mass M  of the system due to the 
equivalence principle is considered equal to the 
gravitational mass. This means that in GTR a 
charged body increases its gravitational mass. 

Based on the statement above, the ratio of 
masses in GTR is as follows: 

*
g bm m M m m m     ,         (45) 

where in the first approximation nm N m   
(here N  is the number of nucleons in the body, 

nm  is the mass of a nucleon), iM m W   ( M  
is the mass of the system in the form of the body 
and its fields, iW  is the internal energy in (36)), 
the mass M  is equal to the gravitational mass 

gm , the mass *m  is determined by the integral 

over the volume of the invariant density    
(43), the mass bm  is calculated by integrating 
over the volume of the body density b , and the 
mass m  is determined by us in (28) with the 
help of bm  and has technical nature. 

If the mass of the system decreases from the 
value m  to M , then there is excess energy of 
the order of iW . In GTR, the collapsing system 
must radiate this energy, so that the ideal 
spherical non-radiating collapse in GTR is 
impossible [8]. 

As we can see, relation (45) for the masses in 
GTR differs significantly from relation (40) for 
the masses in the covariant theory of gravitation. 

Conclusion 
According to (32), the total energy of the 

gravitational and electromagnetic fields summed 
up with the energy of the acceleration field and 
the energy of the pressure field inside the 
spherical body is equal to zero. During the body 
formation, distribution of energies of the body 
particles takes place in the potentials of all the 
four fields. This leads to the kinetic energy of the 
motion of particles, to the internal pressure and 
the energy of particles in the gravitational and 
electromagnetic fields. 

The difference of our approach from the 
results of GTR is that the mass of the system in 
the ideal spherical collapse does not change, 
m M  . Really, if at the beginning of the ideal 
collapse the spatial component of the total 4-
momentum of the particles falling on the center 
of mass is equal to zero due to the spherical 
symmetry, the same will take place at the end of 
the collapse, so that the mass-energy, which is 
part of the time component of 4-momentum, 
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may be conserved. However, the gravitational 
mass gm  is greater than the mass M  of the 
system, since the state of the particles changes; 
they start moving inside the system and exert 
pressure on each other. Besides, the particles 
acquire additional energy in the internal fields. 

If the system contains the electromagnetic 
field, its influence on the mass gm  is opposite to 
the influence of the gravitational field; i.e., the 

electromagnetic field must reduce the 
gravitational mass gm . We can calculate that if a 
body with the mass of 1 kg and the radius of 1 
meter is charged up to the potential of about 5 
megavolt, it must reduce the gravitational mass 
of the body (not including the mass of the 
additional charges) at weighing in the gravity 
field by 1310  mass fraction, which is close to 
the present day accuracy of mass measurement. 
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