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Abstract: We obtained analytically closed form expressions for longitudinal electric 
impedance and transmission coefficient of a dielectric loaded resistive cylindrical pipe of 
finite thickness. These expressions are valid for an axial current in a form of a point source 
moving parallel to the pipe axis with an offset a. The resistive–wall impedance and the 
transmission coefficient have been numerically visualized for some representative machine 
parameters. For wall thicknesses less than the skin penetration depth, the wall becomes 
transparent for the excited electromagnetic fields. Very good shielding for standard 
operation can be achieved by thin metallic walls of thicknesses of the order of few skin 
penetration depths. Effects of the dielectric constant and thickness on the transmission 
coefficient are found to be negligibly small, while the presence of the dielectric leads to a 
suppression of resistive-wall impedance for large thicknesses of the dielectric layer.  
Keywords: Cylindrical pipe, Electrical impedance, Transmission coefficient, Wave guides. 
 

 
Introduction 

Axial currents, like a beam of charged 
particles or an RF-source, may excite elec-
tromagnetic fields in its environment and 
periodic excitations can occur depending on the 
coupling of the beam to its environment at a 
particular frequency. 

For pipe walls that are not perfectly 
conducting, electromagnetic fields excited by the 
beam penetrate partially into the pipe wall with a 
penetration depth given by the skin depth δs(ω). 
Image currents induced in the wall lead to 
heating when the wall conductivity is not 
infinite. In the literature of electric impedances 
[1, 2], one finds different expressions for the 
corresponding resistive–wall impedance with 
different ranges of validity. When the skin depth 
is larger than the wall thickness, the beam 
induces electromagnetic fields that can penetrate 
through the wall. In such cases, the impedance 
depends on the structures outside the pipe. In this 
situation, in addition to the impedance, detailed 
calculations of the shielding effectiveness of the 

pipe are necessary in order to estimate the 
currents that could be induced in hardware 
components behind the pipe. 

The well known ability of a thin layer of 
thickness d (less than the skin depth δs) to shield 
electromagnetic fields produced by a particle 
beam was considered in Ref. [3]. Because of the 
relevance of the issue for the design of high-
current ring machines, it is important to have 
closed form expressions for the resistive wall 
impedance and for the shielding effectiveness 
covering the relevant range of frequencies, beam 
energies and wall thicknesses. Krinski et al. [4] 
derived asymptotic formulae for the impedance 
of a cylindrical metal tube of a specific radius, 
length and conductivity attached at each end to 
perfect conductors of semi-infinite length and 
computed the short-range wake field. Metral et 
al. [5] derived a formula for the resistive wall 
impedances of an infinitely long cylindrical 
beam pipe. They found that the resistive 
impedance is about two orders of magnitude 
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lower at this frequency, which is explained by 
the fact that the skin depth is much larger than 
the beam pipe radius. Zhilichev [7] derived an 
analytical form for the impedance of short 
conductors in the form of a convergent series 
and applied it to the calculation of the impedance 
of a resistive cylinder between two 
superconductors. Biancacci et al. [8] studied the 
effect of different material conductivities, finite 
length and particle beam velocity on the 
coupling impedance of azimuthally symmetric 
cavities of finite length loaded with a toroidal 
slab of lossy dielectric using the method of mode 
matching technique for an azimuthally uniform 
structure of finite length. 

In the present work, we consider the problem 
of the interaction between a dielectric-lined 
resistive cylindrical pipe and a point source 
moving off-axis with an offset a (an 
infinitesimally thin ring with radius a). Such a 
scheme was used in investigating dielectric 
wake-field accelerators, in which charged 
particle beams excite electromagnetic wake 
fields known as ˇCerenkov radiation [9, 10, 11]. 
In the frequency domain, we are interested in 
evaluating the excited electromagnetic fields in 
such a dielectric-lined cylindrical pipe and then 
in finding the corresponding resistive-wall 
impedance and transmission coefficient for our 
problem. 

 

 

 

The paper is organized as follows. In the next 
section, we present the model equations for the 
pipe structure under consideration. Then, in the 
following two sections, we use the exact field 
matching technique to calculate the excited 
electromagnetic fields and the corresponding 
longitudinal electric impedance and transmission 
coefficient. In the last section, the analytical 
expressions for resistive–wall impedance and 
transmission will be numerically visualized and 
main conclusions will be presented. 

Model Equations 
The general wave equations satisfied by the 

electric and magnetic fields ܧሬ⃗  and ܤሬ⃗  in a linear 
medium of conductivity S, permittivity f and 
permeability µ are obtained from Faraday’s and 
Ampere’s laws [12, 13, 14]; namely, 

 
FIG. 1. Schematic of the problem geometry. 

 

 

 
(1) 
 
 
(2) 

where ρ and ଔ⃗ are the beam charge and current densities, respectively, which obey the following 
continuity equation: 

 

 
(3) 

  
The axial current is modeled as a point charge 

q0 moving down a cylindrical pipe with an offset 
a in the θ0 = 0 direction with a constant 
longitudinal velocity ⃗ݒ =  In decomposing .ݖܿ̂ߚ
the corresponding charge and current densities in 

terms of multipole moments, the lowest 
monopole moment is: 
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(4) 
 
(5) 

  
This monopole source has an axially 

symmetric transverse charge distribution and it 
represents an infinitesimally thin ring with radius 
a. The beam is moving in a cylindrical pipe of 
radius b, enclosed from inside to outside, respec-
tively, by a dielectric of thickness td and 

dielectric constant κd, a conducting layer of 
conductivity S and thickness tc, then vacuum 
outside, as shown in Fig 1. 

Time Fourier–transformed charge and current 
densities in Eqs. (4) and (5) are: 

 

 
(6) 
 
 
(7) 

where ω = kzβ0c has been used and kz is the wave number in the direction of beam propagation. 

Due to the symmetry of the source under 
consideration, only transverse magnetic (TM) 
cylindrical waveguide modes couple to the 
propagating beam such that Bz = 0. All other 
field components are obtained from Ez(r, z, ω) 
using Maxwell’s equations, where Eθ(r, z, ω) and 
Br(r, z, ω) vanish identically because of the axial 
symmetry of the beam. 

 

We assume normal mode solution for the 
time Fourier–transformed electric field such that 
Ez(r, z, ω) = Ez(r, ω)eik.z. This is in agreement 
with the source terms in Eqs. (6) and (7). Upon 
Fourier transforming Eq. (2) in time and making 
use of ρ (r, z, ω) and j (r, z, ω) of Eqs. (6) and 
(7), respectively, we obtain the following 
equations for the longitudinal electric field 
component Ez within each region of interest: 

 

 
(8) 
 
 
(9) 
 
 
(10) 
 
 
(11) 
 

(12) 

where the propagation wave numbers σ0, σd and σc are given by the following expressions: 

.
 

 
(13) 

  
Since the structure under consideration 

supports only transverse magnetic modes due to 
azimuthal symmetry of the source, the 
electromagnetic field components Bθ (r, z, ω) and 
Er (r, z, ω) are non-vanishing and are needed for 

matching the solutions at the different interfaces 
involved in the problem. These fields are 
obtained from Ez (r, z, ω) via Maxwell equations 
as follows: 
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(14) 
 
 
(15) 

where σα stands for σ0, σd and σc. 

Excited Electromagnetic Fields 
In this section, we solve the wave equation 

for Ez in each region and then find the associated 
integration constants using exact field matching. 
For TM modes in azimuthally symmetric pipe 
structures, we only solve for the z–component of 

the electric field in the five regions involved in 
the problem. The general solution for the electric 
field Ez in each region is: 

 

 

 
 
 
 
 
(16) 

 

where I0 and K0 are the zero-order modified 
Bessel functions of first and second kinds, 
respectively. In addition to the finiteness of Ez as 
r → 0 and r → ∞, we still have eight arbitrary 
constants and therefore eight boundary 

conditions are needed. Integrating the 
differential equation for Ez from r = a − δ to r = a 
+ δ for vanishingly small δ, we obtain the 
following boundary condition for the 
discontinuity of ∂Ez/∂r at r = a: 

 

 
(17) 

  
where E΄

z is the derivative of Ez with respect to 
σ0r. We also use the continuity of Ez at r = a, the 
continuity of Ez and Bθ at r = b, r = d and r = h. 

Applying the above mentioned eight boundary 
conditions, we obtain the following eight 
algebraic equations: 

 

(18) 
 
(19) 
 
(20) 
 
(21) 

(22) 

(23) 

(24) 

(25) 

where ηcv, ηcd and ηdv are defined as follows: 

 

 
(26) 
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The arbitrary constant A1 needed for the 
determination of the longitudinal electric field 
inside the beam region and for the calculation of 

longitudinal impedance is obtained by 
simultaneously solving the system of Eqs. (18– 
25); namely, 

 

 
(27) 

where the parameters in Eq. (27) are given by the following relations: 

 

 
(28) 
 
 
(29) 
 
 
(30) 
 
 
(31) 
 
 
(32) 
 
 
(33) 
 
 
(34) 

Longitudinal Impedance and Transmission 
Longitudinal electric impedance will now be 

calculated as a volume integral over the beam 
current by assuming a circular accelerator of 
circumference L [1, 2]: 

.
 

 
 
 
(35) 

Substituting for Ez and j results in the following expression for the electric impedance: 

 

 
(36) 

  
where Z0 = 1/ε0c is the vacuum impedance and n 
denotes the harmonic number which is related to 
the ring radius R by the relation n = kzR [1, 2]. 

The resistive-wall part of the longitudinal 
electric impedance ܼ||

(௪)(߱, ܵ) is as follows: 

 

 
(37) 

where ܼ||
(௪)(߱, ܵ → ∞) accounts for the absence of resistivity and represents the space-charge part of 

the electric impedance. 
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The longitudinal transmission coefficient ߬|| 
of the resistive cylindrical pipe is obtained as the 

ratio of the transmitted to incident field 
amplitudes [2] and can be written as follows: 

.

 

 
(38) 

Numerical Examples 
We obtained analytically closed form 

expressions for longitudinal electric impedance 
and transmission coefficient of a resistive 
cylindrical pipe of a conducting wall of finite 
thickness tc [Eqs. (36–38)]. The conducting wall 
is coated from inside by a dielectric of thickness 
td. We also obtained the electromagnetic fields 
excited by an off-axis motion of a point source. 

In Fig. 2, the transmission coefficient τ [Eq. 
(38)] has been visualized as a function of the 
conducting wall thickness normalized to the skin 

depth tc/δs, where  s 02/ S   . As in Fig. 2, 
Fig. 3 shows the transmission coefficient τ as a 
function of tc/δs using logarithmic scale. 
Representative machine parameters used in the 
numerical estimations in Figs. 2 and 3 are: 
circumference L = 125 m, pipe radius b = 10 cm, 
beam radius a = 5 cm, dielectric layer with td = 3 
µm and κd = 6, injection energy γ0 = 1.02, 
harmonic number n = 5, reference frequency ω0 
= β0c/R = 2.41 x 106 rad/s, ω = nω0, wall 
conductivity S = 1.1 x 106 (Ω m)−1 and δs = 0.31 
mm. 

FIG. 2. Transmission coefficient τ as a function of the conducting wall thickness tc/δs. The parameters used are: 
circumference L = 125 m, pipe radius b = 10 cm, beam radius a = 5 cm, dielectric thickness td = 3 µm and κd 
= 6, injection energy γ0 = 1.02, harmonic number n = 5 and reference frequency ω0 = 2.41 × 106 rad/s. 
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FIG. 3. Transmission coefficient τ (log scale) as a function of the normalized conducting wall thickness tc/δs. The 

parameters used are: circumference L = 125 m, pipe radius b = 10 cm, beam radius a = 5 cm, dielectric 
thickness td = 3 µm and κd = 6, injection energy γ0 = 1.02, harmonic number n = 5 and reference frequency ω0 
= 2.41 × 106 rad/s. 

 
FIG. 4. Real part of the resisitive-wall impedance in Ω as a function of the conducting wall thickness tc/δs. The 

parameters used are: circumference L = 125 m, pipe radius b = 10 cm, beam radius a = 5 cm, dielectric 
constant κ = 6, injection energy γ0 = 1.02, harmonic number n = 5 and reference frequency ω0 = 2.41 × 106 

rad/s. 
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As can be seen in Figs. 2 and 3, the pipe wall 
is transparent at wall thicknesses tc less than the 
skin depth δs. At tc = δs, about 0.77% of the 
incident field penetrates the pipe. By increasing 
the wall thickness, we observe that only 0.25 % 
of the incident field can penetrate at tc = 2δs. For 
standard operation, less than one percent of the 
field penetrates for tc > 5δs and field penetration 
becomes vanishingly small in the thick wall 
limit. This numerical example shows the im-
portance of the shielding issue in the design of 
accelerators. Detailed knowledge of the 
accelerator environment and detailed beam 

parameters are important in determining the 
required wall thicknesses needed to shield the 
wall effectively in order to reduce noise and pipe 
heating. 

Fig. 4 shows, in log-scale, the real part of the 
resistive–wall impedance of Eq. (37) measured 
in Ohms as a function of the conducting wall 
thickness normalized to the skin depth; namely, 
tc/δs. By varying the dielectric thickness td, we 
observe a suppression in resistive-wall 
impedance with increasing td. As expected, the 
thick wall limit is reached for tc > δs. 

Conclusion 
Very good shielding of electromagnetic fields 

can be achieved by thin metallic walls of 
thicknesses of the order of few skin penetration 
depths. Exact field matching has been used to 
calculate the excited electromagnetic fields and 
the corresponding longitudinal electric 
impedance and transmission coefficient. The 
derived analytical expressions for resistive–wall 
impedance and transmission have been 
numerically visualized for some relevant 
parameters. The validity of the analytical 
expressions presented in this work is restricted to 
thin-ring particle beams with a jump 
discontinuity at r = a. In future work, different 
beam-pipe geometries can be used to investigate 

impedance and transmission for other beam 
distributions (RF sources). 

The effect of the dielectric thickness td on the 
transmission coefficient is found to be negligibly 
small, while it leads to a suppression of the 
resistive-wall impedance for large values of td 
[see Fig.3]. From many numerical runs, we also 
observed a weak dependance on the dielectric 
constant κd; a result which is already reported in 
literature [15]. In numerically investigating 
impedances of multi-layered pipes, the analytical 
results presented in this work for transmission 
coefficient and resistive-wall impedance will 
hopefully be useful in benchmarking numerical 
codes. 
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