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Abstract: In this paper, an incompressible viscous fluid flow over a flat plate is presented. 
The homotopy perturbation method (HPM) is employed to solve the well-known nonlinear 
Blasius differential equation. We used this new analytic approximated technique, which 
gave us a very close result to the exact solution. The obtained results have been compared 
with numerical and exact solutions of Blasius equation, showing the high accuracy of the 
results obtained in our study.  
Keywords: Homotopy perturbation method (HPM), Nonlinear differential equation. 

 
Notation: 

HPM - Homotopy perturbation method 
NM - Numerical method 
p - Homotopy parameter 
Re - Reynold’s number 
u - Velocity component in x direction 
v - Velocity component in y direction 
x - Dimensional horizontal coordinate 
y - Dimensional vertical coordinate 
η - Dimensionless similarity variable 

 
Introduction 

The homotopy perturbation method (HPM) 
provides an approximate analytical solution in a 
series form. This method was introduced by He 
[6-17] in 1998. It has been widely successfully 
used by numerous researchers for different 
physical systems, such as: reaction-duffision 
equation and heat radiation equation [4, 5], 
MHD Jeffery-Hamel problem [18], bifurcation, 
asymptology, nonlinear wave equation, 
oscillators with discontinuities and bifurcation 
[11, 12, 13 and 14]. In this paper, we will apply 
homotopy perturbation method to the problem of 
boundary layer flow over a flat plate. 

Blasius equation is one of the fundamental 
and basic fluid dynamics equations. It describes 
the non-dimensional velocity distribution in the 
laminar boundary layer over a flat plate. It 
describes the fluid flow’s viscous effect [1, 3]. 
Boundary layer flow over a flat plate is governed 

by the continuity and the momentum equations. 
For a two dimensional steady state, 
incompressible fluid flow with zero pressure 
gradient over a flat plate, governing equations 
are simplified to: 
డ௨
డ௫

+ డ௩
డ௬

= 0,            (1) 

ݑ డ௨
డ௫

+ ݒ డ௨
డ௬

= ߥ డ²௨
డ௬²

  .          (2) 

With boundary conditions: 

ݕ = 0, ݑ = 0,             (3) 

ݕ = ∞, ݑ = ܷ∞ , డ௨
డ௬

= 0.           (4) 

By applying a dimensionless variable (ߟ) 
defined as: 

ߟ = ௬
√௫

ܴ݁ଵ/ଶ             (5) 
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‘Re’ is Reynolds number, defined as: ܴ݁ =
∞௫

ఔ
, the governing Eqs. (1) and (2) can be 

reduced to the well-known Blasius equation, 
where ܻ depends on the similarity variable (ߟ): 

ܻ (ߟ)′′′ + ଵ
ଶ

(ߟ)′′ܻ(ߟ)ܻ = 0.            (6) 

With boundary conditions: 

ߟ = 0, ܻ = 0, డ
డఎ

= 0,                   (7) 

ߟ = ∞, డ
డఎ

= 1,                   (8) 

where ܻ is related to u (velocity) by ௨
∞

=  (ߟ)′ܻ
and the « prime » denotes the derivatives with 
respect to ߟ. 

Basic Idea of Homotopy Perturbation 
Method 

The homotopy perturbation method is a 
combination of the classical perturbation 
technique and homotopy technique. To explain 
the basic idea of the HPM for solving nonlinear 
differential equations, we consider the following 
nonlinear differential equation: 

(ݏ)ܣ − (ݎ)݂ = 0, ݎ ∈ Ω .           (9) 

Subject to boundary condition: 

ܤ ቀݏ, డ௦
డ

ቁ = 0, ݎ ∈ Γ           (10) 

where ܣ is a general differential operator, ܤ is a 
boundary operator, ݂(ݎ) is a known analytical 
function,Γ is the boundary of domain Ω 
and (߲ݏ ߲݊⁄ ) denotes differentiation along the 
normal drawn outwards from Ω. 

The operator ܣ can, generally speaking, be 
divided into two parts: a linear part ‘L’ and a 
nonlinear part ‘N’. Eq. (9), therefore, can be 
rewritten as follows:  

(ݏ)ܮ + (ݏ)ܰ − (ݎ)݂ = 0.          (11) 

By the homotopy technique (1), (2), we 
construct a homotopy ݎ)ݒ, :( Ω × [0,1] → ܴ 
which satisfies: 

,ݒ)ܪ ( = (1 − (ݒ)ܮ]( − [(ݒ)ܮ
+ (ݒ)ܣ] − [(ݎ)݂ = 0, 

 ∈ [0,1], ݎ ∈ Ω .         (12) 

Or  
,ݒ)ܪ ( = (ݒ)ܮ − (ݏ)ܮ + (ݏ)ܮ +
(ݒ)ܰ] − [(ݎ)݂ = 0,                (13) 

where  ∈ [0,1] is an embedding parameter. ݏ is 
an initial approximation of Eq. (9) which 
satisfies the boundary conditions. Obviously 
from Eqs. (12) and (13), we have: 

,ݒ)ܪ 0) = (ݒ)ܮ − (ݏ)ܮ = 0,               (14) 

,ݒ)ܪ 1)  = (ݒ)ܣ − (ݎ)݂ = 0.               (15) 

The changing process of p from zero to unity 
is just that of ݎ)ݒ,  to s(r). In (ݎ)ݏ from (
topology, this is called deformation and (ݒ)ܮ −
(ݒ)ܣ ,(ݏ)ܮ −  .are called homotopic (ݎ)݂

In this paper, the authors will first use the 
imbedding parameter p as a “small parameter” 
and assume that the solution of Eqs. (12) and 
(13) can be written as a power series in p: 

ݒ = ݒ + ଵݒ + ଶݒଶ + ଷݒଷ + ⋯         (16) 

Setting p = 1 results in the approximate 
solution of Eq. (9): 

ݏ = lim→ଵ ݒ = ݒ + ଵݒ + ଶݒ + ଷݒ + ⋯       (17) 

The coupling of the perturbation method and 
the homotopy method is called the homotopy 
perturbation method, which has eliminated 
limitations of the traditional perturbation 
methods. On the other hand, the proposed 
technique can take full advantage of the 
traditional perturbation techniques. 

Applied Homotopy Perturbation 
Method 

According to Eq. (12) and Eq. (6): 

(1 − ൫ܻ( ′′′ − ܻ
′′′൯ +  ቀܻ′′′ + ଵ

ଶ
ܻܻ ′′ቁ = 0.   (18) 

We consider ܻ as follows: 

ܻ = ܻ +  ଵܻ + ଶ
ଶܻ + ଷ

ଷܻ + ⋯         (19) 

Assuming ܻ
′′′ = 0 and substituting ܻ from 

Eq. (19) into Eq. (18) with simplification and 
rearranging based on powers of p-terms, we 
have: 

 : ቊ� ܻ
′′′ = 0,

ܻ(0) = 0, ܻ
′(0) = 0, ܻ

′(∞) = 1,
ቋ�       (20) 

ଵ : ൝�  ଵܻ
′′′ = − ଵ

ଶ ܻ ܻ
′′,

ଵܻ(0) = 0, ଵܻ
′(0) = 0, ଵܻ

′(∞) = 0,
ൡ�         (21) 

ଶ : ൝
 ଶܻ

′′′ = − ଵ
ଶ

൫ ଵܻ ܻ
′′ + ܻ ଵܻ

′′൯,

ଶܻ(0) = 0, ଶܻ
′(0) = 0, ଶܻ

′(∞) = 0,
ൡ        (22) 

ଷ : ൝�  ଷܻ
′′′ = − ଵ

ଶ
൫ ଶܻ ܻ

′′ + ଵܻ ଵܻ
′′ + ܻ ଶܻ

′′൯,

ଷܻ(0) = 0, ଷܻ
′(0) = 0, ଷܻ

′(∞) = 0,
ൡ�        (23) 
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ସ : ቐ�  ସܻ
′′′ = − ଵ

ଶ
ቆ ଷܻ ܻ

′′ + ଵܻ ଶܻ
′′

+ ଶܻ ଵܻ
′′ + ܻ ଷܻ

′′ቇ ,

ସܻ(0) = 0, ସܻ
′(0) = 0, ସܻ

′ (∞) = 0,
ቑ�      (24) 

ହ : ቐ� ହܻ
′′′ = − ଵ

ଶ
ቆ ସܻ ܻ

′′ + ଵܻ ଷܻ
′′ + ଶܻ ଶܻ

′′

+ ଷܻ ଵܻ
′′ + ܻ ସܻ

′′ ቇ ,

ହܻ(0) = 0, ହܻ
′(0) = 0, ହܻ

′(∞) = 0,
ቑ�     (25) 

 : ቐ� ܻ
′′′ = − ଵ

ଶ
ቆ ହܻ ܻ

′′ + ଵܻ ସܻ
′′ + ଶܻ ଷܻ

′′

+ ଷܻ ଶܻ
′′ + ସܻ ଵܻ

′′ + ܻ ହܻ
′′ቇ ,

ܻ(0) = 0, ܻ
′(0) = 0, ܻ

′(∞) = 0,
ቑ�  (26) 

 : 

⎩
⎪
⎨

⎪
⎧

� ܻ
′′′ = − ଵ

ଶ
ቌ

ܻ ܻ
′′ + ଵܻ ହܻ

′′ + ଶܻ ସܻ
′′

+ ଷܻ ଷܻ
′′ + ସܻ ଶܻ

′′

+ ହܻ ଵܻ
′′ + ܻ ܻ

′′
ቍ ,

ܻ(0) = 0, ܻ
′(0) = 0, ܻ

′(∞) = 0, ⎭
⎪
⎬

⎪
⎫

�    (27) 

:଼

⎩
⎪
⎨

⎪
⎧

� ଼ܻ
′′′ = − ଵ

ଶ
ቌ

ܻ ܻ
′′ + ଵܻ ܻ

′′ + ଶܻ ହܻ
′′

+ ଷܻ ସܻ
′′ + ସܻ ଷܻ

′′ + ହܻ ଶܻ
′′

+ ܻ ଵܻ
′′ + ܻ ܻ

′′
ቍ ,

଼ܻ (0) = 0, ଼ܻ′(0) = 0, ଼ܻ′(∞) = 0, ⎭
⎪
⎬

⎪
⎫

� (28) 

:ଽ

⎩
⎪
⎨

⎪
⎧

� ଽܻ
′′′ = − ଵ

ଶ
ቌ

଼ܻ ܻ
′′ + ଵܻ ܻ

′′ + ଶܻ ܻ
′′

+ ଷܻ ହܻ
′′ + ସܻ ସܻ

′′ + ହܻ ଷܻ
′′

+ ܻ ଶܻ
′′ + ܻ ଵܻ

′′ + ଼ܻܻ′′
ቍ ,

ଽܻ(0) = 0, ଽܻ
′(0) = 0, ଽܻ

′(∞) = 0, ⎭
⎪
⎬

⎪
⎫

�  (29) 

:ଵ

⎩
⎪
⎨

⎪
⎧

� ଵܻ
′′′ = − ଵ

ଶ

⎝

⎜
⎛

ଽܻ ܻ
′′ + ଵ଼ܻܻ′′ + ଶܻ ܻ

′′

+ ଷܻ ܻ
′′ + ସܻ ହܻ

′′ + ହܻ ସܻ
′′

+ ܻ ଷܻ
′′ + ܻ ଶܻ

′′

+଼ܻ ଵܻ
′′ + ܻ ଽܻ

′′
⎠

⎟
⎞

,

ଵܻ(0) = 0, ଵܻ
′ (0) = 0, ଵܻ

′ (∞) = 0,⎭
⎪
⎬

⎪
⎫

�(30) 

Solving Eqs. (20 – 30) with boundary 
condition, we obtain: 

ܻ =  ଶ           (31)ߟ0.1000000000

ଵܻ =
ହߟ0.0001666666667−  +
 ଶ          (32)ߟ0.05208333333 

ଶܻ =
5.456349206 10ି଼ߟ  −
ହߟ0.00017361111111  +
 ଶ          (33)ߟ0.02015128968

According to Eq. (19) and the assumption p = 
1, we get:  

(ߟ)ܻ =
ଶߟ0.1671626869 − ହߟ0.0004628220598 +
଼ߟ0.000002467370720  −
ଵଵߟ10ି଼ 1.423254413 +
8.778652458 10ିଵଵߟଵସ −
4.975492933 10ିଵଷߟଵ +
2.172575632 10ିଵହߟଶ −
6.641569482 10ିଵ଼ߟଶଷ +
1.328726161 10ିଶߟଶ  −
1.564862171 10ିଶଷߟଶଽ +
8.247729923 10ିଶߟଷଶ          (34) 

Since Eq. (20), the analytical solution is hard; 
it is therefore solved here by homotopy 
perturbation method using MAPLE software. 
The results of homotopy perturbation method 
and numerical method are given in Table1. 
Tables 2 and 3 are made to compare the present 
results with those given by Blasius [2]. In Figs. 1 
and 2, we can also see the comparison between 
the obtained results (present method) and the 
numerical solution. 

  
FIG. 1. Comparison of answers obtained by H.P.M. and N.M. results for ܻ(ߟ). 
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TABLE 1. The results of H.P.M. and N.M. methods. 

 ߟ
 (ߟ)′ܻ (ߟ)ܻ

H.P.M. 
(p=10) N.M. H.P.M. 

(p=10) N.M. 

0 0 0 0 0 
0.4 0.026741292 0.026887377 0.133670940 0.134400700 
0.8 0.106832875 0.107414939 0.266516562 0.267961973 
1.2 0.239573124 0.240869221 0.396461681 0.398574578 
1.6 0.423186968 0.425446810 0.520268033 0.522954471 
2 0.654444316 0.657872167 0.634000791 0.637131917 

2.4 0.928520792 0.933268983 0.733763027 0.737217411 
2.8 1.239185206 1.245369509 0.816560319 0.820286959 
3.2 1.579318691 1.587055035 0.881050260 0.885097710 
3.6 1.941669782 1.951099322 0.927940394 0.932352513 
4 2.319673271 2.330906305 0.959892824 0.964408547 

4.4 2.708117939 2.721040628 0.980851449 0.984576798 
4.8 3.103424210 3.117446609 0.994783348 0.996320878 

4.99 3.292920198 3.307099328 0.999762196 0.999843011 
5 3.302919009 3.317098554 0.999999998 0.999999999 

 
 
 

 
FIG. 2. Comparison of answers obtained by H.P.M. and N.M. results for ܻ′(ߟ). 
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TABLE 2. Obtained results by H.P.M. for ܻ(ߟ) and ܻ  .in comparison with Blasius’s results (ߟ)′

 ߟ
 (ߟ)′ܻ (ߟ)ܻ

H.P.M. 
(p=5) 

H.P.M. 
(p=7) 

H.P.M. 
(p=10) Blasius H.P.M. 

(p=5) 
H.P.M. 
(p=7) 

H.P.M. 
(p=10) Blasius 

0 0 0 0 0 0 0 0 0 
0.5 0.0414 0.0415 0.0418 0.0415 0.1654 0.1657 0.1670 0.1659 
1 0.1651 0.1654 0.1667 0.1656 0.3288 0.3295 0.3320 0.3298 

1.5 0.3690 0.3699 0.3727 0.3701 0.4848 0.4866 0.4901 0.4868 
2 0.6474 0.6497 0.6544 0.6500 0.6260 0.6299 0.6340 0.6298 

2.5 0.9912 0.9963 1.0030 0.9963 0.7446 0.7524 0.7561 0.7513 
3 1.3875 1.3978 1.4060 1.3968 0.8360 0.8494 0.8511 0.8460 

3.5 1.8228 1.8413 1.8494 1.8377 0.9010 0.9199 0.9176 0.9130 
4 2.2852 2.3137 2.3197 2.3057 0.9460 0.9660 0.9599 0.9555 

4.5 2.7667 2.8038 2.8064 2.7901 0.9783 0.9910 0.9846 0.9795 
5 3.2618 3.3021 3.3029 3.2833 1 1 0.9999 0.9915 

 

TABLE 3. Obtained results for ܻ′′(0) in comparison with order (HPM) approximants and Blasius’s 
results. 

ܻ୪ୟୱ୧୳ୱ 
′′ (0)= 0.3321 

Order H.P.M. 
Approximants ܻ′′(0) Relative 

Error % 
Order H.P.M. 
Approximants ܻ′′(0) Relative 

Error % 
1 0.3445 3.73 6 0.3294 0.81 
2 0.3445 3.73 7 0.3318 0.09 
3 0.3485 4.94 8 0.3344 0.69 
4 0.3401 2.41 9 0.3352 0.93 
5 0.3312 0.27 10 0.3343 0.66 

 

Conclusion 
In this article, we have studied the Blasius 

equation and solved it using a new technique 
called homotopy perturbation method (HPM). 
The results show that this perturbation scheme 
provides an excellent approximation to the 

nonlinear equation’s solution with high 
accuracy. We found that this method is more 
accurate for higher orders of the embedding 
parameter p and this method doesn’t require any 
discretization or small perturbation parameter. 
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