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Abstract: The binding energies, mass spectrum, and constituent masses of single -exotic 
hypernuclei have been investigated in the framework of quarks’ structure and the non-
relativistic Schrödinger equation, with the linear interaction potential describing the 
electrostatic interaction between the -hyperon and the nucleus core. The ground states of 
the hypernuclei have been studied in the framework of the oscillator representation method. 
The obtained results are compared with theoretical and experimental data, showing a good 
agreement with other values wherever available. This indicates that the interaction between 
the -hyperon and the nucleus core predicted by the semi-Cornell potential based on the 
quark-antiquark structure of clusters acts reasonably well. 
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Introduction 

In a light -hypernuclear atom, one -
hyperon is present in the nucleus, in addition to 
nucleons. The exact relativistic property of such 
exotic systems [1] has not been rigorously 
studied, although their nuclear properties have 
been found applicable in several fields of 
physics, such as pion-less effective field theory 
[2], relativistic mean-field theory [3,4], 
application of mass formulae for multiply 
strange nuclei [5], the generalized mass formula 
for strange, multiply strange nuclear systems [6], 
and G-matrix [7], investigating in the presence 
of Nijmegen potentials [8] phenomenological 
non-relativistic treatment [9], and density 
functional theory of hypernuclear matter [10]. 
Also, the study of hypernuclei provides a unique 
laboratory and is suitable for studying nuclear 
structure in the presence of a strange quark such 
as the hyperon–nucleon and hyperon–hyperon 
interactions, where they are not accessible [11]. 
Thus, it seems quite natural that many authors 

investigate the -hypernuclei, which consist of 
one -hyperon coupled to a nuclear core in the 
equations of quantum mechanics. When 
approached within the framework of the non-
relativistic Schrödinger equation, the problem is 
simple and can be solved via the analogy with a 
familiar example of the -nucleus 
phenomenological potential [9]. In this paper, we 
present the basic equation of the radial 
Schrödinger equation and an analytic approach 
based on the correlation function behavior of 
hadronic cores in a strong field, which is used to 
depict interaction in relativistic-dependent terms. 
The binding energy and bound state mass are 
calculated using this approach [12]. Exotic 
hyperatomic and hypernuclei states do not 
conform to more conventional states. They 
include states involving quarks, protons, and 
neutrons, as well as hyperons states. The exotic 
hyper system is a multibody hadronic state 
investigated using various potential and 
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framework techniques, including the 
microscopic cluster model, the quark-quark 
coupling model, and the Gaussian expansion 
method. Recent experimental studies of high-
energy hadron-hadron collisions have revealed 
many unusual states. At strong and ultra-high 
energy limits, it has been demonstrated that the 
mass spectrum can be significantly larger than 
anticipated theoretically. The FINUDA 
Collaboration [13, 14], SKS [15], the PANDA 
Experiment [16], and KEK collected these 
experimental findings [17]. Japan Proton 
Accelerator Research Complex (J-PARC) [18, 
19] is projected to take on a new dimension and 
open up new study areas for hadronic physics at 
ultra-relativistic and finite temperatures in a 
brand-new operation in Japan. These theoretical 
investigations can not only raise awareness but 
also stimulate experimental interpretations. 
Exotic hypernuclei bound systems in the form of 
core-hyperon are investigated in this research. 
The energy and mass spectrum of the two-body 
system with semi-Cornell potential in the ground 
and excited states are determined using the 
correlation functions' Gaussian asymptomatic 
behavior. Furthermore, a relativistic correction to 
the component core mass is derived. The 
Schrödinger equation and the constituent 
hypernuclear component's mass are employed to 
calculate the hadronic hyperatom mass spectrum. 
The hyper exotic system mass component is 
defined via modifying correction. Cluster models 
are effective in describing hadronic bound state 
masses [20]. Consequently, the hadronic bound 
system is investigated concerning the quarks 
constituent system at a strong interaction; this 
notion, in conjunction with the radial 
Schrödinger equation, determines the 
hypernuclei characteristic. 

The Aim of the Research 
The neutron-rich exotic system production in 

strong interactions provides the possibility for 
extracting the light-density nuclear matter 
properties and investigating the behavior of in-
medium hadrons. Hyper-physics with ion 
collision manifests some interesting phenomena, 
such as the exotic bound state of multiple 
baryons and exotic hypernuclei. The present 
research in this field concerns well-known 
hypernuclei produced in strong and ultra-
relativistic reactions. However, an opportunity 
for the production of exotic hypernuclei coming 
from different reactions was under theoretical 

investigation. An important aspect of such 
mechanisms is characterized and described by 
the following working definition of relativistic 
mass correction. 

Below we undertake a theoretical 
investigation of how new and exotic hypernuclei 
bound states can be obtained in future 
experiments under the ultra-relativistic limit. For 
this purpose, we use a quantum field theory 
approach, which is widely accepted as one of the 
best tools for the description of the creation of 
exotic hadronic bound states. Therefore, to 
explore the mechanism of a strange particle 
bound state, we calculate the mass spectra at 
high energy and in the nuclear collision. The 
behavior of the hadrons bound state is very 
important in the high-energy interacting 
environment. The results of calculation using 
different models usually have uncertain values 
and we cannot predict the exact value of mass. 
We have to predict the mass spectrum using the 
relativistic behavior of hadrons. Therefore, we 
present the bound state mass spectrum based on 
quantum field theory and determine the 
relationship between the mass spectrum and the 
relativistic behavior of the bound state. The 
radial modified Schrödinger equation is 
investigated by applying the PUR method [20-
23]. Analytical and numerical results for the 
mass spectrum are presented. Results are used 
for describing mass spectra of the hypernuclei 
bound system. 

Materials and Methods 
The solutions of the Schrödinger equation for 

the Cornell, pseudo-harmonic, Coulomb, and 
other phenomenological potentials are known 
and obtained with different methods. In this 
article, we calculate the bound state energies of 
exotic light hypernuclei for the ground and 
excited states. Since the relativistic Schrödinger 
equation for such a system does not admit 
solutions, various analytical or numerical 
approximation methods have been developed. 
Therefore, we demonstrate the oscillator 
representation method or the projective unitary 
representation method (PUR) [12, 23] in the 
calculation of mass and the binding energy of 
hypernuclei and compare the results with the 
phenomenological potential. This approach 
meticulously describes the characteristics of 
hypernuclei and plays an important role in the 
development of PUR in hypernuclear physics as 
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it did in describing the bound states 
characteristic of exotic quarks such as 
charmonium, bottomonium, light mesons, etc. 
The analytic method based on the behavior of 
the correlation function of the corresponding 
field currents of charged particles is suggested 
[12, 22] for determining the mass spectra of two 
body systems of the exotic -hypernuclei. Using 
this idea, the binding energy and mass of the 
bound states are determined. The constituent 
mass of the -hyperon is defined by modifying 
corrections. Moreover, cluster models can 
successfully describe the masses of the bound 
states of light hypernuclei. Therefore, we 
consider the hypernuclei bound system as the 
quarks’ constituent system. Based on this idea 
and using the non-relativistic Schrödinger 
equation, the bound state characteristic is 
determined. The results of the analyses show that 
the charged constituent particles inside the -
hyperon and nucleons, instead of relying on 
uncharged -hyperon clusters (-hyperon has a 
charge distribution of positive and negative 
sides), can also effectively account for the 
masses of hypernuclei through the use of quarks. 
We consider the distribution of the electric 
charge of -hyperon based on the Skyrme model 
using the "collective approach" [23]. This is a 
good approximation for defining the 
characteristics of hypernuclei and hyperatoms in 
strong and weak interactions. In this paper, we 
determined the hypernuclei bound state mass in 
the confining potential, i.e., ܸ(ݎ) = ଵିݎ௦ߙ− +
 based on the PUR method [12, 22]. This ,ݎߪ
potential is commonly known as the Cornell 
potential. The expression ߙ௦ିݎଵ corresponds to 
the interaction force between particles arising 
from the one-boson exchange potential. It is a 
constant that characterizes the Coulomb-type 
interaction. In our theoretical work, we consider 
values within the range of 0.124 ≤ ௦ߙ ≤ 0.189. 
On the other hand,  ݎߪ is known as 
the confinement part of the potential with the 
range of 0.405GeV2 for quark interactions 
(reflecting the strength of the linear confining 
term). For the purpose of this study, we have 
chosen to neglect this term. The Hamiltonian of 
the -hypernuclei bound state is given by 

෡ܪ = ௣ොమ

ଶఓ೎
మ + ௣ොమ

ଶఓ౻
మ − ଵିݎ௦ߙ +   (1)           ݎߪ

where ߤ௖ ,  ஃ are the constituent masses of theߤ
hypernucleus core and the hyperon in the bound 
system, respectively, which differ from the rest 

masses of the core, ݉௖, and the hyperon, ݉ஃ. 
Moreover, the ߤ௖ ,  ஃ are the parameters (theߤ
constituent mass) are determined below [12, 19]. 
The non-relativistic Schrödinger equation has to 
be modified in order to solve and explain the 
experimental results of the exotic atoms. The 
modified equation obtains the interaction 
Hamiltonian in the framework of quantum field 
theory and the scattering matrix using the non-
relativistic limit. The mass is determined by the 
correlation function of the corresponding current 
in the field with the quantum numbers. This is 
presented in terms of Green’s function and 
Feynman functional path integral in non-
relativistic quantum mechanics, i.e., we 
determined the corrections to the mass of the 
system in the confining potential, based on PUR 
and quantum field theory [12]. 

Thus, the mass is determined by the formulas 
П(ݎ) = ௛ܩ(ܣ|ݎ)௘ܩ⟩

 ஺ of the⟨(ܣ|ݎ)∗
corresponding current of the field with the 
quantum numbers. This is presented in terms of 
Green’s function and Feynman functional path 
integral in non-relativistic quantum mechanics 
[11,12]. Therefore, the correction to the mass is 
defined as a limit of the correlation function in 
the asymptotic limit ܯ = − ݈݅݉

|௥|→ஶ
௟௡ П(௥)

|௥| . 
Therefore, the strong particles' interactions 
Hamiltonian can be realized as a bound state 
with a mass ܯ , if ܯ ≠ ݉ଵ + ݉ଶ + ⋯ , ܯ < ∞, 
However, if ܯ = ݉ଵ + ݉ଶ + ⋯, then the 
effective interaction cannot form a stable and 
clear bound state and the scalar particles exist as 
two independent states [12]. As we know, the 
radial Schrödinger equation for the exotic system 
has been described based on the possibility of 
strong interactions by ܪ෡(ݎ)ߖ =  ,So .(ݎ)ߖ(ߤ)ℓܧ
quantum field theory describes systems as a 
limitless number of oscillators maintaining their 
oscillating characteristics throughout 
interactions. According to the PUR model for the 
wave function, we have to change variables to 
obtain an oscillator behavior for the wave 
function of the transformed equation and then 
describe the radial Schrödinger equation in a 
new space with a different dimension [22, 24]. 
The wave function must decrease at small 
distances, so the transformation to the higher 
dimensional space is realized by changing 
variables to the axillary space coordinate system. 
Therefore, the asymptotic behavior of the 
functional (ݎ)ߎ at |ݎ| → ∞ is determined by a 
saddle point of the integral in the representation 
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of the correlation function (ݎ)ߎ. Consequently, 
the bound state mass is defined as a limit of the 
correlation function in the asymptotic limit 

(ߤ)ܯ =
minఓ೎,ఓ೰  ቀܧℓ(ߤ) + ఓ೎ାఓ೰

ଶ
+ ௠೰

మ ఓ೎ା௠೎
మఓ೰

ఓ೎ఓ೰
ቁ

 
= 

= డ
డఓ೔

ቀܧℓ(ߤ) + ఓ೎ାఓ೰
ଶ

+ ௠೰
మ ఓ೎ା௠೎

మఓ೰
ఓ೎ఓ೰

ቁ
௜ୀ௖,௸

,  (2) 

and then the masses of the -hypernuclei are 
determined as follows: 

(ߤ)ܯ = ቀ݉௖
ଶ − ቁ(ߤ)ℓܧଶ̇ߤ2

ଵ/ଶ
+ ቀ݉௸

ଶ −

ቁ(ߤ)ℓܧଶ̇ߤ2
ଵ/ଶ

(ߤ)ℓܧߤ  + +  ,(ߤ)ℓܧ

௖ߤ = ቀ݉௖
ଶ − ቁ(ߤ)ℓܧଶ̇ߤ2

ଵ/ଶ
,  

௸ߤ = ቀ݉௸
ଶ − ቁ(ߤ)ℓܧଶ̇ߤ2

ଵ/ଶ
,  

(ߤ)ℓܧ̇ = డாℓ(ఓ)
డఓ

,            (3)  

where ܧℓ(ߤ) is the eigenvalue of the interaction 
Hamiltonian in the Schrödinger equation 
(ݎ)෡Ψܪ =  We will give more .(ݎ)Ψ(ߤ) ܧ
details about this in the next paragraph. 
Moreover, the ߤ parameter is the reduced mass 
of the bounding system: ଵ

ఓ
= ଵ

ఓ೰
+ ଵ

ఓ೎
. 

Schrödinger Equation in PUR 

The radial Schrödinger equation of the -
hypernuclei system with the linear term of the 
interaction’s ݎߪ ≈ 0 potential between the 
clusters (i.e., the core and the hyperon) is as 
follows:  

ߖ෡ܪ = ⇒ ߖ(ߤ)ℓܧ  ቀ ௣ොమ

ଶఓ
+ ଵቁିݎ௦ߙ ℛ(ݎ) =

  (4)             .(ݎ)ℛ(ߤ)ℓܧ

In quantum field theory, for the ground and 
vacuum states, the systems are described by an 
infinite number of oscillators that keep their 
oscillating characteristic in the interactions. To 
use quantum field methods, we have to change 
the variables in Eq. (4) for the linear interaction 
term of potential by the following substitution:  

ݎ = ଶݍ ⇒ ℛℓ(ݎ) =   (5)           .(ଶݍ)ଶℓΦݍ

Here, the wave function should have the 
Gaussian type solution for large distances, and 
we apply PUR variables from Eq. (5) to the 
Hamiltonian (4). Equation (4) in a new auxiliary 
space 2q̂ is obtained as:  

ቀ௣ො೜
మ

ଶ
+ ଶିݍ௦ߙ−)ଶݍߤ4 − ቁ((ߤ)ℓܧ Φ(ݍଶ) = 0.   (6) 

 

where  

ොܽା = ቀఓఠ
ଶ

ቁ
ଵ/ଶ

ቀݍො − ௜
ఓఠ

  ,௤ቁ̂݌

ොܽି = ቀఓఠ
ଶ

ቁ
ଵ/ଶ

ቀݍො + ௜
ఓఠ

  ,௤ቁ̂݌

and 

ොݍ = ௔ොషା௔ොశ

(ଶఓఠ)భ/మ , ௤̂݌ = ଵ/ଶ(߱ߤ2) ௔ොషି௔ොశ

ଶ௜
,          (7)  

ොܽା, ොܽି are the creation and annihilation 
operators, respectively. The canonical variables 
are obtained through Wick ordering based on the 
PUR condition as follows (see [12] for more 
details): 

ොଶݍ = ௗ
ଶఓఠ

+: :ොூݍ ≅ 2(1 + ℓ) ଵ
ఠℓ

,   

௤̂݌
ଶ =  ௗ

ଶ
:+߱ߤ :̂݌ ≅  2(1 + ℓ)߱ℓ,          (8) 

The interaction Hamiltonian contains all non-
square parts of the term:∗: (a condition in Wick 
ordering). Then, we can find the renormalization 
of the bound state parameters, like the wave 
function. This lets us introduce the zero 
approximation into PUR and then find the 
eigenvalue of the ground state energy ߝ଴(ܧℓ.  .(ߤ
Hence, Eq. (6) is written in the following form 
[24, 25]: 

,ℓܧ)଴ߝ (ߤ = (ℓ + 1)߱ℓ − ௦ߙߤ 4 − ℓ)ߤ8 +
1)߱ℓ

ିଵܧℓ(ߤ) ⇒ ,ℓܧ)଴ߝ (ߤ = (ℓ߱)ܣ −
(ℓ߱)ܤℓܧ = 0,            (9)  

where 
(ℓ߱)ܣ = (ℓ + 1)߱ℓ − ௦ߙߤ 4 ,  
(ℓ߱)ܤ = ℓ)ߤ8 + 1)߱ℓ

ିଵ, 
and  

,ℓܧ)ℓߝ (ߤ = 0, డఌℓ(ாℓ,ఓ)
డఠℓ

= 0,         (10)  

Afterward, one can define the minimum 
ground state energy of the bound system as a 
result of the zero approximation [12]. Therefore,  

(ߤ)ℓܧ = ଵ
଼ఓ

߱ℓ
ଶ − ఈೞ

ଶ(ଵାℓ) ߱ℓ, 

߱ℓ = ଶఓఈೞ
(ଵାℓ) , ℓሖܧ (ߤ) = ିଵ

଼ఓమ ߱ℓ
ଶ.          (11)  

Thus, using Eqs. (2) and (11) and by 
determining the mass spectrum of the predicted 
bound state, we have: 

(ߤ)ܯ = ௖݉)+ߤଶߚ−
ଶ + ଶ)ଵ/ଶߤଶߚ + (݉௸

ଶ+ߚଶߤଶ)ଵ/ଶ, 
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ߚ = ఈೞ
(ଵାℓ).           (12)  

The ߤ parameter is determined by solving the 
following equation:  
ଵ
ఓ

= ଵ

ቀ௠೎
మିଶఓమா̇ℓ(ఓ)ቁ

భ/మ + ଵ

ቀ௠೰
మ ିଶఓమா̇ℓ(ఓ)ቁ

భ/మ,      (13)  

Now, to determine the bound state mass and 
the binding energy 
௸ܤ = ൫mc+ − ௛௬௣௘௥௡௨௖௟௜ܯ ൯c2 from Eq. (12), the 
total modified radial Schrödinger equation must 
be known; however, to simplify the calculations, 
we choose the total Hamiltonian regardless of 
the spin-spin, spin-orbital, and tensor-tensor 
interactions and effects. Next, we apply these 
results to determine the ܼஃ

஺  characteristics of the 
bound states, defining the hypernuclei with the 
rest nuclei masses taken from Refs. [26, 27] 
based on the definition and inside calculation 
that are dealt with in the next paragraph. 

Parameters  
This approach introduces PUR to the energy 

and mass spectra of a hypernuclei-bound state. 
Therefore, to estimate the accuracy of PUR in 
nuclear physics, we compare it to the results of 
other calculations. The energy spectrum of the 
hypernuclei, as an atom, can be defined using the 
Dirac equations under the condition that the 
mass of the hypernuclei core is sufficiently high. 
Therefore, we can determine the energy 
spectrum of a hypernuclei system ܼஃ

஺  in the 
frame of PUR and quantum field theory. In this 
case, the interaction potential is of a linear 
Coulomb kind. By employing Eq. (12) with the 
constituent mass derived from Eq. (13), we can 
obtain the mass and the binding energy 
spectrum. 

Next, we determine the parameters of the -
hypernuclei, composed of  and ܼ௭

஺ିଵ , with 
charged quarks inside them. Several authors 
have determined the mass and binding energy of 
the hypernuclei by using different nuclear 
physics approaches based on phenomenological 
potential models and field approaches. In these 
methods, the masses of the clusters are chosen to 
be free parameters. The following limits on 
cluster masses are currently experimentally 
established [26]:  
݉௣ =   ,ܸ݁ܯ938.272088
 

݉௡ =    ,ܸ݁ܯ939.56413

݉ஃ =   ,ܸ݁ܯ1115.683

along with the constant interaction range: 
0.124 ≤ ௦ߙ ≤ 0.189, in the ground state ℓ = 0 
and without spins-orbital interactions, ݉௖ =
݉௣ + ݉௡ = ݉ ௓ ಲషభ  in the above equations. 
Using the values of the rest mass and orbital 
quantum numbers from Eqs. (12) and (13), we 
obtained the constituent mass of the bound 
system and the binding energy for the ground 
states. 

The numeric results for the mass spectrum of 
the -hypernuclei are shown in Tables 1 and 2. 
The results show that the masses of the nuclear 
core and the hyperon differ from their masses in 
the free state, as presented in Eq. (2). The 
experimental mass values of hypernuclei listed 
in the Tables are derived from experimental-
theoretical results. Data of ܧ௸, ௖௢௥௘ܯ , ݉௸ is given 
from Refs. [26, 27] and include experimental 
main data to determine mass [28-32]. 
Subsequent computational procedures are 
performed to calculate the hypernuclei mass 
using the measured data, and the resulting values 
are presented in the right-hand column of the 
Tables for comparison with the outcomes 
obtained from the current study.  

In Ref. [27] authors have described the 
formula that is proposed for the simultaneous 
description of ܤ௸ separation energy which leads 
us to calculate hypernuclei mass according to 
experimental data of ܧ௸, ௖௢௥௘ܯ , ݉௸. The masses 
of - hypernuclei have been presented through 
nuclear emulsion experiments [28-32] and then 
the ܤ௸ is determined as below: 

௸ܧ = ൫ܯ௖௢௥௘ + ݉௸ −  ௛௬௣௘௥௡௨௖௟௜൯ܿଶ.       (14)ܯ

Equation (14) leads us to present the 
hypernuclei mass due to be compared with the 
theoretical method described in this article. This 
method has been used to check the accuracy and 
closeness of theoretical calculations of 
,௸ܧ ௛௬௣௘௥௡௨௖௟௜ܯ  with other results that are given 
in [33-37] and [38]. The mass values that are 
underlined in the Tables are determined based on 
the experimental separation energies of light 
hypernuclei obtained from emulsion studies. The 
mass values for nucleons are sourced from a 
compilation as referenced in [26]. We used the 
calibrated separation energy from Table 3 in Ref. 
[27] of NB52 (1973) to calculate hypernuclei 
mass (underlined) as a ܯ௘௫௣ି௧௛௘௢௥., and without 
calibration (italic).  
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TABLE 1. Mass spectrum and binding energy of exotic -hypernuclei in (MeV): A < 9. 
This work Experimental Theoretical 

 Bஃ M μஃ μୡ Bஃ Mୣ୶୮ି୲୦ୣ୭୰. Calculated 
based on [27] 

M୲୦ 
[42] 

Heஃ
ସ  3.163 3928.163 1116.180 2816.306 

2.530.04 [27] 
2.42 [41] 

2.39 [43,44] 
2.200.06 [45] 
2.390.07 [43] 
2.390.04[40] 

3921.573 
3921.6830.04 3927.73 

Heஃ
ହ  3.862 4867.496 1116.399 3755.829 

3.280.02 [27] 
3.120.02 [33] 

3.120.06 [43, 44] 
2.23 [6] 

3.080.03 [45] 

4839.823 
4839.9330.02 - 

Heஃ
଺  4.195 5806.728 1116.549 4695.446 

4.390.13 [27] 
4.557 [34] 
4.18 [38] 

4.090.27 [45] 
4.250.01 [33] 
4.160.14 [43] 

5779.183 
5779.1530.13 - 

Heஃ
଻  6.045 6744.443 1117.032 5635.073 

5.681 [34] 
5.23 [38] 

4.670.28 [45] 
5.550.21 [43] 

- 6729.42 

Heஃ
଼  6.016 7684.038 1117.101 6574.612 

6.620 [34] 
7.16070 [33] 

7.16 [38] 
7.160.70 [43] 

- - 

Liஃ
଺  4.643 5804.436 1116.757 4694.202 

4.552 [34] 
4.50 [38] 

4.3or 5.5 [27] 
- - 

Liஃ
଻  5.624 6743.571 1116.937 5633.761 

5.770.04 [27] 
5.679 [34] 
5.58 [38] 

5.58.0.03 [43] 
5.460.12 [45] 

6711.433 
6711.5630.04 - 

Liஃ
଼  6.768 7681.992 1117.281 6573.349 

6.940.03 [27] 
6.619 [34] 
6.80 [38] 

6.800.03 [43] 
6.720.08 [45] 

7642.573 
7642.7030.03 7663.42 

Beஃ
଻  5.906 6741.996 1117.012 5632.480 

5.170.11[27] 
5.678 [34] 
5.16 [38] 

5.160.08 [43] 
5.160.12 [45] 

6715.813 
6715.8930.11 - 

Beஃ
଼  6.786 7680.680 1117.285 6572.056 

7.020.07 [27] 
6.678 [34] 
6.84 [38] 

6.670.16 [45] 
6.840.08 [43] 

7642.843 
7642.9530.07 - 
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TABLE 2. Mass spectrum and binding energy of exotic -hypernuclei in (MeV): 9 ≤ A ≤ 20. 
This work Experimental Theoretical 

 Bஃ M μஃ μୡ Bஃ 
Mୣ୶୮ି୲୦ୣ୭୰. 

Calculated based 
on [27] 

M୲୦ୣ୭୰. 
[42] 

Beஃ
ଽ  7.771 8619.263 1117.601 7511.635 

6.930.03 [27] 
7.438 [34] 
6.71 [39] 

6.660.08 [45] 
6.680.09 [29] 

8563.603 
8563.7330.03 - 

Beஃ
ଵ଴  8.531 9558.067 1117.864 8451.204 

9.400.26 [27] 
8.151 [34] 
9.11 [39] 

9499.033 
9499.1330.26 

 

9531.28 
 

Bஃ
ଽ  8.794 8616.945 1117.858 7510.380 

7.980.15 [27] 
8.936 [34] 
8.29 [39] 

8580.023 
8580.1130.15 - 

Bஃ
ଵ଴  8.574 9556.730 1117.875 8449.912 

8.930.12 [27] 
9.704 [34] 
8.29 [39] 

9499.503 
9499.6130.12 

9531.28 
 

Bஃ
ଵଶ  10.082 11434.354 1118.403 10329.047 

11.580.07 [27] 
10.90 [34] 
11.37 [39] 

11.260.16 [45] 

11356.65 
11356.780.07 

11407.89 
 

Cஃ
ଵଶ  10.376 11432.766 1118.484 10327.762 

10.901 [34] 
10.80 [38] 
10.97 [39] 

- - 

Cஃ
ଵଷ  11.214 12371.493 1118.775 11267.331 

11.570.012 [27] 
11.447 [34] 

12.070.28 [33] 
11.59 [38] 

10.51 0.51 [45] 

12278.97 
12279.090.012 

 

12323.93 
 

Cஃ
ଵସ  11.749 13310.524 1118.981 12206.892 11.913 [34] 

12.17 [36] - - 

Oஃ
ଵ଺  12.146 15186.671 1119.186 14083.412 

12.50 [37] 
12.98 [40] 
12.96 [41] 
12.645 [35] 
13.00 [30] 

- - 

Oஃ
ଵ଻  12.805 16125.805 1119.355 15022.973 

13.018 [34] 
13.59 [40] 
13.75 [6] 

- - 

 

Results and discussion  
The discovery of hypernuclei in the early 

years ushered in a new era in nuclear physics. 
Recently much attention has been focused on the 
neutron-rich hypernuclei with Lambda Λ-
hyperons. While the nucleon-nucleon interaction 
is well studied, the knowledge of Λ-neutron, Λ-
proton, and Λ-Λ interaction is still evolving. On 
the other hand, non-relativistic quantum 
mechanics provides a unique opportunity to 

study the dynamics of the hypernuclei bound 
systems. Exotic atom characteristics are 
excellent tools to extract useful information 
about the hypernuclei. Our knowledge of non-
relativistic quantum mechanics is a good method 
for the exotic hypernuclei containing one 
hyperon. The majority of the investigated 
hypernuclei bound systems consist of a hyperon 
coupled to a nuclear core due to the attraction 
force of clusters (the core and the hyperon 
consist of charged quarks), creating bound states 
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and becoming more stable systems. Systematic 
studies of the energy levels of -hypernuclei 
have enabled the extraction of a considerable 
amount of details about the -nucleus 
interactions. In this study, the relativistic 
corrections to the mass spectrum of the -
hypernuclei, composed of the nucleus core and 
the -hyperon, have been determined. The 
numeric values of the -hypernuclei mass and 
binding energy show a satisfactory agreement 
with the theoretical and experimental data. 
Moreover, in this paper, based on Green’s 
function and the Feynman functional path 
integral in non-relativistic quantum mechanics 
approaches, the constituent masses of -
hypernuclei clusters are not free parameters, i.e., 
they are defined for each state separately. The 
constituent masses of the constituent clusters are 
different from the rest masses. The overall good 
agreement of this quanto-relativistic mass 
formula with the experimental data shows that it 
can be used in a priori estimation of the hyperon 
separation energy, in-light sector energy in the 
mass region not explored through experiments so 
far. Thus it can guide future experiments. 
Because of its simple formulation, it can be used 
as an input in multifragmentation production 
calculations as well as in fission calculations for 
hypernuclei.  

Conclusions 
This research solved the radial Schrödinger 

equation with a generalized hadronic potential 
using the PUR method in the simplistic axillary 

space. We obtained the bound state mass spectra 
and deduced the semi-Cornell potential as 
special cases. Numerical results have been 
computed for the light -hypernuclei and 
compared with results from the extant literature. 
In addition, we employed the relativistic 
correction to obtain its corresponding mass 
spectra relation necessary for calculating the 
mass spectra of light hypernuclei. The results, 
when compared with the experimental and other 
theoretical studies, are observed to be 
fractionally improved, giving more validity and 
reliability to the constituent mass and the 
approaches utilized for evaluating the mass of 
bound states, as illustrated in the Tables. This 
new, generalized, semi-Cornell potential will be 
of great importance and will become a subject of 
interest in the exotic hyper physics field, as it 
provides valuable information on the quanto-
relativistic effects and opens new windows for 
further investigation.  
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