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Abstract: In this paper, we investigate Conformal Killing Vector Fields (CKVFs) of 
Locally Rotationally Symmetric (LRS) Bianchi type I spacetime. Ten conformal 
Killing equations and the CKVF components having unknown functions of 
integration are derived. Specific solutions of these conformal Killing equations are 
subject to the twelve integrability conditions. Integrability conditions are solved 
completely in different cases and CKVFs of dimensions four, five and six are 
obtained along with their conformal factors. In each case, the exact form of the 
metric which admits CKVFs is obtained. The inheriting CKVFs are obtained. It is 
also shown that a particular vacuum solution of LRS Bianchi type I spacetime does 
not admit proper homothetic or proper CKVF.  
Keywords: Conformal symmetries, Direct integration technique, Particular solutions. 
 

 

1. Introduction 

The highly non-linear Einstein’s Field 
Equations (EFEs) are used to treat the general 
theory of relativity. The exact solutions of these 
equations are extremely difficult because of their 
non-linear behavior. Some of the physically 
remarkable exact solutions of  EFEs  are presented 
in [1]. Exact solutions of EFEs can be classified 
according to different symmetries in order to find 
out the link between structure of spacetime and 
gravitational interaction. In general relativity, the 
spacetime symmetries play an important role 
because of their direct relation with conservation 
laws. When a physical system is subject to energy 
conservation law, it remains invariant under time 
translation. In general relativity, this phenomenon 
is defined as the invariance property of spacetime 
metric under a time translation [2]. By spacetime 
symmetry, we mean a smooth vector field whose 

local flow preserves some geometrical features of 
the spacetime, which refer to a specific tensor, 
such as the energy momentum tensor, the metric 
tensor or any other aspect of the spacetime, such 
as geodesic structure [3]. The motion along 
which spacetime metric remains constant up to 
some scale factor is called CKVFs. while the 
scale factor is known as conformal factor. It is 
considered that the CKVF is a global smooth 
vector field 𝑋 over a manifold 𝑊, such that 
𝜉 ∶ 𝑊 → 𝑅 of 𝑋; the relation 𝑋௔;௕ = 𝜉𝑔௔௕ + 𝑁௔௕ 
holds, where 𝜉 is a smooth conformal function, 
𝑔௔௕ are the components of metric tensor and 
𝑁௔௕ = (−𝑁௕௔) is the bivector of 𝑋. In terms of 
Lie derivative, the above relation can be written 
as [3]: 

 𝐿௑𝑔௔௕ = 2𝜉𝑔௔௕             (1) 
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where 𝐿௑ is the Lie derivative along the vector 
field 𝑋. It is to be noted that the conformal 
function 𝜉 depends on the chosen coordinate 
system. In an explicit form, Eq. (1) can be 
written as: 

 𝑔௔௕,ௗ𝑋ௗ + 𝑔௕ௗ𝑋,௔
ௗ + 𝑔௔ௗ𝑋,௕

ௗ = 2𝜉𝑔௔௕ .           (2) 

In Eq. (2), comma represents partial 
derivative. From the above equation, it is clear 
that if 𝜉 is constant, then the vector field reduces 
to Homothetic Vector Field (HVF) and if 𝜉 
vanishes, then the vector field becomes Killing 
Vector Field (KVF). Hall and Steele [4] worked 
on the CKVFs in general relativity. According to 
their work, the maximum dimension for 
conformally flat spacetime is fifteen, while for 
non-conformally flat spacetime, the maximum 
dimension is seven. Khan et al. [2] explored 
CKVFs for plane symmetric spacetimes. They 
have solved the integrability conditions 
completely for some known conformally and 
non-conformally flat classes of plane symmetric 
spacetimes. Khan et al. [5] found out CKVFs for 
LRS Bianchi Type V spacetimes. They solved 
integrability conditions for some particular cases. 
They have also determined the inheriting CKVFs 
for LRS Bianchi Type V spacetime. Maartens et 
al. [6] have classified spherically symmetric static 
spacetimes on the basis of their conformal 
motion. They revealed that for non-conformally 
flat spacetime, there are two proper conformal 
motions. The spherical conformal symmetries in 
non-static spacetime have been studied by 
Moopanar and Maharaj [7]. Moopanar and 
Maharaj [8] have also studied a complete 
conformal geometry of shear-free spacetime with 
spherical symmetry without specifying the form 
of matter content. Shabbir et al. [9, 10] 
investigated that Bianchi Types VIII and IX 
spacetimes admit proper CKVFs, while spatially 
homogeneous rotating spacetime does not admit 
proper CKVFs. In [11], the authors explored LRS 
spacetimes which are hypersurface homogeneous 
and admit proper conformal Killing vector fields. 
Recently, a method have been developed [12] and 
with their method, the authors classified Bianchi 
type I spacetime according to its proper conformal 
vector fields. The authors of this paper showed that 
only two non-conformally flat families of Bianchi 
type I spacetimes admit proper conformal vector 
fields. 

In general theory of relativity, CKVFs have a 
large number of applications. They play a vital 
role at the geometric level as well as at the 

dynamics and kinematics levels [12]. In 
kinematics, variables like expansion, rotation 
and shear can be studied by assuming that the 
spacetime admits CKVFs. These vector fields are 
also used for the investigation of these variables 
by implementing some constraints on them. These 
variables are then used to produce well known 
results, some of which can be seen in [6, 13, 14]. 
Similarly, the CKVFs have a vital role at the 
dynamics level. In [15, 16, 17], some of the 
plausible solutions of EFEs have been obtained by 
assuming that the spacetimes admit CKVFs. At 
the geometric level, the CKVFs are used to 
simplify the metric by taking possible 
coordinates which are discussed in [18]. These 
important applications motivated us to explore 
CKVFs of LRS Bianchi Type I spacetimes in 
explicit form and obtain the exact form of the 
metric. Without going into developing 
complicated methods, we will solve the conformal 
Killing equations by direct integration and some 
simple algebraic techniques. 

This paper is organized as follows: In Sect. 2, 
we write ten conformal Killing equations for 
LRS Bianchi Type I spacetime. In the sub-
sections of 2, we discuss different cases for 
integrability conditions. An in detail discussion 
of CKVFs of particular form, including time-like 
and inheriting conditions, is presented in Section 
3. In Sect. 4, we find vacuum solution and its 
corresponding CKVFs. A summary of the study 
is presented in Sec. 5. 

2. General Forms of Conformal Killing 
Equations and Conformal Vector 
Fields 

The line element in usual coordinates (t, x, y, 
z) (labeled by (x0, x1, x2, x3), respectively) for 
LRS Bianchi type I spacetime is given by 

𝑑𝑠ଶ = −𝑑𝑡ଶ + 𝐴ଶ(𝑡)𝑑𝑥ଶ + 𝐵ଶ(𝑡)(𝑑𝑦ଶ + 𝑑𝑧ଶ), 
                           (3) 

where 𝐴(𝑡) and 𝐵(𝑡) are no-where zero 
functions of 𝑡 only. The conformal Killing 
equations are obtained as follows (from Eqs.(2) 
and (3)) 

 𝑋,଴
଴ = 𝜉(𝑡, 𝑥, 𝑦, 𝑧),           (4) 

𝐴ଶ𝑋,଴
ଵ − 𝑋,ଵ

଴ = 0,             (5) 

 𝐵ଶ𝑋,଴
ଶ − 𝑋,ଶ

଴ = 0,            (6) 

 𝐵ଶ𝑋,଴
ଷ − 𝑋,ଷ

଴ = 0,           (7) 
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 𝐴̇𝑋଴ + 𝐴𝑋,ଵ
ଵ = 𝐴𝜉(𝑡, 𝑥, 𝑦, 𝑧),          (8) 

𝐵ଶ𝑋,ଵ
ଶ + 𝐴ଶ𝑋,ଶ

ଵ = 0,           (9) 

𝐵ଶ𝑋,ଵ
ଷ + 𝐴ଶ𝑋,ଷ

ଵ = 0,         (10) 

𝐵̇𝑋଴ + 𝐵𝑋,ଶ
ଶ = 𝐵𝜉(𝑡, 𝑥, 𝑦, 𝑧),        (11) 

 𝑋,ଶ
ଷ + 𝑋,ଷ

ଶ = 0,          (12) 

 𝐵̇𝑋଴ + 𝐵𝑋,ଷ
ଷ = 𝐵𝜉(𝑡, 𝑥, 𝑦, 𝑧),        (13) 

In this paper, throughout dot denotes derivative 
with respect to 𝑡. In the first step, some of the 
above ten equations are used to obtain vector field 
components 𝑋଴, 𝑋ଵ, 𝑋ଶ, 𝑋ଷ and conformal 
factor 𝜉(𝑡, 𝑥, 𝑦, 𝑧). These components are 
obtained by the following process: 

Differentiating  Eqs. (6), (7) and (12) with 
respect to 𝑧, 𝑦 and 𝑡 respectively, we have the 
following relation 

𝑋,ଶଷ
଴ = 𝑋,଴ଷ

ଶ = 0,         (14) 

Similarly, differentiating Eqs. (9), (10) and 
(12) with respect to 𝑧, 𝑦 and 𝑥, respectively, we 
get the following relation: 

𝑋,ଶଷ
ଵ = 𝑋,ଵଷ

ଶ = 0,         (15) 

Comparing Eqs. (4) and (11) followed by 
using relation (14), we have 𝑋,ଷ

ଶ = 𝑦𝐵ଵ(𝑡, 𝑥, 𝑧) +

𝐵ଶ(𝑡, 𝑥, 𝑧), where B1(t, x, z) and B2(t, x, z) are 
functions of integration. Using Eq.(12) and the 
last equation, keeping relation (14) in mind, we 
have: 

𝑋,ଷ
ଶ = 𝑦𝐹ଵ(𝑥, 𝑧) + 𝐹ଶ(𝑥, 𝑧),         (16) 

𝑋ଷ = −
௬మ

ଶ
𝐹ଵ(𝑥, 𝑧) − 𝑦𝐹ଶ(𝑥, 𝑧) + 𝐵ଷ(𝑡, 𝑥, 𝑧), 

                                       (17) 

where F 1(x, z), F 2(x, z) and B3(t, x, z) are 
functions of integration. Comparing Eqs.(11) and 
(13) and differentiating with respect to z, we 
have X,ଶଷ

ଶ = X,ଷଷ
ଷ . Then, Eqs. (16) and (17) 

become: 

2 2
2 1 2 3

3 2
4 1 3

3 5

[ ( ) ( )] ( )
2 2

( ) ( ) ( )
6 2

( , ) ( , ),

z z
X y J x zJ x J x

y y
zJ x J x J x

yF t x F t x


  


   

  



 

2
3 1 2 3

3 2
4 1 2

3 4

[ ( ) ( )] [ ( )
2

( )] ( ) ( )
6 2

( , ) ( , ),

y
X zJ x J x y zJ x

z z
J x J x J x

zF t x F t x


   


   

  



 

where 𝐽௣(𝑥) for 𝑝 = 1,2,3,4 and 𝐹௤(𝑡, 𝑥) for 
𝑞 = 3,4,5 are functions of integration. 
Substituting the values of 𝑋ଶ and 𝑋ଷ in Eqs. (6), 
(7), (9) and (10) and using relation (15), we have 
the following general form of the components of 
conformal Killing vector fields: 

2
0 2 3 4

2
2 3 5 6

[ ( , ) ( , )]
2

[ ( , ) ( , )] ( , ),
2

t t

t t

z
X B F t x zF t x

y
B F t x yF t x F t x


 


   

 

2 2
1 3 4

2

2 2
3 5 7

2

[ ( , ) ( , )]
2

[ ( , ) ( , )] ( , ),
2

x x

x x

B z
X F t x zF t x

A

B y
F t x yF t x F t x

A


  


   
 

2 2 3
2

1 2 3 4 1

2
3 5

3

[ ]
2 2 6

( , ) ( , ),
2

z z y
X y c zc c zc c

y
c yF t x F t x


    


   

 

2 3
3

1 2 3 4 1

2
3 4

2

[ ] [ ]
2 6

( , ) ( , ),
2

y z
X zc c y zc c c

z
c zF t x F t x


     


   

 

The general form of the conformal factor 
takes the following form: 
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The final form of conformal Killing vector 
fields and conformal factor is subject to the 
following twelve integrability conditions: 

,0),()(),(2 3
.

2

2
232  xtF

A

B
AxtFB xtx         (18) 

,0),()(),(2 4
.

2

2
242  xtF

A

B
AxtFB xtx         (19) 

,0),()(),(2 5
.

2

2
252  xtF

A

B
AxtFB xtx         (20) 

,0),(),( 672  xtFxtFA xt          (21) 

. .
3 3

3

( 2 ) ( , ) ( , )

( , ) 0,

t xx

tt

B
A B A B F t x F t x

A

ABF t x

  

  

       (22) 

. .
4 4

4

( 2 ) ( , ) ( , )

( , ) 0,

t xx

tt

B
A B A B F t x F t x

A

ABF t x

  

  

     (23) 

. .
5 5

5

( 2 ) ( , ) ( , )

( , ) 0,

t xx

tt

B
A B A B F t x F t x

A

ABF t x

  

  

       (24) 

,0),(),(),( 766
.

 xtAFxtAFxtFA xt     (25) 

,0),(),( 33
.

 xtBFxtFB ttt          (26) 

,0),(),( 42
2

4
.

 xtFBcxtBFB ttt             (27) 

,0),(),( 52
3

5
.

 xtFBcxtBFB ttt         (28) 

,0),(),(),( 636
.

 xtBFxtBFxtFB t     (29) 

The components of CKVFs and integrability 
conditions may be simplified and expressed in a 
more compact form. We introduce the new 

variables 𝜁 = (𝜁ଷ, 𝜁ସ, 𝜁ହ) = (
௭మା௬మ

ଶ
, 𝑧, 𝑦) and 

𝐹௣ = (𝐹ଷ, 𝐹ସ, 𝐹ହ), then the components of 
conformal Killing vector fields along with 
conformal factor are given as: 

),,(),( 620 xtFxtFBX p
tp    

),,(),( 7
2

2
1 xtFxtF

A

B
X p

xp    

2
2 2

2 23
4

( ), ( , )

( ) ,
2

pX F t x yzc

c
z y zc

  



  

 

3 2 22
3

3 4

( ), ( , ) [ ]
2

[ ],

p c
X F t x z y

y zc c

   

  

 

.

2 6

( , , , ) ( , ) 2 ( , )

( , ) ( , ),

p
p t

p
p tt t

t x y z t x B B F t x

B F t x F t x

  



  


 
 

and the integrability conditions become: 

,0),()(),(2
.

2

2
22  xtF

A

B
AxtFB p

x
p

tx         (30) 

. .

( 2 ) ( , ) ( , )

( , ) 0,

p p
t xx

p
tt

B
A B A B F t x F t x

A

ABF t x

  

  

      (31) 

,),( 2
.

p
p

tt
p

t HFBxtBFB           (32) 

,0),(),( 672  xtFxtFA xt          (33) 

,0),(),(),( 766
.

 xtAFxtAFxtFA xt     (34) 

,0),(),(),( 636
.

 xtBFxtBFxtFB t     (35) 

where, 𝐻௣ = 0, 𝑐ଶ, −𝑐ଷ for 𝑝 = 3, 4, 5, 
respectively. These integrability conditions are 
solved by separating the variables as product 
functions for unknown functions 𝐹௣(𝑡, 𝑥) =
𝐾௣(𝑡)𝐾௤(𝑥) with 𝑝 = 3, 4, 5, 6, 7 and 𝑞 =
8, 9, 10, 11, 12, respectively. From Eq. (32) and 
Eq. (30), we have 𝐹௣(𝑡, 𝑥) = 𝑐ଵଶ, 𝑐ଵସ, 𝑐ଵ଺ for 
𝑝 = 3, 4, 5, respectively. Also for 𝑝 = 6, 

2.
3 4

2
2 3 4

2.
3 5

2
2 3 5 6

( , , , ) ( , )

2 [ ( , ) ( , )]
2

[ ( , ) ( , )]
2

2 [ ( , ) ( , )]
2

[ ( , ) ( , )] ( , ),
2

t t

tt tt

t t

tt tt t

t x y z t x

z
B B F t x zF t x

z
B F t x zF t x

y
B B F t x yF t x

y
B F t x yF t x F t x

 

  

 

  



 



  
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substituting the value of 𝐹௣(𝑡, 𝑥) in Eq. (35), we 
have: 

,0)()()()( 116
12

116
.

 xKtBKBcxKtKB t  

           (36) 

Differentiating Eq.(36) with respect to x, we 
have three different cases. 

(1). 0)(11 xK x  and 0))()(( 66
.

 tBKtKB t  

(2). 0)(11 xK x  and 0))()(( 66
.

 tBKtKB t  

(3). 0)(11 xK x  and 0))()(( 66
.

 tBKtKB t  

In the following part, we will discuss each 
case in turn. It is to be noted that throughout the 
following sub-section, constants ℎ௜ are labeled 
such that ℎଵ, ℎଶ, ℎଷ and ℎସ represent four spatial 

Killing vector fields 
డ

డ௫
,

డ

డ௬
,

డ

డ௭
 and 𝑧

డ

డ௬
− 𝑦

డ

డ௭
, 

respectively, representing three linear 
momentum (along x, y and z) and one angular 
momentum conservation. 

2.1 Case 1 

In this case, we consider 𝐾௫
ଵଵ(𝑥) = 0 ⟹

 𝐾ଵଵ(𝑥) = 𝑐ଵ଻ and ቀ𝐵̇𝐾଺(𝑡) − 𝐵𝐾௧
଺(𝑡)ቁ = 0 ⟹

 𝐾଺(𝑡) = 𝐵𝑐ଵ଼. Substituting these values back in 

Eq. (33) and Eq. (34), we have 𝐴 =
௔

ଶ
ℎହ𝑡ଶ𝑒ି

మ೓ల
ೌ೟  

and 𝐵 =
௔௧మ

ଶ
, where 𝑎 is a non-zero integration 

constant. Now, the metric given by Eq. (3) can 
be written as: 

62
2 2 2 2 2

5

2
2 2 2

( )
2

( ) ( ),
2

h

at
a

ds dt h t e dx

at
dy dz


  


  

        (37) 

The CKVFs admitted by the above metric 
along with the conformal factor are given as: 

0 2 1
7 8 1

2 3
4 2 4 3

, ,
2

, ,

a
X h t X h x h

X h z h X h y h

   

     

 

,),,,( 7tahzyxt            (38) 

where ℎ௜ ∈ 𝑅, for 𝑖 = 1, 2, 3, … … , 8 with 
ℎ଼ = −ℎ଺ℎ଻ and ℎହ ≠ 0, ℎ଺ ≠ 0. This solution 
of CKVFs shows that the above LRS Bianchi 
type I metric admits five independent CKVFs, of 

which one is proper CKVF given by 
௔

ଶ
𝑡ଶ డ

డ௧
. Note 

that the same spacetime metric does not admit 
proper HVF. Also, the dimension of the isometry 
group is four. It is well known that a CKVF is 
called special when 𝜁;௔௕ = 0 [3]. Examining the 
above CKVFs, one can easily conclude that the 
obtained CKVFs are special CKVFs. 

2.2 Case 2 

In this case, we consider 𝐾௫
ଵଵ(𝑥) = 0 ⟹

 𝐾ଵଵ(𝑥) = ℎଽ and ቀ𝐵̇𝐾଺(𝑡) − 𝐵𝐾௧
଺(𝑡)ቁ ≠ 0. 

Substituting these values back in Eq. (33) and 

Eq. (34), we have 𝐴 =
௔௧మ

ଶ
 and 𝐵 =

௔

ଶ
ℎ଻𝑡ଶ𝑒

೓ఴ
ೌ೟ , 

where 𝑎 is non-zero integration constant. Thus, 
the metric given by Eq. (3) can be written as: 

ቐ
𝑑𝑠ଶ = −𝑑𝑡ଶ + (

ೌ೟మ

మ 𝑑𝑥ଶ

ௗௗௗௗௗௗௗௗௗௗௗௗ + (
ೌ

మ(𝑑𝑦ଶ + 𝑑𝑧ଶ).
                     (39) 

The CKVFs and the conformal factor for the 
above metric take the form: 

,
2

2
5

0 th
a

X   ,1
1 hX  ,264

2 hyhzhX   

,364
3 czhyhX   

,),,,( 5taczyxt            (40) 

where ℎ଼ =
ଶ௛ల

௛ళ௛వ
 and ℎଵ, ℎଶ, ℎଷ, … … . . ℎଽ ∈ 𝑅. 

These CKVFs show that the above LRS Bianchi 
type I metric admits five independent CKVFs, of 

which one is proper CKVF given by 
௔

ଶ
𝑡ଶ డ

డ௧
 and 

no proper HVF. Also, the dimension of the 
isometry group is four. It is well known that a 
CKVF is called special when 𝜁;௔௕ = 0 [3]. 
Examining the above CKVFs, one can easily 
conclude that the obtained CKVFs are special 
CKVFs. 

2.3 Case 3 

In this case, we consider 𝐾௫
ଵଵ(𝑥) ≠ 0 and 

ቀ𝐵̇𝐾଺(𝑡) − 𝐵𝐾௧
଺(𝑡)ቁ = 0 ⟹  𝐾଺(𝑡) = 𝐵𝑐ଵ଻. 

Substituting these values back in Eq. (34), we 
have: 

.)(
)(

)( .
..

2

11

11




A

BABA

B

A

xK

xK xx         (41) 

This equation suggests that we have to 
discuss further three different cases, such as 
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(3.1): when 𝛾 is positive, (3.2): when 𝛾 is 
negative and (3.3): when 𝛾 is zero. 

2.3.1 Case 3.1 

In this case, we consider 𝛾 as positive and 
solve Eq. (41); we get 𝐴 = 1 and 𝐵 =
ℎହ𝑐𝑜𝑠ℎ√𝛾𝑡 + ℎ଺𝑠𝑖𝑛ℎ√𝛾𝑡. Thus, we obtained the 
metric for LRS Bianchi type I as: 

2 2 2

2 2 2
5 6( cosh sinh ) ( ).

ds dt dx

h t h t dy dz 

    


 
            (42) 

For this metric, the six dimensional 
conformal Killing vector fields and the 
conformal factor are as follows: 

0
7 8

5 6

( cosh sinh )

( cosh sinh ),

X h x h x

h t h t

 

 

   



 

1
7 8

5 6 1

( sinh cosh )

( sinh cosh ) ,

X h x h x

h t h t h

 

 

   


 
 

,24
2 hzhX   ,34

3 hyhX   

7 8

5 6

( , , , ) ( cosh sinh )

( sinh cosh ),

t x y z h x h x

h t h t

  

   

  


 
 

where ℎଵ, ℎଶ, ℎଷ, . . . . . , ℎ଼ ∈ 𝑅, such that 
ℎହ, ℎ଺, ℎ଻, ℎ଼ ≠ 0. From the above result, it is 
clear that there are two proper conformal Killing 
vector fields and no proper homothetic vector 
field exists.  

Note that in Case 3.2, when we take 𝛾 as 
negative and solve Eq. (41), we get the same 
result except that the hyperbolic functions are 
replaced by circular functions. 

2.3.2 Case 3.3 

When considering 𝛾 as zero, we obtain 
𝐹଺(𝑡, 𝑥) = 0 and 𝐹଻(𝑡, 𝑥) = ℎଵ. Substituting all 
the values in general form of conformal Killing 
vector fields and conformal factor, we get: 

,00 X  ,1
1 hX   ,24

2 hzhX   

,34
3 hyhX   

,0),,,( zyxt           (43) 

where ℎଵ, ℎଶ, ℎଷ, ℎସ ∈ 𝑅. 

 

2.4 Case 4 

Here, we try to solve the integrability 
conditions by separating the variables as the sum 
of the unknown functions 𝐹௉(𝑡, 𝑥) = 𝐺௣(𝑥) +
𝐻௣(𝑡), where 𝑝 = 3, 4, 5, 6, 7. From Eqs. (30) –
(32), we have 𝐹ଷ(𝑡, 𝑥) = 𝑐ହ, 𝐹ସ(𝑡, 𝑥) = 𝑐଻ and 
𝐹ହ(𝑡, 𝑥) = 𝑐ଽ. Putting the value of 𝐹ଷ(𝑡, 𝑥) in 
Eq. (35) and using Eq. (33), we get 𝐺଻(𝑡) = 𝑐ଵଵ 
and 𝐺଺(𝑡) = 𝑐ଵଶ𝐵. Substituting these values in 
Eq. (34), we have 𝐹଺(𝑡, 𝑥) = 0 and 𝐹଻(𝑡, 𝑥) =
𝑐ଵଵ. Putting all these values back in the general 
form of conformal vector fields and re-labeling 
the constants of integration, we get the 
conformal Killing vector fields and conformal 
factor as: 

,00 X  ,1
1 hX   ,24

2 hzhX   

,34
3 hyhX   

,0),,,( zyxt           (44) 

where ℎଵ, ℎଶ, ℎଷ, ℎସ  ∈ 𝑅. 

2.5 Case 5 

In this sub-section, we do not separate the 
functions 𝐹௣(𝑡, 𝑥), 𝑝 = 3, 4, 5, 6, 7 as sum or 
product of the unknown functions, but impose 
conditions on the metric functions. First, 
considering 𝐴̇(𝑡) ≠ 0 and 𝐵̇ = 0 ⟹ 𝐵 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and solving Eqs. (33), (34) and (35), 
we obtain 𝐹଺(𝑡, 𝑥) = ℎହ𝑡 + ℎ଺ and 𝐹଻(𝑡, 𝑥) =
ℎ଻𝑥 + ℎଵ. Substituting all these values back in 
the general form, the conformal vector fields and 
the conformal factor reduce to the following 
form: 

,65
0 hthX  ,17

1 hxhX   

,254
2 hyhzhX   ,354

3 hzhyhX   

,),,,( 5hzyxt            (45) 

where ℎଵ, ℎଶ, … … … , ℎ଻ ∈ 𝑅. The metric 
function also took the form (𝑡) = (ℎହ𝑡 +

ℎ଺)
ଵି

೓ళ
೓ఱ. This result shows that for the above 

particular metric functions, the LRS Bianchi type 
I spacetime does not admit proper conformal 
Killing vector field and the five dimensional 
CKVFs are just the homothetic vector fields with 
one proper homothetic and four Killing vector 
fields. 
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3. Time-like and Inheriting Conformal 
Killing Vector Fields 

For a purely time-like vector field, we must 
have the consistency 𝐹௣(𝑡, 𝑥) = 𝐹଻(𝑡, 𝑥) = 𝑐ଶ =
𝑐ଷ = 𝑐ସ = 0 and assume that 
𝑋 = (𝐹଺(𝑡), 0, 0, 0). Also, Eq. (33) implies that 
𝐹଺ ≠ 0; thus, from Eq. (34), we have 𝐹଺(𝑡) =
𝑐𝐴(𝑡), 𝑐 ∈ 𝑅 − 0. This indicates the existence of 
a CKVF parallel to the time-like vector 𝑢௔, 
defined as 𝑢௔ = 𝛿଴

௔. 

The equation 

,aaX uuL             (46) 

known as inheriting condition, was introduced 
by Herrera et al. [19] and Maartens et al. [14] 
and studied thoroughly by Coley and Tupper 
[15-17] amongst others. We will use this 
inheriting condition for time-like vector 𝑢௔ =
𝛿଴

௔. The above condition (46) can be written in 
an explicit form as:  

.,, a
b
ab

b
ba uXuXu           (47) 

Solving Eq. (47), it is easy to obtain 𝑋,௣
଴ = 0 

for 𝑝 = 1, 2, 3, such that 𝑋଴ = 𝑋଴(𝑡) and the 
corresponding conformal factor takes the form 
𝜉 = 𝑋,଴

଴ . This suggests that 𝐹଺ depends on 𝑡 
only, with 𝐹௧

௣
= 0 for 𝑝 = 3, 4, 5. Also, Eq. (33) 

implies that 𝐹௧
଻ = 0. The remaining integrability 

conditions take the form: 

,0),()(
.

2

2

xtF
A

B p
x           (48) 

,0),( xtF
A

B p
xx           (49) 

,0),(),(),( 766
.

 xtAFxtAFxtFA xt   )50(  

,0),(),(),( 366
.

 xtBFxtBFxtFB t    )51(  

Form Eq. (48), two possibilities arise; 

namely, (
஻మ

஺మ

̇
) ≠ 0 and ൬

஻మ

஺మ

̇
൰ = 0. A complete 

solution of the integrability conditions is found 
in the first case, while in the second case, the 
solutions are arbitrary and will not be presented 

here. As (
஻మ

஺మ

̇
) ≠ 0, thus 𝐹௫

௣(𝑡, 𝑥) = 0 and hence 

𝐹௫௫
௣ (𝑡, 𝑥) = 0. Now, subtracting Eqs. (50) and 

(51), we obtain: 

ቊ
(𝐵

.

− 𝐴
.

)𝐹଺ + 𝐵𝐹ଷ − 𝐴𝐹௫
଻

ௗௗௗௗௗ + (𝐴 − 𝐵)𝐹௧
଺(𝑡, 𝑥) = 0.

        (52) 

After some manipulations, we get the metric 

functions as 𝐴 = 𝑡ଶ and = ℎହ𝑡ଶ𝑒
(

೓ల
೓ఱ

)
భ

೟ and the 
corresponding CKVFs along with conformal 
factor are obtained as: 

,2
5

0 thX   ,1
1 hX   ,264

2 hyhzhX   

,364
3 hzhyhX   

.2),,,( 5thzyxt            (53) 

4. Vacuum Solution for LRS Bianchi 
Type I Spacetime 

The vacuum solution for LRS Bianchi type I 
spacetime can be obtained by setting the Ricci 
tensor components 𝑅௔௕ equal to zero, as follows: 

,02
....

 BAAB           (54) 

,02
....

 BABA           (55)  

,0

2.
....


B

BA
BABA           (56) 

Solving these three differential equations 
simultaneously, we have the following solution: 

3

1

213 )](
2

3
[


 ctccA and ,)](

2

3
[ 3

2

21 ctcB   

where 𝑐ଵ, 𝑐ଶ and 𝑐ଷ are constants, such that 
𝑐ଵ, 𝑐ଷ ≠ 0. Solving the integrability conditions 
for these particular metric functions, conformal 
Killing vector fields and conformal factor are 
obtained as follows: 

,00 X  ,1
1 hX   ,24

2 hzhX   

,34
3 hyhX   

.0),,,( zyxt           (57) 

We see that LRS Bianchi type I vacuum 
solution does not admit proper conformal or 
proper homothetic vector fields and the 
conformal Killing vector fields are just the 
Killing vector fields. 
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5. Summary 

In this paper, we have given a classification 
of LRS Bianchi type I spacetime according to its 
conformal Killing vector fields. We have solved 
ten conformal Killing equations by using direct 
integration and some algebraic techniques. 
Conformal Killing vector field components are 
obtained along with conformal factors and exact 
forms of the metrics are also obtained which 
possess these conformal Killing vector fields. 
The whole problem is divided into different 
possible cases, where the spacetime metric may 
possess conformal Killing vector fields. In the 
first case of Section 2, we determined the exact 
form of the metric (Eq.(37)) which admits five 
dimensional CKVFs with only one proper time-
like CKVF and no proper homothetic vector 
field. A similar result is obtained for the metric 

(39) as well. Case 3 is divided into three sub-
cases. In Sub-cases (3.1) and (3.2), we obtained 
six dimensional CKVFs with two proper CKVFs 
and no proper HVF. In Sub-case (3.3), four 
dimensional CKVFs are obtained which are just 
the minimum KVFs admitted by LRS Bianchi 
type I spacetime. In Case (5), we obtained five 
dimensional CKVFs which are just HVFs with 
one proper HVF. 

In Section 3, we obtained the inheriting 
CKVFs and the exact form of the metric 
functions are also determined. In Section 4, we 
solved the field equations for Vacuum LRS 
Bianchi type-I spacetime and showed that this 
spacetime metric does not admit proper CKVF 
or proper HVF and the CKVFs are just the 
KVFs. 
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