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Abstract: The ground-state energies of a two-electron quantum dot are calculated using the 
variational calculation method to solve the relative part Hamiltonian of a two-dimensional 
quantum dot presented in a uniform magnetic field. We have shown the dependence of the 
exchange energy of the two-electron quantum dot on the confining frequency and strength 
of the magnetic field. The transitions in the angular momentum and spin of the quantum 
dot ground state are also shown. Based on comparisons with different works, the 
variational method gives very good results.  
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Introduction 

Quantum dots (QDs), or artificial atoms, have 
been the subject of intense research studies over 
the past few years. The growing interest is 
motivated by the physical effects and potential 
device applications. Different experimental [1-5] 
and theoretical [6-31] studies have been 
conducted to investigate the energy spectrum 
and the correlation effects of the interacting 
electrons confined in a quantum dot in the 
presence of an applied uniform magnetic field. 
One of the most interesting features of electron 
correlation is the change of the spin and angular 
momenta structure in the ground state of the QD 
system in the presence of the magnetic field. The 
QD, in this case, has the potential to serve as a 
qubit of a quantum computer, since the magnetic 
field can be used to tune the transition in the spin 
of the ground state of the quantum dot from 
singlet (S=0) to triplet (S=1) state [28-30]. In 
this work, we shall use the variational method to 
solve the relative part Hamiltonian of a two-
dimensional (2D) quantum dot under the effect 
of a magnetic field. We shall compare our 

computed results against the corresponding ones 
produced by different authors [29-31]. 

The Quantum Dot Hamiltonian 
The effective-mass two-dimensional 

Hamiltonian for two interacting electrons 
confined in a quantum dot-helium by a parabolic 
potential in a uniform magnetic field of strength 
B is given as: 
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where 0  is the confining frequency and   is 
the dielectric constant for the GaAs medium. 

1r
 and 2r  describe the positions of the first and 

second electrons in the xy-plane. 
cm

eB
c *  

is the cyclotron frequency and the symmetric 
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gauge ii rBA 


2
1

 is used in Eq.(1). Upon 

introducing the center-of-mass (cm) 

2
21 rrR
 

  and the relative coordinates 

21 rrr 
 , the Hamiltonian in Eq.(1) can be 

decoupled to a center-of-mass  RH  and a 
relative  rH  parts. The cm-part is a harmonic 
oscillator type with well-known eigenenergies 
[27, 29, 30]:  
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where ,...2,1,0cmn and ,...2,10 cmm . 

The main task in this work is to solve the 
relative two-dimensional Hamiltonian part, 
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           (3) 

by using the variational calculation method.  

Variational Calculation Method 
Dyblaski, in a recent work [31], has used 

successfully the variational method to study the 
electronic structure of the quantum dot. 
Encouraged by the accuracy of the variational 
method used in Ref. [31], we apply the 
variational technique to calculate the complete 
eigenenergy spectra of the QD Hamiltonian and 
the exchange energy (J) as a function of 
confining frequency and magnetic field strength. 
In this work, we adopted a one- variation 
parameter wave function as: 

 ;           (4) 

where: 

 ;         (5) 

 .              (6)  

The first power term and the third exponential 
term in the wave function  in Eq. (5) both 
give the correct asymptotic behaviors 

as , respectively. In addition, 
these states are a very good choice, because they 
are the eigenstates of parabolically confined 
electrons in a magnetic field, and the parabolic 
form is a successful potential model used by 
many authors in different works to study and 
explain the behavior of electronic, thermal and 
magnetic properties of the quantum dot. 

The Schrödinger equation, with complete 
two-dimensional Hamiltonian form and full 
variational wave function can be written as: 

(7) 

In our calculations, we have used the 
following atomic Rydberg units: 

. 

Finally, the relative Hamiltonian part is: 

          (8) 

We have normalized our wave function: 

          (9) 

by calculating the normalizing constant as: 

           (10) 

The above normalization constant can be 
expressed in terms of new parameters,  

 ;        (11) 

where:  

  ;        (12) 

  ;        (13) 

  .        (14) 
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We have found the energy spectra of the 
relative part Hamiltonian: 

 
            (15) 

The energy matrix element in Eq. (15) can be 
rewritten in a closed form as: 

  ;      (16) 

where: 

 ;        (17) 

 ;        (18) 

 .       (19) 

The constants: d, e and f are as defined 
previously in Eqs. (12-14).  

The energy eigenvalues of  can be obtained 
by minimizing the energy expression in Eq. (16) 
with respect to the variational parameter ( ; 
namely, 

 .         (20) 

The value of the parameter  which satisfies 
the minimum energy requirement is: 

 
           (21) 

So, the final energy expression in terms of the 
variational parameter value which satisfies the 
minimization condition is: 

 
            
           (22) 

Having obtained the eigenenergies for the QD 
system for any state labeled by quantum 
numbers: , we are able to calculate the 
exchange energy  defined as: 

          (23) 

for any range of magnetic field strength and 
parabolic potential confining frequency. 

2. Results and Discussion  
Our computed results for 2e quantum dot are 

presented in Figs. 1 to 4 and Tables 1 to 3. In 
Fig. 1, we have displayed the computed 
eigenenergies of the relative part 2D- 
Hamiltonian for two interacting electrons at a 
confining frequency of  in a QD 
system. The figure clearly shows the transitions 
in the angular momentum of the ground state 
energy as the magnetic field increases. The 
origin of these transitions is due to the effect of 
the Coulomb interaction energy in the QD 
Hamiltonian. For this purpose, we have plotted, 
in Fig. 2, the energy spectra of two independent 
(zero Coulomb interaction) QDs. The figure 
shows no energy level crossings, and the state 
with  is always the ground state.On the 
other hand, the ground state of the interacting 
electron model of the QD oscillates with the 
angular momentum as we have mentioned.For 
example, the angular momentum changes from 

Since the 
total spin of the two electrons is , 
this leads to an exchange in the sequence of the 
singlet (S) and triplet (T) states. These 
transitions in the angular momentum of the QD 
system are expected to manifest themselves as 
cusps in the spectra of thermodynamic quantities 
of the QD: like heat capacity, magnetization and 
magnetic susceptibility [ 7, 9,10]. Our computed 
results by the present variational method are also 
listed in Table 1 for the sake of comparison. The 
underlined energy values show the angular 
momentum transitions of the ground state of the 
QD. These underlined ground state transitions 
agree very well with the corresponding ones 
shown in Fig. 1 of Ref. [31]. We have also 
compared, in Table 2, the present computed 
results against the data of Ref. [29, 30]. The 
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tabulated results (up to six significant figures) 
show excellent agreement between both works. 
In Fig. 3, we have plotted the exchange energy 
(J), defined in Eq. (23), as a function of magnetic 
field strength ( ) and confining frequency: 

.  

The figure clearly shows the effect of the 
strength of the confining frequency on the 
transition of the angular momentum of the 
ground state energy. As the confining frequency 
increases, the transiton (J =0) shifts to hihger 
magnetic field. For example, the first transition 

occurs at  for , while for 
the trasition occurs at a higher 

confining frequency value, . This 
shows that as the parabolic confinement 
increases, more magnetic energy is needed to 
make the ground state transition. In Table 3, we 
have listed the values of the calculated exchange 
energy (J) as a function of  for different values 
of confining frequency. Furthermore, we have 
displayed, in Fig. 4, the singlet-triplet phase 
diagram (  of the QD showing the 
singlet – triplet regions separated by J=0-lines.  

TABLE 1. The ground state eigenenergies, in ( calculated by using the variational method for 
various values of magnetic field strength ( ) and different angular momentum values (m=0, 1, 2, 
3 and 4) of a QD system with a confining frequency, . The underlined energy values 
show the angular momentum transitions of the QD ground state 

 m 
 0 1 2 3 4 

0.0 1.6998 2.000 2.5219 3.10835 3.7226 
0.4 1.7566 1.8743 2.2218 2.6356 3.0780 
0.8 1.9119 1.8788 2.0975 2.3876 2.7082 
1.2 2.1341 1.9751 2.0992 2.3015 2.5371 
1.6 2.3954 2.1286 2.1813 2.3200 2.4950 
2.0 2.6708 2.3164 2.3131 2.4039 2.5341 
2.4 2.9715 2.5246 2.4758 2.5292 2.6251 
2.8 3.2702 2.7453 2.6583 2.6815 2.7502 
3.2 3.5707 2.9737 2.8538 2.8518 2.8983 
3.6 3.8714 3.2068 3.0580 3.0346 3.0624 
4.0 3.2462 3.2381 3.2781 3.3348 3.4022 

TABLE 2. The present ground state energies (in R*) of QD as a function of dimensionless Coulomb 

coupling parameter obtained from exact diagonlization method (second column) 

compared with reported work (third column) taken from Ref. [29, 30]. The parameter   

has the dimension of inverse length 
 E(Present work) E(Ref. [29, 30]) 

0  2.00000 
1  3.00097 
2  3.72143 
3  4.31872 
4  4.84780 
5  5.33224 
6  5.78429 
7  6.21129 
8  6.61804 
9  7.00795 

10  7.38351 
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TABLE 3. The exchange energy (J), in meV, listed against the magnetic field strength  for different 
QD confining frequencies:  

 =0.4  =0.8  
0.0 0.1492 0.3807 
0.2 0.0558 0.2845 
0.4 -0.0255 0.1959 
0.6 -0.07852 0.1144 
0.8 - 0.0346 0.0394 
1.0 0.0009 -0.0295 

 
FIG. 1. The computed relative motion energy spectra ( in  of two interacting electrons quantum 

dot against the magnetic field strength for a confining frequency  and an 
angular momentum  m = 0, 1, 2 and 3. 

 

 
FIG. 2. The energy spectra (in ) of two non-interacting  electrons ( Coulomb=zero ) in a  quantum 

dot calculated at  against the confining frequency . 
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FIG. 3. The exchange energy, J, (in meV) against the magnetic field strength  for QD 

confining frequencies . 
 
 

 
FIG. 4. The QD singlet-triplet phase diagram (  S=0, singlet and S=1, triplet states. 
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3. Conclusion 
In conclusion, we have studied the ground 

state properties of the 2e QD in the presence of 
an applied uniform magnetic field. The ground 
state energies of the QD are calculated for 
various values of field strength and confining 
frequency. We also have shown the spin single-
triplet transition in the ground state of the QD 

and the phase diagram. The present computed 
eigenenergy results, given in Figs. 1 and 2 and 
Tables 1 and 2 are compared with the 
corresponding ones in References [7, 29-31]. 
The comparisons give very good results for all 
ranges of the magnetic field strength and 
confining frequency of the QD system. 
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