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Abstract: Although the principles of non-commutative quantum mechanics date back as far as
quantum mechanics known in the literature, that is, over a century ago, recent years have seen a
resurgence of interest in the outcomes of this ancient theory to lead the scene of specialized research
in this field. We present an improved inversely quadratic Hellman model (I-IQHPM) and determine
its new eigenvalue solutions within the framework of three-dimensional relativistic/non-relativistic
non-commutative quantum space (3D-(R and NR)-NCQS). The parametric Bopp's shifts approach
and standard perturbation theory are used within the frameworks of the 3D-(R and NR)-NCQS to
examine the novel high- and low-energy spectra under the deformed Dira, Klein-Gordon, and
Schrodinger regimes for the I-[IQHPM. We obtained new eigen solutions for the bosonic particles
(spin-0, 1,..) and fermionic particles with spin and p-spin symmetries, with spin/p-spin = 1/2
accounting for the atomic quantum numbers (j,[,s,m ), mixed potential depths (A4 and B), the
screening parameter «, and discrete deformation parameters (@, x, (). We recovered many potentials
in the deformed Dirac equation (DE), deformed Klein-Gordon equation (KGE), and deformed
Schrédinger equation (SE), including the newly modified Coulomb potential and the modified IQYP.
The non-relativistic eigenvalue solutions of the I-IQHPM are then applied to obtain the spin-

averaged mass spectra of heavy mesons such as cc and bb. To complete this study, we explore the
new partition function (PF) Zzh (n,A,B,B,l,®,x,¢) for the ILIQHPM, expressed as a function of

C
the corresponding PF Z g,ll (n,A,B,B,A,1) for the IQHP potentials and the non-commutativity
parameters (@, x,{). Other thermodynamic properties (TPs), such as new mean energy
U,ff B, L, D,x,{), new mean free energy anch (n,A,B,B,l,®,x,{), new entropy
SZ? (n,A,B,B,1, @, x,0), and new heat capacity C,ff (n,A,B,B,1,®, x,0), are determined for the I-
IQHPM in the context of the deformed Schrodinger equation (SE). We highlight that our results are
consistent with the previous works presented in the literature (@, x,{) — (0,0,0), corresponding to
the absence of space deformation. The general solutions of the non-commutative KGE, DE, and SE,
along with the expressions for the new energy levels and thermodynamic properties, are explicitly
obtained under the I-IQHPM within the 3D-(R and NR)-NCQS framework.

Keywords: Inversely quadratic Hellman; Non-commutative space.

PACs: 32.60.+1, 02.30. Gp.; 12.39.Jh ; 65.40.Gr ; 31.15.Md.

Corresponding Author: A. Maireche Email: abdelmadjid. maireche@univ-msila.dz



Article

A. Maireche

1. Introduction

The search for solutions of non-relativistic
and relativistic wave equations of quantum
mechanics and, in its extension, known to
researchers with non-commutative quantum
mechanics (NCQM), has been of interest to
many researchers recently, for the SE (describes
the behavior of particles on the atomic and
subatomic scale at low energy), KGE (describes
the behavior of scalar particles, such as mesons
at high energy), DE (describes the behavior of
fermions particles that have half-integer spins
like electrons, protons, and neutrons at high
energy), and Duffin-Kemmer-Petiau equation
(describes particles with higher spin-1,2,.. at
high energies). Expanding the range of
applications requires the interaction of two or
more potential models. The idea of non-
reciprocity is not new; it has been around for
about a century. It was proposed in the 1930s by
Heisenberg and Snyder in 1947 [1]. Recently,
many researchers have investigated the effect of
deformation in phase-space on some properties
of quantum systems. For instance, we refer to
recent works related to our topic [2-8]. This
paper aims to study the 3D (KGE, DE, and SE)
with the inversely quadratic Hellmann (IQH)
potential model in the context of deformed
space-space, which combines the Colombian

potential (— é) and inversely quadratic Yukawa

potential ”Lg“”) as described in the literature.

Within  the  Schrodinger equation (SE)
framework, Turkoglu et al. investigated the
intraband nonlinear optical properties of a GaAs
quantum well with IQH potential [9]. Recently,
Njoku et al. [10] applied the Nikiforov-Uvarov
method (NUM) to obtain DE solutions under
spin and pseudo-spin symmetry limits and used
the energy and wave function to examine the
Shannon information entropy of the system [11].
Onyenegecha et al. [12] provided approximate
analytical solutions for the SE with an IQH-
Kratzer potential, deriving the energy
eigenvalues and corresponding wave functions.
Ghanbari [13] reported calculations of third-
harmonic generation in a GaAs spherical
quantum dot under the IQH potential, while
Chang et al. [14] examined second-harmonic
generation under hydrostatic pressure and
temperature, determining energy levels and wave
functions. Additional studies on the IQH
potential are cited in [15-20]. NCQM, like all
quantum mechanics known in the literature,
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relies on additional postulates. The first concerns
the non-commutation of position-position and

(Ql(ls,h,i) "
* nf,s'h'l)) are different from
(Q(s,h,i) " Ql(ls,h,i)

v and nf,s'h'l)*nlgs'h'l)), (the
notion (*) stands for the Weyl-Moyal star
product, as defined below) [21-26]. This
alternative theory is known as NC-phase space
(NCPS) if the two hypotheses are established
simultaneously. At the same time, it is called
NC-space-space (NCSS) in the case of adopting
only the first hypothesis (read the previous
references for more investigation). It is important
to notice that the works of Connes [27-29] and
Seiberg-Witten [30] helped develop NCQM
concepts of NCQM that are of scientific value
and applicable to physical systems, especially in
quantum field theory. We have studied modified
IQH potential plus inversely quadratic potential
in the deformed Schrédinger equation (DSE)
framework and obtained new exact non-
relativistic energy eigenvalues [31]. Researchers
have achieved great success based on the
foundations of relativistic and non-relativistic
quantum mechanics. Still, unfortunately, many
physical problems of great importance remain
without solutions, including gravity remaining
outside the framework of the standard model, as
well as the well-known problem of
renormalizability. All of this was an excuse to
search for appropriate solutions. The most vital
alternative is currently a candidate for solving
these 3D-(R and NR)-NCQS regimes. It should
be noted that we had some previous studies that

were indirectly related to the Hellmann potential,

which takes the form (—é +w) in the

literature in the context of DES [32-34])] and the
deformed KGE [35]. In this work, we are
motivated to investigate the solutions to the
deformed (KGE, DE, and SE) with the improved
inversely quadratic Hellmann potential model (I-
IQHPM) in the context of (3D-(R and NR)-
NCQS) regimes. In addition to demonstrating the
NC influence on the TPs of the deformed space-
space's I-IQHPM. We believe that no researcher
has yet addressed this study in the literature. The
I-IQHPM (V,4,(Q) and S, (Q)) will be the focus
of our current research. This will be expressed
using the analytical formulas below.

momentum-momentum
(s,h,i) (s,n,i)
v

operators

and T,
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avqh(r) Lo +0(0?)

1
ath(T)B_i_ 0(0?) (1)

Van(Q) = Vgn(r) —
Sqn(Q) = Sqn(r) —

The well-known expressions of the inversely
quadratic Hellmann potential model,
(Vgn(r), Sqn(r), in the context of 3D-R(QM) and
3D-NR(QM) symmetries are given by [10-13,
207:

A  Bexp(-ar)
th(r) — _;+ r2
th(r) —ﬁ-i- Bg expz(—zxr)

r T

_A+aB B | a’B
2

r r2
As+aBg
r

where A/Ag, B/Bs, and « are the strengths of the

Coulomb  potential (—%), the inversely

B/Bs exp(—ar
/S f( )’ and
r

@)

Bs . a®Bs
+ =+
r2 2

quadratic Yukawa potential

the screening parameter, respectively. Higher-
order terms beyond r2 in the Taylor expansion
are neglected. Positions in the 3D-NCQS and
3D-QM regimes are denoted by (Q andr),
respectively. The symbol L.® represents the
scalar  product between L(Ly,L,,L,)and
®(0,,,0,3,0,3)/2, presented physically as the
angular momentum operator and infinitesimal

non-commutativity vector, respectively. The

self-adjoint  differential Q" Van

AL
7_1_1(/5 i)

operators

may arise in several significant variations
in the context of the deformed quantum group.
Canonical structure, Lie structure, and quantum
plane (CS, LS, and QP, respectively) are well-
known representations of the Schrddinger,
Heisenberg, and interaction images. Those
operators that perform the new algebra natural
units A = ¢ = 1 are applied in this work [34, 36-
42]:

[ (s),pf,s) [,Sh)'th)] [ (l)'Pvl)] = i8>

[Q(s) (s)] [(h) (h)] _[Q(l) (l)] _
ihesr G

The above equations are combined into a
single formula, which is presented in the
following format:

[ (s,hiD) _ (sh,i)

, Dy = 16,“, = =

[Q(sh l)’ (s,h,0)

lheffSW (32)

and
[x(s) (s)] :[ (h) (h)] [ (l) (i)] -0>

[Q(S) Q(S) [Q(h) Q(h) _[ (1)’ l)]

lswe. CS variety,

= e ‘(Xs'h'i)' LS variety,

Q(s i) Q(s D), : QP variety.

(4.1)

The above equations (4.1) are combined into
a single formula, which is presented in the
following format:

[xlgs,h,i)’xés,h,i)] 0= [Q(Shl) Q(Shl) _

i€,,,0: CS variety,

ihg, ‘(xs,h.l'). LS variety,

lG“ﬂQ(Shl)Q(Shl) QP variety.

(4.2)

The new symbol [D, M], plays the role of the
commutator with the star product:

[D,M],=DxM—M=xD

Here, X and Y can be equal to Q(Shl)

7" n 3D-(R and NR)-NCQS symmetries,
the deformed generalized coordinates (GC)
QM (i /xl/xg)  and  mM (/o /ph),
while the corresponding deformed generalizing
momenta (GM) in 3D-RQM and 3D-NRQSM

symmetries are (S'h'i) (xﬁ,x[}, x};) and

(Shl)(p#,pﬂ, pl), respectlvely In 3D-(R and
NR)-NCQS regimes, the new uncertainty
relation corresponds to the LHS of Egs. (3.1) and

(3.2) can be expressed as follows:

|Axlgs)Ap1(,s) |Ax(h)Ap |Ax(l)Ap
h6w/2 = |aQan{d| = |AQ(h)An
|Aij)AnV errOun]2 (5.1)

Which is combined into a single formula and
presented in the following format:

|Axﬁs'h'i)Ap1(,s'h'i)| > 16,y /2 =
|45 4m )| 2 g6, /2 (5.2)

The RHS of Egs. (4.1) and (4.2) permitted us
to construct a new uncertainty relation as
follows:
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|AQ(S)AQ1(,S') |AQ(h) (h)
|40 40| =
|( @ In the context of CS vision,

(6.1)

4 ﬁ” * In the context of LS vision,
k % In the context of QP vision.

The above equations (6.1) are combined into
a single formula, which is presented in the
following format:

|AQl(ls,h,i)AQ1(/s,h,i) >

6 ..
|( @ In the context of CS vision,

4 % In the context of LS vision, (6.2)

L .
k % In the context of QP vision

with B, and L, are equal to the average values:
3

.Buv = ‘<Za (fuv (Shl))>

by = <%3ﬁ ( Q(shl)Q(Shl))>

The novel subdivision that appears in Eq. (6),
which includes three uncertainty relations, has
no precedent in the existing literature. We have
extended the modified equal-time non-
commutative canonical commutation relations to
include Heisenberg and interaction pictures in
addition to the ordinary Schrédinger picture. The
symbol &, is just the Kronecker notation,
0y = €,y is an antisymmetric constant matrix
with the dimensionality (length)’, parameterizing
the deformation of space-space, &, is an
antisymmetric tensor operator describing the NC
of space-time (&, = —&, =1 for u #v and
& =0), 8 €R is the parameter of the non-
commutativity, ferr = h is the effective Planck
constant, while p and v are equal to (1,2,3). The
new deformed scalar product (f * g)(x) is
defined by the Weyl-Moyal (*) product for the
canonical variety expressed as [43-50]:

(f *9)() ~ sl
+0(6%) (®)

The first term, (fg)(x), is the usual product
in the 3D-RQM and 3D-NRQSM reglmes while

the additive part ]”=x1’)

(7
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presents the effect of deformed space. Following
this critical introduction, the remainder of this
work is organized as follows:

Section 2 provides an overview of the
IQHPM in the context of 3D-KGE, 3D-SE, and
3D-DE. Section 3 analyzes the 3D-DKGE, 3D-
DDE, and 3D-DSE using the Bopp shift
approach to derive the effective potential of the
I-IQHPM. The corrected global energies for
bosonic particles with spin (0,1,...) and
fermionic particles under spin and pseudo-spin
symmetry (spin/p-spin)-1/2 are obtained by
applying standard time-independent perturbation
theory to evaluate the expectation values of the

radial terms (%4 and %3). Section 4 discusses

significant examples in both relativistic and non-
relativistic regimes, offering insights valuable to
both readers and experts. Section 5 examines the
effect of deformed space under the new inversely
quadratic  Hellmann model within 3D-
NR(NCQS) symmetries, focusing on the spin-
averaged mass spectra of heavy meson systems.
Section 6 explores how deformation influences
thermal properties, including the I-IQHPM’s
partition function, mean energy, free energy,
specific heat, and entropy. Section 7 concludes
with a concise summary of the main findings of
this investigation.

2. A Brief Review of Relativistic and
Non-relativistic Quantum Systems
Subject to the IQHPM in 3D-RQM
and 3D-NRQM Regimes

In order to make a valid physical comparison
between a quantum system subject to the
inversely quadratic Helmann potential model
(IQHPM) in the framework of the quantum
mechanical symmetries known in the literature
and its extension, it is helpful to review this in
the framework of the symmetries examined so
far in the literature. This system satisfies the
following two radial KGE and SE:

A+aB B
Tz
2r 2r

1{+1) (_

r2

( +Eff? — M? — +

282
Q)Jr
4

(et (-

2
+2 4l )—

212

+£2+uc B)+M( AstaBs |
T T

By “ZBS))) Ry (r) =0 9)

( A5+szS

A+aB
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and
a gh , A _Bexp(-ar) _
<dr2 + 2” (Enl + r r2

“’“))) Un () =0 (10)

2ur?

Here, M/u are the masses of the boson
particles  (spin-0,1,...), and non-relativistic
particles, respectively, while Eglh /Eglh are the
relativistic/non-relativistic  eigenvalues, and
(n,1) represent the principal and spin-orbit
coupling terms. Since the IQHPM has spherical
symmetry, the wavefunction can be expressed
as¥(r,03) of the known forms

A L (0, ¢), Yh(6,0) s
spherical harmonics and m is the projections on
the Oz-axis. For equal scalar and vector

potential, the radial component R,;(r) satisfies
the following simplified differential equation:

where

a? 1(1+1)
G + B8l = M2 =102
dr

) (B3 + M))Ry(r) = 0 (a1

(_ A+aB + +

Njoku et al. and Alhaidari et al. [51] applied
a scheme to write the radial part of the KGE in
Eq. (11) by restyling the vector and scalar

A+aB B

potentials ( qh(r) S (r)) by (_ S+
2

2, By s 8 Bs) under the non-
4 2r 2r

relativistic limit. Using Vg, () from Eq. (3) with
(Vgn(r) = Sgn(r) © A= A; and B = By) in Eq.
(11), we obtain:

(& +ED? — 2 - 200 () — L) Ry (r) =
0 (12)

with

z) = (B + M) (- 22+ 2+ £5) (13)

The three-dimensional radial
wave equation is given as:

d2

2u (EXY

Schrodinger

A+aB B a®’B  l(+1)
+= _r_z_T_z,TDUnl(r):O
(14)

Njoku et al. [10, 11] applied the NUM to
obtain the expression of the wave function
¥ (r,£)3) as a function of the associated Laguerre

polynomial

ngm)(—z,/xnlr) in  usual

relativistic quantum symmetries:

l}l(r’ !23) =
g T2+‘/_

nl r

exp(—xmr) L2 (2 ot Y (25) (15)
with
I( Q= —(EF? — p?) + "‘Z—B
{Xn (ESt+M)B +1(1+1) +7
| g (2\/-—)1+\[.Q_
k an = Zn ( )F(Z\/_+2+L)

n—i

i+0

(16)

Here, the radial part for relativistic KGE is:
Unl (T) =
1 2,/0
NIra2* O exp(—/xmr) LY ™ (2 )

The corresponding relativistic energy E l " of the

IQH potential is given by

1+2n+\/(E,‘{l"+u)B+l(l+1)+l

Y8+ W) 2= (507 ) -

(EZ" + u)(A +aB) = 0. (17)

For the non-relativistic limit,
eigenvalues are given by [13,20]:

the energy

=6—

2
g — @B _ [ A+aB ]
nl 2 2u 142n+,/(21+1)2+8uB.

@

1
Ll (18)

The corresponding non-relativistic wave
function Y™ (r, ;) obtained by applying a
transformation of the form (Eglh + u - 2u and
Eglh ) and substituting it into Eq. (15),

h
Eny — -
we obtain:
"Ilnr(r .(23) =
ri‘f\/ﬂTz

r

exp <—\/)(T’llr) Li‘]?%l <2\/){T’ur) Y™ (023)

(19)

N X

with
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(09 = —2uEh 4 &8

nl =

an=2u3+l(l+1)+1

+2+L) (20)

2
g1 1
E=-+ (l+2) + 2uB
\ ¢ = u(A+ aB)
n
a
Here, Y,
i=0 (n—

coefficient, which is
multiplicative formula:

i) is a generalized binomial

computed by the

n

a al
EO (Tl - i) - (n-1)!(a-n-1") (21)

The corresponding radial R,;(r) part for the

non-relativistic Schrodinger equation is:
()

1, [q0 208
Ry (r) = N?JrfJ“T“ exp (— /xﬂlr) Lnﬁ

In the DE, the spinor ¥, (r,0,¢) can be
presented in column (2x1)

Fnk(r) Yl (9 ¢)

j Enker) Gnk(T) Ylpp(e ¢)
are the upper and lower components of the Dirac
spinor Y, (r,0,¢), while inn (6,¢) and
]mp (6,¢) are the spin and pseudo-spin

spherical harmonics. Here, (m,mP) are the
projections on the Oz-axis. In the condition:

, where F, (r) and G (1)

_A+aB | B a’B ddgp(r) _
leqh(r) +t5 and —0 = 0
= Agn = C = 0: for spin symmetry
A+aB B | a®B Azgp(r)
|Aqh(r)_ +T—Z+TandT—0
k = Ygn = G, = 0: for p-spin symmetry
(22)

While F3, (r) and G2 (1) for spin symmetry
and pseudo-spin symmetry obtained from:

(— —k(k+1Dr2—-M+E3, —Cs)

(M= B3y + Za (@) nk(r)—O

and

(23)
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(— —k(k—Dr2—(M—-EF +Cp)
(M + D, — 80 (1)))GE () = 0

where k(k—1) and k(k+1) are equal
[P(IP — 1) and I(l + 1), respectively. Turkoglu
et al. and Njoku et al. [9, 10] applied the NU
method to obtain the expressions for the upper
component Fy (r) and lower component G (r)
as ass001ated Laguerre polynomlals

2 |oh 2 [P
Lnﬁ(z [xLr) and Lnﬁ <2 /ngr) in 3D-
RQM symmetry as
Fa(r) =
1 JT

24)

ﬁ(Z\/x_fmr)

N”r exp(—xmr) L
(25)
and
G (1)
D T%+\/Tﬁk P 2 Qflk p
N e\~ Xk L, 2 [ u™
(26)
Here, 25, /0F,, x3x/xh,, and N. /N are
equal to:
(Q5) = (M + Ey — C)B + k(k +1) +
Xk = —(M + Epi + C)(M — Eqy)

s a’B
+(M + Enk — CS)T
X (27)

1+ /QSk

rs _ (Z‘jxrslk> '
nk — S ;
zi::O( 1 )1"(2 an+2+)

n—i il

and
=(M—E}, +C,)B+k(k—1) +7
ng = _(M - ESk + Cp)(M + ESR)
+(M—E?, +C,)%E
< ( nk p) 2 (28)

oP

1+
P nk
Nrp — (2 Xnk)

nk nog r(z /nflk+2+i>
zl-:=0 (n—i) il

The energy equations for spin symmetry and
p-spin symmetry are determined from [10]:

\/(M+Eflk—Cs)(M—Eflk+aZ—B)(1+2n+

JQ@k+ 12 —4B(M +E5, —Cy)) —
M+E;, —C)A+aB)=0 (29)
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\/(M—Eﬁk+cp)(M+Eﬁk—“Z—B)<1+2n+

J(Zk - 1)2-4B(M - EP_+ C,,S)) +
(M—E?, +C))(A+aB)=0 (30)

The lower and upper components, G (s) and
FP.(s) of spin symmetry and pseudo-spin
symmetry are obtained by applying the
following expressions:

i) = e (3 ) o)

and

(r) M- Ep (E

In the following section, we will introduce
the I-IQHPM, as well as investigate the new
deformed relativistic and non-relativistic
quantum theory for boson particles (spin-0, 1,...),
and fermionic particles with spin and pseudo-
spin symmetry (spin/p-spin)-1/2 in deformed
space-space symmetries.

D))

3. New Investigation of the Deformed
Relativistic and Non-relativistic Wave
Functions Subject to the I-IQHPM in
Deformed Space-Space:

3.1Application of Bopp's Shift Method within the
L-IOHPM

Under the I-IQHPM in deformed space-space
symmetries, we examine the impact of
relativistic and non-relativistic non-commutative
space on quantum systems with KGE, DE, and
SE, using the main approaches presented in the
introduction. Our goal is accomplished by
utilizing the new ideas presented in the
introduction and Egs. (4), (5), and (8), which are
summed through new connections that are
defined by the concept of the Weyl-Moyal star
product and new non-commutative canonical
commutation relations (NNCCCRs). The
standard radial KG and SE equations in Egs.
(12), (14), (23), and (24) in the context of spac-
space deformations or 3D-(R and NR)-NCQS
can be rewritten as follows using these data:

(& + B3 -

e — X3 ) =) Ry () =
0 31)

G — ke + Dr2 — (M + By — C) (M -
ESi + Zqn(M)) * F () = 0 (32)

(o — k= Dr 2 — (M~ B2+ G,) (M +

ED, — Aqn()) * GL(r) =0 (33)

and

<j_:2 N 2#( an_y ) - l(l+1))) Uy (r) =
0 (34)

Quantum field theory may involve non-
commutativity in two ways. The first approach is
to re-express the different non-commutative
physical fields, e.g., (‘l’nl, D, €, Fa[;) as a
function of their fields (anl, D, e, Faﬁ) in
the well-known ordinary quantum mechanics,
and the non-commutative parameters
®(N12,M23,M13)/2. This procedure is analogous
to a Taylor expansion [28, 29, 52-57]. The
second approach reformulates the modified
operators (Q and m) in terms of the standard
quantum operators (x and p) known in the QM
symmetry and the properties of space associated
with  the  non-commutative  parameters
®(0,,,60,3,0,3)/2. Both methods yield
equivalent physical results. As is well known
among specialists, F. Bopp proposed a new
quantization rule where (x andp) = (Q = x —

éap and n=p+§6x) instead of the usual

(Q=xand Q =
p +§6x). This procedure is known as Bopp’s
shift method [58-62], or Bopp quantization [61].
The Weyl-Moyal star product, G(x, p) * F(x,p),
induces Bopp's shift method in the sense that it is
replaced by G(x — —ap, p+- ax) * F(x,p) [62].
Applying these concepts enables us to transform
the equations presented in Section 2 into new

formulations within the framework of extended
quantum mechanics, both in its relativistic and

correspondence (x and p) —

non-relativistic regimes, as shown
below.
(X350 * Ry (@) = X3 (QRu ()
(1+1 1(1+1
P Ru() = 2R (39)
k(Erzu — 1) * Ry (r) = (E3, — p*)Rny (1)
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—k(k + Dr 2« F5.(r) = —k(k + 1)Q%F;,. (1)
(M + Egy — Cs) (M —En + th(r)) * Fap(r) =
M + Ej =€) (M = Eg + Z00(Q)) Fe ()
k(k—Dr=2xGP (r) = k(k —1)Q % * ka(r)
(M = B2 + C,) (M + EZ, = 404 (1) * 6L, (1) =

(M = EZ; +C,) (M + ED, = 44(Q)) 62, ()
(36)
and
qh(r) * Upy(r) = th(Q)Unl (r)
37
12(::) nl( ) = 12(:;12) Unl (T) ( )

It should be mentioned that many specialist
researchers have been attracted to Bopp's shift
approach since its application provides a key to
solving fundamental equations in the context of
phase-space and deformed spaces. In the non-
relativistic framework corresponding to the
Schrédinger equation, many physical problems
are treated within phase-space and deformed
space symmetries [63-69]. As for the study of
relativistic systems within the framework of the
deformed KGE, this method has been adopted
over the last decade to solve multiple problems (
[70-77]. In addition, Bopp’s shift approach has
been applied to the study of deformed Dirac and
the deformed Duffin-Kemmer-Petiau equations
[78-85]. It is worth noting that Bopp's shift
method allows us to reduce Egs. (31), (32), (33),
and (34) to the simplest form:

d? h 1(1+1)
(& + B2 - M2 - x5 (@ - L) Ry () =

0 (38)
d?  k(k+1)
= — M+ Eg —C) (M —Eg, +

Eqn(@) = ST N =0 (39)

(j—:z—"(" D (M —E% +C,) (M +ED, -

8qn(Q)) = 22T ()G (1) = 0

and for the non-relativistic case,

(40)

d? 1
<d7 + 2 (Y = Von(Q) - ﬂ)) Ru(r) = 0

2pQ?
(41)

Z(H ) are obtained from

ZMQ

Here, th (Q)

Van(r) an

commutative parameter Q as follows:
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A+aB B a’B

Van(r) = Vgn(Q) = — o Tt T
1(1+1) 1(1+1)
2ur? 2uQ2

By applying Bopp's shift method, or the
canonical quantization method, Egs. (4) and (8),
which introduces the Weyl-Moyal star concept,
these equations reduce to simplified algebraic
forms. This is possible because the method relies
on the fundamental principles of quantization
and operator algebra widely used in the literature
[58-62]:

{[Q[(I.S)’ 1(,5) — [Q(h) (h)] [Q(L) (L)] = ifig 6y

[Q(s) @ [Q(h) () [Q(l) (L)] — 19,41/
42.1)

These can be combined into a single formula,
which is presented in the following format:
[Q(Shl)’ (sh)] _ lheff6uv
(s,n,i) A(s,hi) (42'2)
[0l"?, )] = 6,

In 3D-(R and NR)-NCQS regimes, the Nc set
of variables (Q(Shl)and nés'h'l)) of Eq. (42) can
be expressed in terms of their commutative

(s,n,i)

counterparts (X, 'i)) using the

Seiberg-Witten map:

3 .
(s>_<z By
— 2

and pf,s'h

pﬁ”)\

Q(S) B |/xll V=1 | 1
©)7 0w @
\ (S)+0(7]2)
() > i ()
Ql(lh) ) l/xﬂ - <§=1 — Py \i
|7 +0(0?) (43.2)
T\ omn
and
@ ML ING)
Ql(li) _l/xﬂ _<§=1 — Dy \i
T[(i) _\ +0(0?) (43.3)
u

Py + 00"

Equations (43.1), (43.2), and (43.3) can be
combined into a single formula:
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3 .
, Ghd) _ (s O (shi) \
(fo""”)_/ % <21 2 Py )|

T[ISS,h,l') - \ 2_0(¢2) /
pS™D 1+ 0(n?)
(43.4)
This allows us to determine the operators (Q?,
1 k(k+1) k(k-1) 1(1+1)y -
o g gz and ZJQ ~) in the 3D-(R and NR)-
NCQS symmetries as follows:

Q? =712 — L.® + 0(®?) For 3D-DKGE

02 = 12 _{ L. ® for spin symmetry
LP. ® for p-spin symmetry
+0(9?)
| M kG k(k+1)L ® + 0(0?) (44)
Q T
Dy "(" Lir. @+ 0(0?)

l(l+12) _ l(l+§) + l(l+1)L @ + 0(d?)
2uQ 2ur 2ur*

Furthermore, the Taylor expansions of

Xt (@), Zqn(Q), Agn(Q), and Vg, (Q) may be
stated in 3D-(R and NR)- (NCQS) symmetries
as:

(th(Q) = th( )—— aZ"l (r)L @ + 0(d?)

_iazqh(r) 2
i h(Q) = h(r)—— thp d)+0((1§2)
k qh(Q) - qh(r) —iav—qh]_‘ b + 0((1)2)

Equations (43) and (44) can be substituted
into Egs. (31), (32), (33), and (34), to provide the
following like-Schrddinger equations.

2
(4 8- - 200 - 2270 ) R )
=0 (46)
dz  k(k+1)
Gz~ r: - (M+Eflk—cs)(M—Eflk+
Eqn() = ST O)Fu () =0 (@47)
and
da* k(k 1)
arz (M ErIZk + Cp) (M + Eﬁli o
Aqh(r)) — BT NG =0 (@8)

and

d? qh 1(1+1)
<ﬁ + 2” (Enl - th(r) - 2ur? ) +

2uzler qh(r)) Uy () =0 (49)
with
pert l(l+1) 1 0Z. (T') 2
Z o (r )—( T )L.(D+O(<D )
(50)
Zpert(r) _
k(k+1)L ®— (M +E5) a):qh(r)Ld> + 0(d?)
(51)
peT‘t(r) _
k(k 1) LP. & — (M Eps) aAqh(T‘) Lp d)
0(:1»2) (52)
and
pert 10Vgn l(l+1) 2
Z qh()_(ZT ar )L¢+0(d))
(53)

These equations express the interaction of the
topological properties of the deformed space
(resulting from space deformation @) with the I-
IQHPM in this space through the direct coupling

1 9z () 1 0Vgn\ 0Zgn(r) L@
between( 2r  or )’ (; or )’ or 2r’
0Agn(r) LP.d  k(k+1) k(k- 1) l(l+)

—or 2 & i and , together
with  the angular momentum operators
L(Ly,Ly,L,) and LP(LR,I5,1%). After a
profound calculation, one gets:

1 62 (T) h A+aB B
12T o (M) (B4 2) (59)

d

(M +E k)l th(T) = (M+E k)( A+aB

B

%) 9
_ psy 1 aAqh(r) ps A+aB
(M —ER) 5 = (m-ER) (-55

B

%) (56)
and
19Vgn _ A+aB B
2r ar 212 r4 (7

I am substituting Egs. (54), (55), (56), and
(57) into Egs. (50), (51), (52), and (53). The

spontaneously ~ generated  terms Zg,el”(r),
Zgﬁrt(r) Apert(r), and ngii]h(r) for the I-
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IQHPM can be described as a result of the
topological characteristics of space deformation:

2P () =
1+D+(EZ +m)B (EL}+M)(a+aB)
e S—— L. ® +
0(d3?) (58)
ngelrt(r) —
k(k+1)+(M+ES,)B M+ES . )(A+aB)
( 54 nk) _( n§33 )L(D +
0(d3?) (59)
peT‘t(r) _
(k(k 1)+T(Q4—E5Z)B _ (M—ESZ(ZiAﬂxB))Lp. @+
0(®?) (60)
and
pert B-I(l+1) . A+aB 2
20 = (52 + 5F) L@ +0(9?)

(61)

In 3D-(R/NR)NCQS symmetries, the global
effective potentials ch_ef T, ngl_ef T,
AT (1), and VI qe{f (r) can be expressed as
a functlon of corresponding effective potentials

z ), @), 477 (), and VI () in
3D -(Ra and NR)QM symmetrles as follows:

Z(r;}:—eff(r) eff( )+ (l(l+1) 21r62 (r))L ®
+0(®?)
ey = 58 () + SR 4 (M + B3
(22 4+ Z)L@ +0(0?) ©2)
Ay = 2 () + (2 4 (M- £,
(S + 2D @ + 0(0?)
nr;c qehff(r) eff( ) — (l;l’::l) _ ianh(T))L. @
+0(®?)
with
(Zeff(r) _ th( )+ l(l+1)
k(k
WM—MU+“”
(63)

IFHOEVMOELCS
(1
\WM—MUﬂm

In 3D-(R and NR)-NCQS symmetries, the
new potential under study (improved inversely
quadratic Hellmann potential) is expanded to

include additional terms (terms % and %) that
T T

express its interaction with the topological
properties of deformed space and the

284

corresponding expression (inversely quadratic
Hellmann potential) in the framework of QM
known in the literature. The new additive parts
nglrt ), nglrt ), Aze” (r), and Z% pert o qn (1) are
proportional to the infinitesimal couplings
L. ® and LP. ®. From the perspective of physics,
this is logical, as it explains the interaction
between the physical properties of the
investigated potential (Land LP) and the
topological characteristics arising from the
deformation of space-space given by &®. Based
on this reasoning, we consider the additive
effective potential as a very infinitesimal part
compared with the central effective potentials

z @), @, a3/ @), and V(@)
(parent/maln potentlals) in the symmetrles of
3D(R and NR)-NCQS symmetries. That is, the
inequalities Zgﬁrt(r) <z, ef T, Zpe”(r) &

(), AP () (r) < Aef T, and
Zﬁfrtqh <KV (r) are satisfied.

Consequently, the apphcation of time-
independent perturbation theory (TIPT) becomes
a practical and rigorous method for solving this
physical problem, as it is supported by strong
justification. This approach enables us to provide
a comprehensive prescription for calculating the
energy levels of generalized excited states
(n, 1, m,mP)t",

3.2 Relativistic Expectation Values for Deformed
KGE under the I-IQHPM

The main goal of this section is to apply TIPT
in 3D-(R and NR)-NCQS symmetries to evaluate
the expectation values of the relativistic KGE

1 rk—qh 1 rk—qh
(<—4> and < ) ) for boson particles,
" (nim) (nim)

taking into account the unperturbed wave

functions W(r,;), which we have seen

previously in Eq. (15). After calculations, one
rk—qh

gets the expectations values (< ) and
(nlm)

1 rk—qh
<—> ) using the TIPT in the first order as

: (nlm)

follows:
1 rk—qh B
<T4>(nlm) - o ,
#f 223 exp(—z) [Lfl‘/n_'”(z)] dz
Xn.
(64)
and
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1 rk—qh _
= =

(nlm) X
2 +00
(27\/)(_1\])% = fo 222 exp(—z) [Lfl“ n’“(z)] dz
nl
(65)

We have introduced a new variable z =
2\/)(_,”7" and used abbreviations (M >€rlfz_n?)h =
(n,l,m|M|n,1,m) to avoid the extra burden of
writing, with M equal to %4 and %3 We calculate
the integrals in Egs. (64) and (65) by applying
the following special integral formula [86]:

+1
[ z%%P exp(—2) [L%(2)]?dz=
0 n
b r(a+b+1+i)
D O T (66)
where I'(a+b+1+i) is the Gamma

function. By comparing Egs. (64) and (65) with
the integrals in Eq. (66), we obtain:

n
1 \Tk-ah . 3\ r(eymized)
<r_4>(nlm) = Xai %::0 (n— l)f (67)
and
n
1 \Tk-ah ko 2\ reymiasd)
<T_3>(nzm) = Kni Zi:o (n— i)f’(&g)

g2

nl
(2ym) O

respectively. By examining

where XX} and X7 are equal to

N2

nl

2 \/X_nl)z\[ﬂ_nl—y
the unperturbed relativistic wave function in Eq.
(15) and another wave function Y™ (r,£23) in
Eq. (19), in addition to the upper Fj,(r) and
lower G¥’(r) components in Egs. (25) and (26)
of the spinor of the DE, we note that there is a
possibility to move from the unperturbed
relativistic wave function ¥ (r,23) to the other
non-relativistic wave function ¥™ (r,£3;) and
the upper F5 () and lower Gf:,i (r) components
by making the following substitutions:

and

Ny & (Nl Ny, Nip) Qg
(.le, flkﬂ 'Q'flk) and Xnl <& ()(219 Xflka Xf’lk)
(69)

This makes it possible for us to determine the
nr—qh
non-relativistic expectation values (<—4>

I (nim) ’

1 nr—qh
<—3> ) [see Egs. (70) and (71) below], the
"1 (nim)
rs—qh
relativistic Dirac expectation values (<—4> ,
Tl (nim)

rs—qh
<i3> ) for spin-symmetry [see Egs. (72) and
"1 (nim)

rp—qh rp—qh
Do * o) ™

(73) below], and (<—4

r r3

(nim) ’ (nim)
pseudo-spin symmetry [see Egs. (74) and (75)
below] directly from Egs. (67) and (68), without

re-calculation:

<i>nr—qh o Z” ( s )r<2J!T$”—2+i> 10)

r4 (nim) =0 \n—1i il
L \"T=qh _— " _ F<2 /.le—lﬂ')
@), =xrs ()
(nim) i=0 ‘M —1

n—i

<1>rs—qh e Zn ( s )r<2j!sz—2+i> )

4 -
1 (nim) i=0

<i>rs—qh _xre Z ( _9 ) r<2 ﬂfu—lﬂ') 73)

n
- r{2 [P —2+i
1\TP-ah B erl -3 < nl L) 74
- Ml — il ( )
(nim) i=0 \ l A
and
n
L\TP=ah L 2 r<2 /nfll—ui)
— y’P -
F) =xrr () 09
(nim) i=0 \n l A
: nrli ynr2 yrsl yrs2 ytpl mp1
with Xp7 %, X7, Xoi™, X, Xy 5 and X))
anrz NTI.Z‘Z
equal to & , & ,
2 |09,-4 2 09,3
NS
2 2 p2
ng wg %
2 Qfll—d,’ 2 9%1—3’ 2 Qzl—d,’
U A 2 A O
Nrpz
and ut , respectively.

2 .in—3
(22)
3.3 Impact of Space Deformation on Relativistic
and  Non-relativistic Energies with

Interaction under the I-IQHPM in 3D-(R/NR)
NCQOS Symmetries

This subsection focuses on applying our
physical approach, based on the superposition
principle, to calculate the total energy values in
3D-(R/NR) NCQS symmetries. The global
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nc—eff
nr qh (T)
l(l+1)

effective potentials Zy, ne=eff (1) and V.

are the sum of three potentials Z, ah () +
k k+1

ZET (1), Zqn(r) + 552 z””t(r) Aqh(r) +
k(k—1 l(l+1

KD b (), vqh( r)+ e+ VR ().
These effectlve potentials are respons1ble for
generating the total relativistic and non-
relativistic energy spectra within the framework
of deformed space-space and in the presence of a

topological defect. Logically, the effective
potentials Z'(r) + ’(1:21)’ e )+k(k+1)
k(k- e
Agn(r) + ( 1)’ and  Vgr(r) + (H)

responsible for the relativistic energles of the
KGE and DE (E™

P
> Enk» Epj) and the non-

relativistic energy Egl , as reported in the
literature and shown in Egs. (17), (29), (30), and
(18). These potentials dominate in the absence of

deformed space. In contrast, the spontaneously

generated  potentials Zg,el”(r), Zg,elrt(r),
AZZTt(r), and Vnprersh(r) arise from deformed

space and play the role of the self-sources of
corrected relativistic and no-relativistic energies
in 3D-(R/NR)NCQS symmetries. Considering
that the NC parameter @(112,723,113)/2 is
arbitrary, it can be dealt with physically. Firstly,
the influence of the perturbed spin-orbit can be

generated from perturbed potentials Zpert(r)

nglrt (), Apert ™), and Vpert an ()
corresponding to the boson particles and
antiparticles with spin-s (e.g., spin-0,1,...),

fermions particles with spin symmetry (spin-1/2)
and fermion particles with spin or pseudo-spin
symmetry (spin-1/2) The perturbed spin-orbit
effective potentials are obtained by replacing the
coupling of the angular momentum operators L
and LP operators with the non-commutative
vector ®(0,5,0,3,60:3)/2 using the following
physical couplings:
L®->dL.S
For DKGE, DDE and DSE
LP.® - @ LP.SP ’
For DDE only

(76)

where @ = /02, + 62, + 6% . The spins of the
boson particles (spin-0,1,...), fermion particles
with spin symmetry (spin-1/2), and fermion
particles with pseudo-spin symmetry (spin-1/2)
are  oriented parallel to the vector
®(0,,,0,3,0,3)/2, which interacts with the I-
IQHPM. Moreover, we apply the well-known
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transformation in relativistic and non-relativistic
QM:

( OLS - 2 ()2 — 12 - 5?)
{ For DKGE, DDE and DSE
pcp _2(12 _1pr2 _ cp2
|<I>L.S—>2(] L sp2)
For DDE only

It is well-known in the literature that [j(j +
1) —Il(l+1)—s(s+1)]/2 represents the
eigenvalues of the operator G2 for boson
particles and antiparticles (negative energy) with
spin (s =1,2..). Additionally, the values
{ItL—sl,[l—s|+1,...,[l+s|} are just the
possible values of {j}. Furthermore, the
operators (HA", J2, 12, LP2, S2, SPZ and J,) form
a complete set of conserved quantities in the
context of deformed space-space symmetry. The
eigenvalues of G2 are equal to the values gy, gjsc,

(77)

g}? for boson particles (spin-0,1,...), fermion
particles under spin, and pseudo-spin symmetry
(spin/p-spin)-1/2, respectively, and gf}, is for
DSE with spin-1/2,0,1,....

y =2l +D -1+ D -sGs+D] (7))
For spin-0,1,...

JO+1D=-1U+1)-3/4=g""
1 For]=l+—

9 =5 jG+ D) - 10+ D374 = girs )
For]—l—;
jU+1D—11+1)-3/4=g{""

p 1 F01rj=l7”+l
97 =2\ j(+1) =1 1)~ 3/4 = g (80)
For]=lp—5

g =20+ D -1+ D -s(s + D] (81)
For DSE with spin-1/2,0,1,...

with |l — s| < j < |l + s| for the boson particles,

|l —%| <j< |l +%| for spin symmetry with

spin-1/2, and |lp - %| <j< |lp + %| for pseudo-

spin symmetry with spin-1/2. As a direct

preliminary result, the energy correction

ValuesAEr_s"z (n,A,B,a,®,j,1,5),
Egn SO(nABad)],ls)
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AES°(n,A,B,a,®,j,1P,sP),
AE"T S°(n,A,B,a,j,1,5)

and

arise from the perturbed effective potentials:
ngelrt(r) Zpert(r) Apert(r) and Vperth(r) for

nr—q
the (n,l, m)th ex01ted state in the context of
deformed space-space symmetry:

SOZ(nABad)],ls)—

Dgp (Zpert(r» (Tl,A,B, a) (82)
s SO(nABa(D],ls)_
up-—s . 1
g FOI’] =[]4-
(P ))(nlm) ];p ) 2 (83)
g " Forj= - >
AE;’}:so(n,A,B, a,®,j,IP,sP) =
up—p
g Forj = 1P + 1
(AP ))(nlm) j;p et 2 (34)
9y orj= :
and
AE%™°(n, A, B, aj,l s) =
(Dng( peTt(T)> (Tl, A,B,(,Z) (85)

(nim)
The global relativistic and NR-relativistic

expectation ~ values (Z;’,f”)( o (04 B, ),
pert pert

(2 (r))( . )(n,A,B, a), (A (r ))(nlm) and
A\ (m,A,B,a) i

( qh )(nlm) (n,A,B,a) for boson particles

(spin-0,1,...) and fermion particles under spin
and pseudo-spin symmetry (spin/p-spin)-1/2,
generated by the effect of the [-IQHPM, are
given by:

ert h Ly
<Zp (r))( . (l(l + 1D+ (B + M))B <T_4>(nzm)
rk—qh
(e U+ aB)2(5)
(86)
rs—qh
pert — .
(zPert(r ))( iy = (kU 1) + (M + E3 ) B) <r_4>(nzm)
rs—qh
—(M+ES)(A + aB)/2<r—3>( -
(87)
rp—qh

(anere(r )) iy = (K= 1) + (M =

£2)8) ()

rp—qh

(ntm)
1
(M- EL) A+ aB)/2 ()

(nlm)
(88)
and

(22, )" ot ()"
qh (nlm) 2p r (nlm)
A+aB 1>nr qh)

— 89
2 <r3 (nlm) ( )

The influence of the magnetic perturbative
effective potentials, which produce the perturbed
potentials Zg,el”(r), Zg,el”(r), AZZTt(r), and

Zy P(r) the I-IQHPM in 3D-
(R/NR)NCQS symmetries, represents a second

significant physical contribution. This new effect
is achieved through the following replacement

under

procedure without repeating the previous
calculations:
L. ® - yL.X with X = Re, (90)

This transformation accounts for the physical
condition related to matching physical units
[@] = [x][R] = (length ). The new physical
quantity X is the intensity of the magnetic field
created by the effect of the deformed space,
while y is a new infinitesimal non-
commutativity parameter. For simplicity, the
induced magnetic field X is aligned along
the (Oz) axis, consistent with the arbitrary
orientation of the vector ®(6;,,053,60,3)/2. In
addition, we apply the well-known quantum
mechanical identity:

(n",l',m'|L,In,l,m) = 91

The magnetic quantum number m is
restricted to (—|I| < m < +|l]). All of these
factors enable the identification of the new
squared energy shift AEmgz(n,A,B, a, x,m),
AE;,jmg(n,A,B,a,x, m), AEp "™ (n, A, B, a, x, mP)
and AE;;_mg (n, A, B,a, y,m)
particles, fermion particles with spin symmetry,
and fermion particles with pseudo-spin
symmetry. This is a result of the perturbed
Zeeman effect, which was induced automatically
under the influence of the IQHPM for the
(n,1,m)*" excited state in 3D-(R and NR)-
NCQS symmetries as follows:

AEmgz(n AB,a, xy,m) =

m6m’m61’16n’n

for boson

(z”e”(r))( iy (04 B, ) (92)
AEST mg(nABa)(,m)—
AX(EET) (A, B, a)m (93)

(nim)
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AEp_mg(n A B,a,®, y,mP) =

(A”e”(r))( . )(n,A,B, a)mP (94)
and
AE; "™ (n,A,B,a, x,m) =

( zm- ”(r))( . )(n,A,B,a)m (95)

After this achievement, we examine a new
energy correction that is no less important than
what we saw previously under the I-IQHPM in
3D-(R and NR)-NCQS symmetries. This new
addition to energy values comes from the

—rot
2P, SN,

an "t (r), and Zgn"(r). We consider the
boson particles (or antiparticles) undergoing
rotation with angular velocity Q. The features of
this subjective phenomenon are determined by
replacing the arbitrary vector ®(6,5, 6,3, 013)/2
with {Q, which allows us to replace the previous
coupling L.® with the new coupling {L.Q, as
follows:

effective  potentials

l(l+1)+(th+M)B

22 () 28 ) = (P
—(th+f)(A+“B))L Q+0(0%) (96)
EPET () > 20O () = (D
W)L. Q+0(2?) ©7)

k(k— 1)+(M ERD)B

AT ) - AT = ¢
(M—EP))(A+aB)

TP Q + 0(02) (98)
and
nr p(r) _)Zm« r( ) ((B l(l+1)
2ur
A*"‘B)L Q+ 0(0?) (99)

This takes into account the physical condition
related to the matching of physical units:
[@] = [¢][@K] = (length ). We consider { as
an infinitesimal real proportional constant. As it
is mentioned before, the rotational velocity € is
chosen parallel to the (0z) axis (Q = fe,) to
simplify the calculations. This does not affect the
physical content of the physical issue under
study. The purpose is only to obtain results
simply and straightforwardly. The perturbed
induced spin-orbit coupling is then changed to
become a new form as follows:
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l(l+1)+(th+M)B

Zgn ) > (——— -
Eflh+M (A+aB)
%)LZ +0(0?) (100)
pe rot( ) ( (k(k+1)+(M+Eflk)B _
ré
W)LZ +0(02) (101)
- _gPs
577) - ga L
—EPS
(e eeDlyp | o(02) (102)
and
nr r B-1(l+1) , A+aB 2
(T) ( ( 2ur* + 273 )LZ+O(Q )
(103)

The new corresponding corrected square
energies Ejpt*(n, A, B, a,{,m),
AEG™ (n,A,B,a,{,m), AED, mt(n,A,B, a, ¢, mp),
and AES T (n, A, B, a, 3, m) of the boson
particles (spin-0,1,...), fermion particles under
spin and pseudo-spin symmetry (spin/p-spin)-1/2
due to the perturbed effective potentials
ngelrt() Zpert() Apert(r)’ and Vq};lert(r)
which are 1nduced automatlcally by the influence
of the improved inversely quadratic Hellmann
potential model for the (n, 1, m)*" excited state
in the context of deformation space-space
symmetry as follows:

”’tz(nA B,a,{,m) =

pert
(Q(th (r))(nlm)(n,A,B, a)m (104)
AEé,‘l”’t(n AB,a,{,m) =
(Q(ng;rt(r))( m )(n,A,B,a)m (105)
AED " (n,A,B,a,®,{,mP) =
a(an (r ))( oy T A B @)mP - (106)
and
AE;‘,C‘TOt(n,A,B, a,{,m) =
p nr
m(zqh(r))(mm) (n,A,B,@)m (107)
Notably, this physical phenomenon was

previously studied by the authors in [87], who
investigated rotating isotropic and anisotropic
harmonically confined ultra-cold Fermi gases at
zero temperature in two and three dimensions. In
their work, the rotational term was manually
introduced into the Hamiltonian. In contrast, the
results obtained here arise automatically through
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self-correction: the effect emerges internally via
the interaction with space deformation, without
any external influence. This is a direct
consequence of the rotation operators Z,. pe~ qh °(r),

ngl_mt ), AZZ_"” (r),and ZF7” gzt (r) induced

automatically by the improved inversely
quadratic Hellmann potential model. So far, we
have accomplished the most important physical
corrections related to energy. Now, we apply the
principle of physical superposition, which allows
us to combine the different corrections. Thus, in
the symmetries of the 3D-(R/NR)NCQS
regimes, the total relativistic and non-relativistic

new energies E.-T"(nA,B,a,®.x,{.jlsm),
ES-M (A, B, a,®.x.0,j,1,s,m),

Ep M4, B, a,®,x,.j,l,s,mP), and
E™-"n A B a,®,x,{,j,1,s,m) for the boson

nc nl
particles (spin-0,1,...) and fermion particles

under spin and pseudo-spin symmetry (spin/p-
spin)-1/2 with I-IQHPM, corresponding to the
generalized (n,[,m)™" excited states, are
expressed as:

EX(nAB,a,®,x,{,j,l,s,m)=E +
[(z pm(r)) (xR + Q)m + & g,)]?

(nim)
(108)
Enc ™ = Egy + (S0 (r ))( o | R+
up-s . 1
gy ~Forj=1+ >
{)m + dp—s _ I (109)
gy " Forj=1- >
-qh t
Epc ™ = Eb, + (40 (r))( oy | O+
g}‘p_p Forj =[P +%
)m + dp-p _ I (110)
gy " Forj=1IP—=
and

—gh 2p
Er=a =UC__ ‘u[

nc—nl 2

(Zf;h (r))

2
A+aB ]
1+2n+ (Zl+1)2+8uB

[()(N+ IDm+ogiy] (111)

h S
where E}', E3., and EP, are the relativistic
energies under the improved inversely quadratic

Hellmann potential model obtained from Egs.

(18), (29), and (30). It is important to note that
the corrected energy values in Eq. (108) can be
generalized to include negative energy (boson
antiparticles, e.g., as m*) and positive relativistic
energy (boson particles, e.g., T™7) as:

EM

£ NG @), (GR +¢Dm + D gy)] 2

(112)

The latter can be reformulated using the so-

called step 9(|Eﬂl |) function as follows:
= |Eaclo(1Ee D) — |Eae ™o (=& )
(113)

This generalization extends naturally to
fermion and antifermion particles, where
fermions carry positive energy and antifermions
carry negative energy. It should be noted that
these energy corrections are consistent with the
first order of infinitesimal NC-parameters
(@, x,¢). Higher-order corrections proportional
to higher powers of these parameters are beyond
the scope of this work.

EIt

t-nc —

4. Special Cases Resulting Directly
from the I-IQHPM in 3D-(R and NR)-
NCQS Symmetries

This section investigates several special cases
that emerge directly from the improved inversely
quadratic Hellmann potential model in 3D-(R
and NR)-NCQS symmetries. These cases follow
naturally from Eqs. (108)-(111). By
appropriately adjusting the potential parameters
of the I-IQHPM, we obtain the following:

» Setting B=a =0 allows us to get a
new modified Coulomb potential. In this
situation, the total relativistic and non-relativistic
new energies Er-¢(n,A,.D.x,0.j,l,s,m),
ESZC(mA,®.x.,0.j,L,s,m), E,fc C(nA @,%,0,j,1,s,mP),
and EMN-5(n,A,®,x,{,j,l,s,m) are obtained for
boson particles (spin-0, 1, ...) and fermion
particles under spin and pseudo-spin symmetry
(spin/p-spin)-1/2 in the modified Coulomb
potential model, corresponding to the
generalized (n, [, m, mP)" excited states in 3D-
(R and NR)-NCQS symmetries:

Enc(nA,@,%,¢,j,1,5,m) = Ep; +

[(Z2TE () iy (R + SIm + D g2
(114)
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Encn A, ®,x,4,j,l,s,m =

+ (2P () X+ {D)m +

(nim)

up-s

9y

g}ip SForj=l—%

F01rj=l+l
2 (115)

ETIZC_C(n'AI (DIXI (ljl l;S; mp) = ETclz +
N, | X G+

g}‘p_p Forj=1P +-

2
. 2 (116)
gs’ P Forj=1P -2

and
AZ
En (A @, x,d,j,l,s,m)= (nI:—l+1)
(z”(r))(m )[()(N +{Mm+dgl,]  (117)

The energy relation in Eq. (114) agrees
completely with the results reported in Refs. [71
88]. The new relativistic Dirac energies in Egs.
(115) and (116) are consistent with the results of
Ref. [36]. The first term in Egs. (115) and (1 16)
are the relativistic eigenvalues ES;, and E,? in
3D-RQM symmetries, which can be determined
from Refs. [89, 90] [see Egs. (46) and (47)]. We
note that the new non-relativistic energy in Eq.
(117) agrees with previously established results
as a particular case in Refs. [6, 91, 92]. The
corresponding new relativistic and non-

relativistic expectation values (Zpert(r))

(Zpert( ))( . (Apert( )> - and
(Z p (r)) (i) of the modified Coulomb potential

models are obtained from the limits:

(nim)’
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pert . pert
(Z r )>(nlm) (B,al)lg(lo,o)( qh (r )>(nl )
rk—qh
= (+M)A/2  lim <—>
( ) / (B,a)—(0,0) (nim)
pert pert
(2 (r )>(nlm) (B, al) (o, o)( r )>(nlm)
rs—qh
=M+ ES)HA/2 <—>
( ni)A/ (Ba)ﬁ(oo) )

b,
pert . ppert
(A (T)>( 1PmP) (B,al)lir%o,o)( gh ( )>( 1PmP)

rp—qh
=(M-EP)A/2 <—>
(B, a)—>(0 0) (nim)
p 7P
(Z (r )>(nlm) (B,al)lg%o,o)( qh r )>(nlm)
A 1 nr—qh
-4t
2 (B, a)—>(0 0) (nim)
(118)

» If we choose A =0, we obtain the
modified inversely quadratic Yukawa potential
(IIQYP). From Egs. (108)-(111), the total
relativistic  and  non-relativistic  energies
E, "(n,B,a,®,x,0,j1s,m),

E, '(n,B,a,®,x,0,j,1,5,m),
EF ", B,a,®,%,¢,j,l,s,mP) B,a,®,x,{,j,1,5,mP)
and E "1 (n,B,a,®,x,4,j,1,5,m)

nc-nl

are obtained for bosons (spin 0,1,...) and
fermions under spin and pseudo-spin symmetries
(spin/p-spin)-1/2  within the I[IQYP model,
corresponding to the generalized (n, [, m, mP)t"
excited states in 3D-(R and NR)-NCQS
symmetries:

El.(nB,a,®,x,3,j,ls,m)=E}+
[(z pm(r)) (xR + Q)m + & g,)]?

(nim)
(119)
Eg 9 =EX + (2P (r ))( oy | R+ DM+
up-s . 1
gy " Forj=1+ >
dp-s 1 (120)
gfp Forj=1--
ER (n,B,a,®,x,0,j,1,s,mP) = E¥ +
(45 D) o by | R+ DM+
g}lp_p Forj=1P + 2
2 (121)

g}ip_p Forj=1P -~
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and
nr—q __ a’B 2ua?B?
Enc—nl -, 2+
(1+2n+1/(21+1)2+8u3)
(Zpert( ))( . )[(XN + (.(Z)m + (I)g}c‘z

(122)

The energy relation in Eq. (119) is in full
agreement with previously reported results. The
relativistic Dirac energies in Egs. (120) and
(121) are consistent with Ref. [93]. The first
terms in Eqs. (120) and (121) are the relativistic
eigenvalues of E[ and EF in 3D-RQM
symmetries, which can be determined from Ref.
[94, 95]. The non-relativistic case given in Eq.
(122) agrees as a special case with Ref. [96]. Its
first two terms represent the non-relativistic
energy in 3D-NRQM symmetry [97]. The

corresponding expectation values (me(r))( .

pert pert 14
(52 Oy (457 Oy a0 25OV
for the IIQYP model are obtained from the
following limits:

i{ (Zpert( )>( . Elim(zpert(_r))( -
ert . ert
{ (=7 (r)>(l) Alm(zp ()>(nlm) (123)
i(Apert(r))( P = Lim{ag" (r ))( PPy
L (2@ = Umlzi o),
5.Study of Spin-Averaged Mass

Spectra of Heavy Mesons under the
IQH in 3D-NRQM and 3D-NR(NCQS)
Regimes

The potential considered in this study (the
IQH model) has two basic properties: attraction
(confinement) at long distances and repulsion at
small distances, appropriate to the dimensions
studied. These properties qualify it to be a
reaction potential for quarkonium systems such

as charmonium cc and bottomonium bb. As a
result, we devote this section to calculating the
mass spectra of heavy meson systems, which
have the quark and antiquark flavor under the
IQH model in 3D-NRQM and 3D-NR(NCQS)
regimes. Additionally, we divide the IQH model,
which appears in Eq. (2), into two main parts
V,(r) and V,(r) that play different roles in 3D-
NRQM symmetries. The first part is defined as

a’B

Vi(r) = +— (124)

which

.. B . . 2B .
potential = with a constant potential aT This

combines an inverse quadratic

part satisfies the limit:

B
5%( +—) =2 (125)
and, as a positive value, reproduces the terms

(%+e) of the generalized Cornell potential
(GCP) [99]. Thus, (-
with (%
responsible for confinement at large distances.
The second part, V,(r), similar to the Coulomb

potential, which appears in the generalized
Cornell potential, has the form:

V,(r) = —

The above result, as a negative value,
completely simulates the Colombian potential
(=c/r) in the GCP [98] because this part
potential satisfies the following limit:

, A+aB A
Lim (— ) =—-
a—-0 T T

2
a?B
and T) can be compared

and e), respectively, which are

A+aB

(126)

(127)

The second term plays a role similar to the
Colombian potential. The result of this analysis
is that the potential under study is considered a
means of interaction between the quarkonium

system. We calculate the new mass of

. h—h . . .
quarkonium Mgc nlm in three-dimensional non-

relativistic non-commutative QM symmetries,
using our formula, which has the following
form:

gh—hm __
Mnc nl —
qu
nr—qh nr— qh
|1 E + (E .
45 ( nc— nl) (hnc nl for sp1n-1
nr—q
I +(Enc nl
nr qh
k E,._, forspin-0
(128)
Here, mq is the quark mass, while
M L
nr— qh nr—qh nr—qh
(Enc nl ’ nc-nl ’ nc-nl and

(er-a ) are the new energy eigenvalues that
correspond to (j =1+ 1 and spin—1), (j =1
and spin-one), (j =1 —1 and spin/one), and
(j = I and spin-0) under the improved inversely
quadratic Hellmann potential model in 3D-NR-

NCQS regimes. It results from the generalization
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of the original relationship known in the
literature [98-100]:

MU = 2m, + (129)

where E;] is the non-relativistic energy under
the inversely quadratic Hellmann potential
model, which is determined by Eq. (18). We
have replaced the energy eigenvalues i with

1 nr—qh nr—qh
average values - (Ep” nl) + (EN” nl) +

(E - qh) ) that have spin-1 with three different

nc—nl
values of j, while for spin-0, the values EJ} are

replaced with E:ll:__g{l because it represents a
single value. We need to replace the factor g¢’,
with new generalized values as follows:
[/2Forj=1+1lands =1
—_—— —1Forj=1lands =1
9rb =) (-21-2)/2Forj=1—1ands =1
OForj=lands=0,

(130)

. . my—-u pmy-m
which allows us to obtain (E,;_,,, E ;.

l —_
E;Y ) and E; 7”7 for heavy meson systems

such as (cc and bb):

and

1- For the case of j =1+ 1 and spin/one, the
improved IQH model induces the energy

nr— qh
values (Ej %

following formula:

that are expressed by the

Enr qh DCZB
nc—nl 2

2 [ A+aB ]2
H 1+2n+,/(214+1)2+8uB
(zqh)( . )[()(N+(.Q)m+d>g (131)

2- For the case of j =1 and spin/one, the
improved IQH model induces the energy

nr— qh
values (E;_%

following formula:

that are expressed by the

Enr—qh M _ a’B A+aB
( nc—nl - —aU 2
2 14+2n+./(21+1)%+8uB

(2o (BR+ LM — @)

3- For the case of j =1 — 1 and spin/one, the
improved IQH model induces the energy

nr— qh
values (Ep_%

following formula:

(132)

that are expressed by the

(Enr—qh L _ a’B

nc-nl - 9

[ A+aB ]2
M iznsyGinzrens
nr
(Zgh)(mm)((BN +i)m— o1+ 1)), (133)

while for the case of (j = [ and spin-O), the
energy values Ef produced by the improved

292

inversely quadratic Hellmann potential model
can be expressed as follows:

_a’B [ A+aB
T2 2u 1+2n+/(21+1)2+8uB
( )? (BR + CD)m) (134)

By substituting Egs. (127)-(130) into Eq.
(124), the expression of the mass spectrum
MY (A, B,a,®,8,{) of heavy mesons

systems such as (cc and bb) in the context of
deformed space-space symmetry under the
influence of the improved inversely quadratic
Hellmann potential model as a function of
corresponding mass spectra Mglh "M in the
ordinary non-relativistic quantum mechanics
regime and non-commutativity parameters
(9,5,¢) can be expressed as

my hm

MIM"(4,B,a,®,8,() = M

(za):,,

+
((TN + xQ)m — M ) for spin-1

(th)( . )(BN + {.Q)m) for spin-0
(135)

The first term on the RHS of Eq. (135) is the
ordinary  spin-averaged  mass  spectrum

Mgzh_hm = Mﬁ{‘_hm(A, B,a) of heavy meson

systems, e.g., (cc and bE), under the Schrodinger
equation with the inversely quadratic Hellmann
model in the ordinary three-dimensional non-
relativistic quantum mechanics regime:

M (A, B @) = 2mg + = l(l +1) +——

2
A+aB

2 [1+2n+ (21+1)%2+8uB

(136)

It is extended to include SMZZL :lllm in 3D-
NR(NCQS) symmetries:

I(( ) ((rx + xm “ZJ(D)
6MZ? glm _ { For spin-1
| (2, BR+1m)
t For spin-0
(137)

The above result depends on the atomic
quantum numbers (n,j,l,s,m), the potential
parameters (4, B, @), and the non-commutativity
parameters (@, 5, {). To verify the validity of our
results, we apply the following physical limit:
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. qgh—hm _
(@,8.57%0.0.0y ne—nt (4,B,e,®.5,¢) =
MU (4, B, @) (138)

6. Thermodynamic Quantities at the
Non-relativistic Limit: Mesons under
the IQHPM and I-IQHPM in 3D-
NRQM and its Extended Symmetries

In 3D-NR(NCQS) symmetries, TPs of the
improved inversely quadratic Hellmann potential
model are studied in this section at the non-
relativistic limit. The PF must be determined to
deduce the other thermal properties, such as
internal energy, entropy, free energy, and
specific heat capacity. These are all necessary
steps toward accomplishing this goal. Direct
summing over all potential energy levels at a
particular temperature T can be used to derive
the PF [101-103]:

A
(nABﬁ/ll)— Zexp( BEN) =
(nAB,Blamax,d)ﬂ()—

‘xmax

Y exp(—=BEnc (139)
n=0
Here, Zp(n, A, B, B, A, 1) and

ah (A, B, B, 1, @mayx, ®,8,{) are the partition
functions of the IQHPM and I-IQHPM,
respectively. At the same time, A and A are the
upper bound vibration quantum numbers (the
maximum quantum numbers) in the context of
both deformation space and usual 3D-non-
relativistic quantum mechanics. Furthermore,

1

p=-=1
From the beginning, we accept as a given that
the new PF(Zgz(n,A B,B,l, amax)) s
dependent on non-commutativity parameters
(9,5,¢). This dependence is expected, since the
results themselves are explicitly tied to these
parameters. The maximum quantum
number @4, in deformation space, as a function
of the corresponding value A in three-
dimensional non-relativistic quantum mechanics,
is given by:

where K is the Boltzmann constant.

dE™T ag"
—”l] =0 =>—21¢ S Upax = A+
an lp=) an nN=dmax
h
A, (140)
with

(G AN R+ S+

)

Further we can rewrite the non-relativistic
z " in the context of deformation

(141)

N=Umax

energy E.

nc—n

space-space symmetries E. &' in Eq. (111)

for the case | # 0 as follows:

Epdt = ENN + AE(MA,B,a,x,{, @) (142)
with
gah 2—2 ( A+aB )2
L T S CTEE
= 6 — i ¢ 2
3 - 21 n+:g,ll (143)
AE(Tl A,B,a,)(,(,d)) =
(200 () [+ COIM + g7,
and
2
1 (144)

2
1
(l + E) + 2uB
¢ = u(A + aB)

In the context of deformation space-space
symmetries, at high temperatures in the classical
limit, the new modified PF

ah (A, B, B, 1, @mayx) can be expressed as an
integral:
";ll’cl(nlAlBlﬂl ll amaxl¢lﬂl () =

Xmax

J i exp(—BEn " (p)) (p)dp

(

|

4:‘“1 —
"

(145)
Here, p is equal to (n + Ean ) in the classical

limit. We saw earlier that the corrected energy

AE(A,B,a, x,{,®) is small compared to the

expression E"

w1 » therefore,

principal/parent
logically, we find the following:

exp(—BEXM -1 = exp(-BEL}) —

nc—nl

ﬂAE(nlAl Bl alX! (l ¢) exp(_ﬂEnT' (146)
which gives:

";ll’cl(nlAlBlﬂl llamaxl¢lﬂl() =

Xmax

[ exp(=BEN ") (1-

0
BAE(n,A,B,a,x,{,®))dp , (147)
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considering these approximations, especially
Eq. (146). Therefore, it can be rewritten to a
modified PF Zgy (B, [, @may) in Eq. (147), in the

framework of deformation space-space as
follows:
"C(n A B,B, L, O, ®, B, ) =
m(n,AB,B.AD —(Z qh)( . )[()(N+

m)m +Ogi|Z0 (n, A, BB AL (148)

If we set [ = 0, the expectation values vanish,
(Xf;h (r))nr = 0. Thus, the non-relativistic

energy "r "(1=0) in 3D-NR-NCQS
symmetries w111 be identified with corresponding
values EJj in the three-dimensional non-

relativistic quantum mechanics that can be
obtained from Eq. (143) as:

Ene( = 0) = B = 5__<n _no) (149)

Here, E,’l‘g is obtained from Eq. (144) as
follows:

zno _ 1 1
Ehp =51 ’4+2uB

By comparing Eq. (149) with Eq. (17) of Ref.

2
[12], which has the form (y — q(nw) ), we

clearly discover the possibility of moving
between the two equations through the following
compatible transitions:

(150)

(yed

IO_ PN E}T;lo
4 1p (151)

Thus, the partition functions Z B, A1 =0)

of the IQHPM with [ =0 can be deduced
directly from Eq. (21) in Ref. [12],

ZH (n,A,B,B,A1=0) =
v _ﬁMqh\/_erf (Hno'ﬂxmax)
JBPgmerf (hat) + (253 +
amax) X

exp <—0ﬁ )
(Hﬁp'ﬂxmaxz)

with

Roexp (L) (152)
“hp

Mg =2 =L(A+ aB)? (153)
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Here, erf ( _n—'oﬁq
ZhptImax
error function. If we compare Egs. (143) and
(149), it is possible to find mutual mobility

between them through Zj < E‘,’l‘;, Thus, it is

possible to obtain the PF Zp L(B,A,1) of the
IQHPM with [ # 0 from the expression
Z;‘}l(ﬁ,l,l=0) in Eq. (152) without new
calculations, in the framework of usual 3D-
NRQM symmetry:

) presents the imaginary

=nl
+&max

qﬁnABﬁzo_.LﬁMM{}ﬁ(J Wh>_

J-BMgmerf (F> + (i + Amax) X

__~BMgn BMgn
P (( hp+“max >+ (th’ + a’max)exp< Hnll’z )
(154)

The impact of space deformation on
thermodynamic values of the I-IQHPM, such as

new mean energy UZ'(n, A, B, B, 1, ®, x,{), new
free energy F h(n AB,B,1,®,x,{), and new
entropy th(n AB,B,L,D,x,{), can Dbe
obtained from the modified PF

ah (LA, B, B, @max) in Eq. (149). We begin
with the influence of the space deformation on
the new mean energy U,‘Zf(n, AB,B,Ld,x ),
which is the energy required to prepare or
improve the system's internal condition. The
impact of deformed space on mean energy
U(n,A,B,B,4,1) for an I-IQHPM is obtained by
applying the following formula:

AU(n,A,B,ﬁ, l: (D,X, () =
U’r‘z;l(nlAlBlﬁl ll (DIXI () -
mmABﬁAD=
@w (0, A, B, B, 1, Cmas) —

an L (n,4,B,8,1,1)) (155)

Thus, the effect of deformed space on mean
energy under the I-IQHPM can be found through
a straightforward calculation:

AU (n, A, B, B, L@, x,{) =

<fofzp>n [(Xx+(n)m+d>gfb

(156)
1—ﬁ<th>(nlm)[(XN+(!2)m+d>gf'b
Thus, in the context of deformed space

symmetry, the new mean energy
U (n, A, B,B,1,®, %) for the L-IQHPM is
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equal to the corresponding values in the
framework of the usual three-dimensional non-
relativistic = quantum mechanics symmetry
U;‘,ll (n, A, B, B, A, 1), plus the impact of deformed
space on it, as follows:

U (n,A,B,B,1,®,x,0) =
Ug,ﬁ(nfBﬁAlH
(fof2p>
1—ﬁ<zqh>(nlm)

After a straightforward calculation, the mean
energy U B,4,1) for the inversely quadratic

Hellmann potential model in 3D-NRQM
symmetries can be obtained as:

[()(N+(!2)m+d>gf b]

(157)
[()(N+(!2)m+d>gf'b

a1l an( AB,B AL
U‘;lfll(n,A,B,ﬁ,,Ll):_ nZgy (n,AB,B ):

op
—Mth
— (158)
with
i N (Eh},;vfma)
X =— —
N eTf(7n1§+amax) Efé"'amax
y
exp| 77 3
VE (ﬁ) ((#pwmax ))
—er + 159
2Vy f :% (Eh;g'*amax) ( )
and
W —

(\/_\/_ erf(””l+amax> -
\/_\/_erf< nl>+ CEhp +

y — -y
Amax) EXP <m) — Epp exp (@)
(160)

with y = ,/—BMgy,. The impact of deformed
space on the free energy th(n A B, A1) of
the inversely quadratic Hellmann potential
model is obtained by applying:
AFIM(n, A,B, B, 1,4, @, x,{) =

th(nA BB, L&, x,0) —

th(nA BB, A1) =

——an (LA B,BL®P, x,0) —

(——alnz [(n4,B,5,1,1)) (161)

A profound calculation gives the impact of
deformed space on the free energy

AEY (n, A, B, B,1,®, x,{) of the I-IQHPM as:

AFTB,L 0,1, 0) =

-1 — (7P \*"

5 " In [1 ﬁ(zqh)(nlm)[om +{0m +
¢>g}ﬁz]] (162)
Thus, in the context of deformed space

symmetry, the new free energy

Fi"(n,A,B,B,1,®,x,{) of the IIQHPM is
equal to the corresponding values in the usual
3D-NRQM symmetry F;,f(n,A,B,B,A, D), plus
the impact of deformed space on it:

EX'(n,A,B,B,1,®,x,0) = FR:(n,A,B,B,4,1) —

nr

_—ln[l B{z qh)(l )[()(N+(.Q)m+

¢>g}ﬁz]] (163)
with
F¥(n,A,B,B, A1) = —%ln( i A, (164)
a=1
and
Ay = B erf ()
Ay = — _.BMqh\/E erf( Hﬁnl qh)

Az = (E'Z,lp + Amax €XP ((H%_I_amaxz)))
— —BMgp
A4- = "‘lfrtlzﬁ exp( Ezllézq )

The impact of deformed space on the specific
heat capacity C,‘Zch(n, A B,B,l,®d,x,¢) of the I-
IQHPM is determined by using the following
expression:

ACT (n, A,B,B,1,®,x,{) =
i (n,A,B,B,1,®,x,0) —
¢l (n,A,B,B, A1) =
—Iep? 5= (AU (0, A, B, 6,1, 1,6)) (165)

After a straightforward calculation, it gives
the impact of deformed space on the free energy
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th(n A,B,B,1,®, x,¢) under the impact of I-
IQHPM as:

AC(n, 4,B,B,1, cp;(,()—

<Z§h> i) [()(N+(!2)m+d>gfb ?

—kﬁz
exp(Zﬁ(th>(nlm) [()(N+(!2)m+d>g}‘;, )

(166.1)
Thus, in the context of deformed space
symmetry, the new mean energy
CM(n,A,B,B,1, @, %) of the I-IQHPM is
equal to the corresponding values in the usual
3D-NRQM symmetry C;‘}l(n,A,B,B,/L D), plus
the impact of deformed space on it:
Gl (n, A, B,B, L&, x,) = C (nABB/ll)—

<Z§h>(nlm) [()(N+(!2)m+ (Dgf'b

_kﬁz nr
exp(2ﬁ<25h>(nlm) [()(N+(!2)m+ (Dg}‘;, )

(166.2)

The impact of  deformed  space
A4S (n,A,B,B,1,®,x,{) on the entropy
th(n A,B,(,A,1) is determined by applying
the following formula:

A4S (n, A,B,B,1,®,x,0) =

S (n, A,B,B,1,®,x,0) —

SI*(n,4,B,B,4,1) =

kB = (AFT (0 A,B.B, L, 1,0)  (167)

After a straightforward calculation, the
impact of deformed space on the entropy

ASI(n, A,B,B, 1, @, x,{) of the I-IQHPM can
be expressed as follows:

483" (n, 4, B, B L®,xQ) =

<Z§h> [()(N+(!2)m+d>gfb

kp (168)

1—ﬁ< qh>(nlm)[(xx+(ﬂ)m+¢gﬁz
Thus, in 3D-NR(NCQS) symmetries, the new
entropy S7*(n, A, B, B, 1, qb ¥, Q) of the I-IQHPM

is equal to the values S L (n,A, B, 8,A,1) in the

context of 3D-NRQM symmetry, plus the impact
of deformed space on the I-IQHPM in Eq. (168),
as follows:

th(nABBld))(,()—S L (n,A,B,B, A1) +

<V,f’p> [(Xx+(n)m+d>gf v

kB (169)

1—ﬁ< qh>(nlm)[()(x+€n)m+qr>gf§7
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with

San(,A,B,B,4,1) = kinZgy (n,A,B,B,2,1) —
kﬁ dln Z;;(T;A,B.ﬁ.l.l) (170)

If the space deformation effect vanishes when
the simultaneous limits (&, y,{) — (0,0,0) are
satisfied, the additive thermodynamic parts

AZ3M(n, A,B,B,L®, x,0),
AU (n, A, B, B,1,®, x,0),
AFIM(n, A,B,B,1,®, x,0), ASY (0, A, B, B, 1, ®, 1, )

and Ath(n A B,B,l,®,x () also vanish, and
the following results are achieved:

lim  AZ9(n,A,B,B,1,®,x,{) =0 o
@ Mo 00 omt ¢ BLex0)

(‘Dxil)llr%ooo)z (n,4,B,B,1,9,x,9) =
Z3(n,A,B,B, 4,1, (171)
. an _
@x o002 Un (h" ABB LD, YD =0
) . )
@20y Une (WA BB L@, 3, €) =
Ut (n,4,B,B,4,1), (172)
. o _
0y M0 MABALE 2O =0e
(<1>X€l)lz>r%oo o) " (0, AB,B,L®,x,{) =
FT‘I,Ilh(np A; B;ﬁ;/’{, l), (173)
. o _
@1 o005t El” AB,B, L&, 3,0) =0
q —_—
(<1>x<l)la(ooo)5 (n,A,B,B,1,®,x,¢) =
St (n, A, B, B, 2,1, (174)

and

ACT(n, A,B,B,1,®,%,0) =0 =
qh

(<1>X(l)lz>r%ooo)c (m,A,B,B,1L,®,x,{) =

¢l (n, A, B, B, D). (175)

lim
(®,x.0)~(0,0, )

We end this section by searching for special
cases of importance by applying the same data
that we included in the fourth paragraph of our
current research.

» In the case of B =a = 0, one obtains
the new PF Z;P(n, A, B,1,®, x,{), mean energy
P A B LD, x (), free new energy
EP(mAB L, ®,%), the new entropy
S P(m,A,B,L,®,x (), and specific new heat
capacity C.F(n,A,B,1,®, x,{). Equations (148),
(157), (163), (166.1), and (167) under the new
modified Coulomb potential in 3D-(R and NR)-
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NCQS symmetries are expressed as:

ZPMAB LD, x, () =

pdm Z"(n, A, B, B, L@, x,0), (176)
neMABL®, x,{) =
(Baz)m(zoo)ugf(n AB B LD, 0, (177
EF(nA B, L, x4) =
Hdm F"(n,4,B,B, L@, x,0),  (178)
SP(n, A, B, 1L, x,0) =
Hdm S (n,4,B,B,1,®,x,0), (179)
and
Cre (0, A, B,1,®, 1,0) =
lim C(n,AB,B 1 ®,x70). (180)

(B.a)—(0,0)

» In the case of A = 0, we can get the new

PF Z%n,B,B,1,®,x{), mean energy
lqy (n, B B,l,d,x,{), free new energy
lqy (n,B,B,1,®,x,(), the new entropy

lqy(n B, ,8 l,®,x,{), and specific new heat

capacity C, qy (n,B,B,1,®, x,{). These quantities
follow from Egs. (148), (157), (163), (166.1),
and (167) under the modified IQYP, in 3D-(R
and NR)-NCQS symmetries as:

2P (n,B,B,1,®,x,9) =

zunzgf(n,A,B,ﬁ,L<p,X,(), (181)
UMY (n,4,B,1,®, x,0) =

zzmu:zi‘ (n,A,B,B,1,®,x,0), (182)
Fl9%(n,A,B,1,®,x,0) =

zsz,?c" (n,A,B,B,1,®,%,0), (183)
SN (n, A, B,1,®,%,0) =
QmWRnABﬁl¢X@) (184)
and

Ci%(n, A, B,1,®,x,0) =

limC (n, 4, B, B,1,®, 7,9). (185)

Physically, this means that we obtain the
values of the TPs in the three-dimensional non-
relativistic quantum mechanics symmetry when
the three limits (@, x,{) — (0,0,0) are applied
simultaneously.

7. Conclusion

In the present work, we have considered the
3D-RQM and 3D-NRQM mechanical
implications of a non-commutative geometric
model in which the parameters of the non-
commutativity are constants. We solved the
deformed relativistic wave equations (both 3D-
DKGE and 3D-DDE) and 3D-DSE for the I-
IQHPM. We obtained new analytical
expressions for its energy eigen solutions in the
framework  of  deformation  space-space
symmetry using the well-known Bopp's shift
method and independent time standard
perturbation theory. The new relativistic energy
eigenvalues appear to be sensitive to quantum
numbers (n,j,l,s and m), mixed potential
depths (4 and B), the screening parameter a, and
non-commutativity parameters (¢, £ and ().
Furthermore, different special cases of the
improved inversely quadratic Hellmann potential
model have been obtained by changing the
potential's parameters, including a new modified
Coulomb potential and a new inversely quadratic
Yukawa potential. We investigated the spin-
averaged mass spectra of heavy mesons under
the [-IQHPM in 3D-NRQM and 3D-NR(NCQS)
symmetries, the spin-averaged mass spectra
MA"M™ in 3D-NR(NCQS), equal to the spin-
averaged mass spectra Mglh —hm ot heavy mesons
(cc and bb) in 3D-NRQM symmetries, plus the
effect of deformation space-space SMZ?’ nfllm, as
given in Eq. (137). We also analyzed the effect
of space deformation on thermodynamic
quantities,  including the induced PF
Ath(n A, B ,8 l,®,x,{), the generated mean
nl (n,A,B,ﬁ, l,®,x,0), the induced
F'(n,A,B,B,1,®,x,(), the
generated entropy ASglh n,AB,B,1,D,x,{), and
the induced specific heat capacity

th(n A, B,B,l,®,x, (). We have shown that
the  corresponding new  thermodynamic
quantities in 3D-NR-NCQS symmetries (the new

energy AU
free energy 4

PF  Z"(n,A,B,B,1,®,x,{), mean energy
Ugf (n,AB,B,L®,x,Q), free energy
Fi"(n,4,B,B, 1, ®, x,0), entropy

th(ﬁ l,®,x,{), and specific heat capacity

i (n,A,B,B,1,®,%,70)), for the I-IQHPM are
equal to their values in the literature (the new
PFZg ! (n,A,B,B,A,1), the mean energy
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U;‘,ll (n,A,B,B, A1), the free energy
F;‘,f(n, A, B, B, A, 1), the entropy S;‘,ll(ﬁ, A1), and
specific heat capacity C;‘,ll (B, A, D) plus the effect
of the deformation of space-
space(4Z2'(n, A, B, 8,1, ®,x,0),

AUT (0, A, B, B,L @, x,0), AEY (0, A,B,B,L,®,1,0),
AST(n, A,B, B, 1, ®, x,0), and
ACT(n, A, B, B,1,®, x,0), respectively). It is worth
noting that we recovered the energy equations
for the KGE, DE, and SE in the framework of
three-dimensional relativistic quantum
mechanics and three-dimensional non-relativistic
quantum mechanics symmetries for the three
simultaneous limits (@,x,0) - (0,0,0).
Physically, this means that we obtained the
values of the relativistic and non-relativistic
energy of bosonic and fermionic particles with

high and low energies, or the TPs observed in
previous studies [10-13, 20], within the
framework of relativistic and non-relativistic
quantum mechanics known in the literature. This
new formulation provides a fresh look at
relativistic  and  non-relativistic  quantum
mechanics based on 3D-KGE, 3D-DE, and 3D-
SE under I-IQHPM in non-commutative space
and inspires some innovative mathematical
structures.

This research was supported by the Research
Fund of the LPCM at the University of M’sila
and by the Algerian DGRSDT. We are grateful
to the anonymous reviewers for their insightful
comments and recommendations, which helped
us  significantly  improve  this  work.
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