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Extended Abstract:

When a heavy charged particle passes through matter, it loses energy principally by scattering
electrons within the matter it passes through it and will cause extensive ionization of the material
through ionizing the atoms or molecules close to its path. Thus, the charged particle gradually loses
its energy and is subjected to a gradual slowing down that could make it stop at the end of the path
within the medium. The average energy loss of the particle per unit path length (dE/dx) is called the
linear stopping power (S), which may be measured in units of MeV/cm or similar. The stopping
power and hence, the density of ionization, usually increases toward the end of the range of the
particle and reaches a maximum, the Bragg edge, shortly before the energy drops to zero. The curve
that describes this is called the Bragg curve. The ionization processes can be treated statistically to
derive the equation of stopping power, the best known being the Bethe formula.

One of the good means to detect charged particles is the solid state nuclear track detectors,
especially the polycarbonate detector, which is one of the favorite organic detectors in this area. This
advantage is due to the high registration and detection efficiency of the detector for charged
particles, especially particles with low energies and protons.
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In passing through the solid state nuclear detector, the charged particles, such as alpha particles,
ionize almost all molecules close to their path. The primary ionizing process causes a series of new
chemical processes that result in the creation of free chemical radicals and other chemical species.
Along the path of the alpha particles, an affected zone of low molecular weight enriched with free
radicals and other chemical species is then created. The damaged zone has a potential energy larger
than the other sound areas of the detector and is called the latent track. The vision of the latent tracks
is carried out by treating the detector containing the latent tracks with some suitable chemically
aggressive solution. An alkaline aqueous solution, such as NaOH and KOH, is most frequently used
in this field. This process is called traditional chemical detector etching. So, the track of the particles
is formed, which can be viewed under an ordinary optical microscope. Because of plastic detectors
having a threshold limit for energy loss (dE/dx)y, only particles which lose an energy rate greater
than the threshold limit could produce tracks in the material and can be shown by the chemical
etching process.

Particles with different energies produce tracks with different diameters which require different
etching times to be revealed. Low-energy particles have a short range in the detector, indicating
tracks with large diameters in a short etching time, while high- energy particles have a large range
producing tracks with small diameters that require longer etching time to be revealed. The overall
effect is that the tracks belonging to incident particles with the same energy do not appear
simultaneously according to the number of collisions that each particle could make with the atoms of
the detector material as well as the energy lost in each collision. Thus, a variation in the time of the
tracks' appearance will occur and the track number will increase with the progress of the etching time
until all tracks appear at a certain time called optimum time of etching. So, the number of appearing
tracks with definite diameters according to the energy distribution spectrum can be rounded to the
Gaussian distribution.

The Energy Analysis Power of the detector depends on the energy of the particles being lost
along the track in the detector material. The energy loss per unit time by falling particles reveals
tracks with slightly different diameters. Thus, the relationship between the formed track diameters
and their recurrence numerical density which follows the Gaussian distribution is used to measure
the strength of the energy analysis.

The small particle energy loss per unit time in the nuclear track detector material makes the
distribution of the tracks' diameters centered mostly around a narrow area and the width of the
distribution spectrum will be sharp, indicating a high-energy analysis. On the other hand, the large
particle energy loss per unit time in the detector gives a broad distribution and the tracks' diameters
are centered around a wide area, indicating a low-energy analysis. So, the ability of a detector to
distinguish the energies of the incident particles and to separate them is considered as an interesting
characteristic of the detector. Accordingly, there is a difference in the energy analysis degree of the
detector for different energies as well as a difference from one detector to another.

The aim of this paper is to measure the energy analysis power of the PM-355 solid state nuclear
track detector and its ability for discrimination of alpha particle energies. Different alpha particle
energies within the range of (5.485-2.0) MeV obtained from **' Am and “*°Ra isotopes are used in the
irradiation of the detector. The tracks are revealed by etching the detector at (60£1)°C in a 6.25 N
KOH solution. The tracks are classified according to their sizes. The diameters of the tracks and their
corresponding numerical densities are then measured to find the energy analysis power using the
Gaussian statistical distribution. The energy analysis power of the detector for alpha particle energy
discrimination of each two neighboring energies was about (0.078-0.754) MeV. It was found that the
energy analysis power of the detector PM-355 at high energies is better than that for low energies
and increases with the increase in alpha particle energies.
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