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Abstract: In this paper, we studied the zero-spin isotopes with N=Z and A=4n in 
relativistic cluster models as a system which can be considered to be composed of α-
particles. For interaction between the clusters, we use modified Manning-Rosen potentials 
and solve the relativistic Klein-Gordon (KG) equation using the Nikiforov-Uvarov (NU) 
method to calculate the energy spectrum. We found the ground state energy and the first 
excited energy. Finally, the calculated results are compared with the experimental data for 
light nuclei, such as 8Be, 12C and 16O. The results show that the modified Manning-Rosen 
(MR) potential is adaptable for cluster interactions. 
PACS codes: 21.60.Gx. 
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1. Introduction 

One of the fundamental models of nuclear 
structure is the cluster model which has a long 
history [1]. Cluster interpretation is a suitable 
model to describe nuclear states and has been 
successful in reproducing energy spectra and 
other nuclear properties, such as electro-
magnetic properties, α-emission widths and α-
particle elastic scattering data in nuclei near the 
double closed shell. In 1936, when Bethe 
predicted that nuclei are made of alpha particles 
and proposed a geometrical arrangement of 
alpha particles inside nuclei, the cluster model 
was introduced [2]. In 1937, Wheeler [3] 
extended this work, and similar models were 
suggested concurrently by Wefelmeier [4], 
Weizsacker [5] and Fano [6]. Freer and 
Merchant, in 1997, studied the role of clustering 
and cluster models in nuclear reactions and 
examined the evidence for -cluster chain 
configurations in the light even - even nuclei 
from 8Be to 28Si [7]. Recently, several systems of 
even-even nuclei were studied with a cluster 
model and their results were reasonably 

compared to the experimental spectra for ground 
state and some excited states [7-12]. The alpha 
particle, 4He nucleus, is the most common cluster 
which is exceptionally stable (its first excited 
state is 20.2 MeV [13]), and its binding energy is 
7.07 MeV/nucleon. It is also very compact (a 
charge radius of 1.673fm [14]), and has zero-
spin for all quantum numbers (spin and isospin), 
which makes it easy to combine into larger 
systems. Also, it is the first doubly magic 
nucleus with the first closed shell 1S1/2, which 
accounts for its exceptional stability. Also, in 
nuclear and high energy physics, particles are in 
a strong potential field, and for studying the 
internal structure of any quantum mechanical 
systems, such as nuclei, the relativistic effect 
must be considered. In relativistic quantum 
mechanics, one can apply the KN equation to the 
treatment of a zero-spin particle, such as the 
alpha particle and the Dirac equation for the spin 
half particle. The KN equation is frequently used 
to describe the particle dynamics, and in recent 
years, many studies have been carried out to 
explore the relativistic energy Eigen-values and 
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corresponding wave functions of the KN 
equation [15-18]. Hence, in this article, we study 
the light nuclei in the relativistic cluster model 
and solve the KN equation for the isotopes with 
N=Z and A=4n (n=2, 3, 4 …) as a system which 
can be considered to be composed of α-particles. 

Modeling the effective interaction among 
clusters is very important. The cluster-core 
interaction leads to the identification of 
clustering in the nuclear matter and the 
description of clustering phenomenon in various 
nuclei. In 1960s, Ali and Bodmer used the 
experimental data on alpha-alpha scattering and 
obtained potentials which were fitted to the 
scattering phase shifts [19, 20]. During the past 
decade, the modified phenomenological Saxon-
Woods plus Cubic Saxon-Woods cluster 
potential has successfully described various 
phenomena related to alpha clustering in light as 
well as even-even heavy nuclei [21, 22]. Prior to 
the development of the Saxon-Woods plus Cubic 
Saxon-Woods potential form, such a 
microscopic interaction has been employed in 
various forms to describe cluster bound states in 
light nuclei [23] and exotic decays in heavy 
nuclei [22]. Despite its success, the modified 
Saxon-Woods potential model tells us very little 
about the microscopic nature of clustering in 
closed shell nuclei. 

The MR potential is one of the most useful 
and convenient models for studying the energy 
Eigen-values. It also gives an excellent 
description of the interaction between the two 
atoms in a diatomic molecule and constitutes a 
convenient model for other physical situations in 
term of their bound states and scattering 
properties. So, in our work, we offer the 
modified Manning-Rosen potential as a 
reasonable potential to study nuclear structure in 
cluster model, due to some similarity of multi-
atomic molecules to multi-alpha-cluster nuclei. 
The short range Manning-Rosen potential is 
given by [24-29]: 
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where A and  are dimensionless parameters, 
while b is the screening parameter which has the 
dimension of length. Our modified Manning-
Rosen potential is:  
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where k is the coulomb repulsion potential 
coefficient between the clusters. 

In section two, we solve the KN equation to 
find the Eigen-values and Eigen-functions with 
the modified Manning-Rosen Potential. Then, in 
section three, we examine the results for some 
isotopes. At the end, conclusions are given in 
section four. 

2. The Eigen-values and Eigen-
Functions with the Manning-Rosen 
Potential for NBody System 

The many-body forces are more easily 
introduced and treated within the hyperspherical 
harmonics formalism. Now, we consider a 
system of identical  particles. The D-
dimensional time-independent arbitrary l-state 
radial KN equation with scalar and vector 
potentials S(r) and V (r), respectively, where r = 
|r| describing a spinless particle, such as -
particle, takes the general form [30-32]: 
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where Enl, M and 2
D denote the KG energy, the 

mass and the D-dimensional Laplacian, 
respectively. If the scalar and vector potentials S 
(rij) and V (rij) are a two-body potential of 
interaction, so we can expand them in the 
hyperspherical harmonics formalism. We define 
a set of the Jacobi coordinates for ijr , where 

ij i jr r r 
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 [34]: 
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The center of mass R eliminates using the 
Jacobi coordinates. In addition, x is a D-
dimensional position vector in Jacobi 
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coordinates. Therefore, by choosing a common 
ansatz for the wave function in the form: 

-( -1)/2( ) ( )D
l lR x x u x ,            (5) 

Eq. (3) reduces to the form shown below and 
KG equation turns into a Schrödinger-like 
equation. Thus, the bound state solutions are 
very easily obtained with the NU method [35-
37]: 
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By replacing C = A and ( 1)D A     , 
the modified MR potential can be written in the 
following simple form: 
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Under the equally mixed potentials S(r) = 
V(r) and using Eq. (7), we obtain: 
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              (8)  
The good approximation for the kinetic 

energy term 2(( 2 -1)( 2 -3) 4 ) / 4D l D l k x    in 
the centrifugal barrier is taken as [37-39]: 
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To obtain the following hypergeometric 
equation, we substitute Eq. (9) into Eq. (8) and 

make change of the variables x z , /x bz e , 
through the mapping function ( )x f z : 
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By using Nikiforov-Uvarov method, we 
obtain the Eigen-values and Eigen-functions as 
follows [35-37]: 
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and: 
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The wave function that is obtained by Eq.12 
is according to the boundary conditions for all 
the isotopes in the alpha cluster model. In the 
next section, we study ground state and first 
excited state energy for various combinations of 
light - cluster nuclei. 

3. Examples of Clustering 
3.1. Example 8Be 

In our study, the simplest case is that of the 
two α-particle system 8Be which would have a 
dumbbell shape and be a two-body system. Ikeda 
predicted that cluster structures are most obvious 
at an excitation which coincides with a particular 
decay threshold [40]. Experiments show that 
alpha + alpha cluster structure is found in the 
ground state of 8Be, because it has a lifetime of  
~ 10-16 s. The binding energy of 8Be is -57.75 
MeV and its ground state is unbound to 2 
decay by 92 keV. It has a first excited 2+ state at 
-53.27 MeV with a width of 1.51 MeV, as well 
as a 4+ state at -46.6 MeV with a width of 3.5 
MeV. These three states have an energy 
separation which is consistent with a rotational 
behavior given by 2 ( 1) / 2j j  I , where I is the 
moment of inertia. The calculated value for the 
moment of inertia is consistent with the picture 
of two touching particles; an essentially 
super-deformed nucleus [9-41].  

With the picture of two touching -particles 
and the use of the modified Manning-Rosen 
potential between them, we reproduce the 
spectrum of the ground state and the first excited 
state by Eq.11. Results are shown in Table 1 and 
compared with experimental data. It appears that 
our result have good agreement with the 
experimental results.  

TABLE 1. The spectrum of the energy levels in 
8Be. 

Levels Ecal(MeV) Eexp(MeV) 
Ground state -57.75 -56.50 

First excited state -53.27 -53.47 

3.2. Example 12C 
The structure of "Hoyle" state; the first 

excited 0+ state at -84.51 MeV in 12C isotope is 
influenced by clustering or by symmetries 
thereof. So, the system can be constructed from a 
variety of geometric arrangements of three-alpha 

particles. It might be expected that the compact 
equilateral-triangle arrangement is the lowest 
energy configuration [8-42]. 

In the case of 12C, the structure of the ground 
state is influenced by clustering or by 
symmetries thereof. So, the system can be 
constructed from a variety of geometric 
arrangements of three-alpha particles. It might be 
expected that the compact equilateral-triangle 
arrangement is the lowest energy configuration 
[43]. Hence, three identical body forces of the 
internal particle motion are described in terms of 
the Jacobi relative coordinates  and R; center 
of mass. In the theory of many-particle 
systems, Jacobi coordinates often are used to 
simplify the mathematical formulation. Now, we 
can introduce the hyper-radius quantity x and the 
hyper-angle  as follows [33- 43]: 
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1r


, 2r


and 3r


are the relative positions of the 
three particles. We solved the KN equation in 
new coordinates, similar to the previous ones. 
We found the best values of b, , A and k by 
fitting to the experimental data at Hoyle state 
that has the cluster structure. Then, we calculated 
the approximate ground state energy and the first 
excited energy (in MeV). The results are shown 
in Table 2 for the 12C isotope. 
TABLE 2. The spectrum of the energy levels in 

12C. 
Levels Ecal(MeV) Eexp(MeV) 

Ground state -92.61 -92.16 
First excited state -88.01 -87.72 

The binding energy of 12C is -92.16 MeV and 
in our model, we obtain a value of -92.61MeV. 
For the first excited state, our result is -88.01 
MeV which is near to the experimental data. 

3.3. Example 16O 
The 16O isotope possesses the second closed 

shell 1P1/2, but not quite the degree of inertness 
of the - particle. The Ikeda diagram suggests 
that 16O has a 12C + alpha structure at an 
excitation energy of around -120.46 MeV and a 
four-alpha particle structure at an excitation 
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energy of around -113.18 MeV [40]. The 
experimental evidence supports the Ikeda model 
too. The experimental moments of inertia can be 
related back to shapes and alpha cluster 
configurations suggested by the moment of 
inertia calculations. These calculations do not 
rule out the possibility that the nucleus maintains 
a homogeneous composition throughout the 
deformed shape. However, the subsequent decay 
into two 8Be, believed to have a 2cluster 
structure, and from there into four 4He, supports 
the idea of four-alpha clusters [44]. 

TABLE 3. The spectrum of the energy levels 16O 
Levels Ecal(MeV) Eexp(MeV) 

Ground state -127.89 -127.62 
First excited state -121.84 -121.57 

Now, we give in Table 3 a summary of our 
results for cluster states in 16O nuclei obtained 
using our potential of Eq.6 in Jacobi coordinates.  

The values of the ground state energy and the 
first excited energy are -127.62 MeV and            
-121.57 MeV, respectively, while we calculated 

them to be -127.89 MeV and -121.84 MeV, 
respectively. 

4. Conclusions  
In the present paper, we studied the light – 

cluster (N=Z) nucleus. We selected the 
modified Manning – Rosen potential between 
the alpha clusters regardless of the internal 
structure of them. By solving the Klein Gordon 
equation in D-dimensions space using the Jacobi 
coordinates and NU method for our potential, we 
found the Eigen-values and Eigen-functions, 
generally. Then, we examined the results for 8Be, 
12C and 16O. Results for the ground state and the 
first excited state in the studied isotopes showed 
good agreement with the experimental data.  
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