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Abstract: In this paper, we describe the motion of ideal hydrodynamics in a rotating frame 
by the equations of motion using Caputo's fractional derivative. Then, from the fractional 
Euler-Lagrangian equation, we obtain the equations that describe the motion of ideal fluid 
in fractional form, the Hamiltonian density and the energy-stress tensor obtained in 
fractional form from the fluid Lagrangian density. Finally, from the Hamiltonian density, 
we also find the Hamiltonian equations of motion for the ideal fluid in fractional form.  
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Introduction 

Fractional calculus is one of the 
generalizations of the classical calculus. It has 
been used successfully in various fields of 
science and engineering [1-4]. The physical and 
geometrical meanings of the fractional 
derivatives have been investigated by several 
authors. The fractional calculus has grown up as 
a pure mathematical filed useful for mathematics 
only and had no acceptable geometrical or 
physical interpretation for nearly three decades. 
But, it did not remain as a mere field of 
mathematics and rose to the physical world. The 
first book on the topic was published by Oldham 
and Spinier in 1974 [1-4]. During the past 
decade, several studies were conducted on the 
fractional variational calculus and its 
applications. These applications include classical 
and quantum mechanics, field theory, optimal 
control and fractional minimization problem [1-
4]. 

 Fractional calculus appeared in many 
science and engineering fields, and has recently 
become widely used, because studies proved that 
the fractional derivatives and integrals are 
appropriate to solve many problems, such as the 
problem of viscoelasticity, which has been 
solved by Caputo [1-4]. 

 In fluid field, Saarloos [4] showed that the 
density function (mass, momentum and energy 
fields) obeys a Liouville equation for 
hydrodynamic ideal fluid. Poplawski [5] 
combined two variational approaches (Taub and 
Ray) to relativistic hydrodynamics of perfect 
fluid into another simple formulation. Kass [6] 
used an Eulerian and Lagrangian representation 
of all prognostic variables to solve the equations 
in fluid dynamics, among many others. 

 The main goal of this work is to derive the 
equations of motion for ideal hydrodynamics in a 
rotating frame from the Lagrangian density and 
the Hamiltonian density in fractional form and 
determine the energy-stress tensor in fractional 
form by using Caputo's fractional derivative. 

 
Basic Definitions 

In fractional calculus, there are many 
definitions of derivatives: Riemann-Liouville, 
Caputo, Marchaud and Riesz fractional 
derivatives [7]. In this work, we use the Caputo 
fractional derivative. Caputo introduced the 
definition of Riemann-Liouville fractional 
derivative called Caputo’s derivative in 1967, as 
shown in [8]. 
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Dୠ


୲
ୡ =  ଵ

(୬ି)
 ∫ (τ − t)୬ିିଵୠ

୲ (− ୢ
ୢத

)୬f(τ)dτ   
            (1) 

D୲


ୟ
ୡ =  ଵ

(୬ି)
 ∫ (t −  τ)୬ିିଵ୲

ୟ ( ୢ
ୢத

)୬f(τ)dτ  
            (2) 

where α (α ∈ +ℝ ) is the order of derivative and 
n − 1 ≤ α < ݊, where n is an integer. (a, b ∈
ℝ ) and (Γ ) denotes Euler's gamma function. 

If α = n, then: 

 D୲


ୟ
ୡ  [f(t)] = ୢ

ୢ୲ f(t)          (3a) 

 Dୠ


୲
ୡ  [f(t)] =  (−1)୬  ୢ

ୢ୲ f(t)         (3b) 

The properties of Caputo’s fractional 
derivative are [9]:  

First, the derivative of a constant is zero: 

 D୲
(C)

ୡ = 0 .           (4) 

Another property is that the Caputo 
fractional derivative for the power function (tஜ) 
where μ ≥ 0, has the following expression: 

 D୲



ୡ (tஜ) =  Г(ஜାଵ) 

Г (ஜାଵି)  tஜି .          (5) 

Finally, the Leibniz rule for the Caputo 
fractional derivative is:  

D(f(t)ୡ g(t))  = ∑ ൫
୩൯ ቀDି୩f(t)ቁ g(୩)ஶ

୩ୀ (t) −

∑ ୲ౡషಉ

(୩ାଵି)
୬ିଵ
୩ୀ ቆ൫f(t)g(t)൯

(୩)(0)ቇ          (6) 

where the derivative of two functions is 
continuous in [0, t] and t > 0, ߙ ∈ ℝ, n − 1 <
ߙ < ݊ ∈ ℕ. 

 
Lagrangian Density for Ideal 
Hydrodynamics in a Rotating Frame 

Ideal fluid does not exist, but some fluids 
have a very small viscosity that can be neglected. 
That means that the ideal fluid should be 
inviscid, steady, incompressible and irrotational 
[10]. 

The frames of reference are of two kinds: 

An inertial frame in which Newton's law of 
inertia holds, where the velocity of the motion is 
constant ; and a non-inertial frame such as 
rotating frame, where net force causes 
acceleration [11]. 

In rotating frame, the Lagrangian density for 
ideal hydrodynamics is : 

ℒ = ρ  
1
2

൬vଶ + 2Ωv ∙ ൫ΩΧr൯

+ Ωଶ ቀrଶ − ൫Ω ∙ r൯
ଶ

ቁ൰ −  Φ(r)

− e(Fρ
ିଵ, s)൨ 

                     (7)  

 where ρ: the density of the fluid at zero time. 

 v: the velocity of the fluid and it is the time 
derivative of position (v =  ∂r). 

 r: displacement field. 

 Φ(r): gravitational potential.  

 e: internal energy per unit mass and it is a 
function of e(V, s) ; where the specific 
volume is : 

 ܸ =  ଵ             (8)ିߩ 

and ݏ: is the specific entropy. 

At fixed coordinates (ܽ), 

,ܽ)ݏ  (ݐ =   (ܽ)           (9a)ݏ 

and  

,ܽ)ߩ  (ݐ =  (ܽ) .         (9b)ߩଵିܨ

Hence, the deformation tensor (ܨ) is :  

ܨ  = డ
డೕ

           (10) 

and ܨ =  . ൯ܨ൫ݐ݁݀

The cofactor (ܥ) of (ܨ) is : 

ܥ  =  డி
డிೕ

           (11)  

ߗ =  ௗఏ
ௗ௧

 : the angular rate. 

 . : the rotating axisߗ

The Euler-Lagrangian equation of motion 
for the displacement field (ݎ) is [12] : 

 డℒ
డ 

−  ߲ఈ ൬ డℒ
డ ,ഀ

൰ = డℒ
డ 

− ߲ ൬ డℒ
డ ,బ

൰ −

߲ ൬ డℒ
డ ,ೌ

൰   = 0 ;         (12)  

where  

,ݎ ߲ = ߲(߲ݎ) = ߲ ൬
ݎ߲
ݐ߲

൰ =   ݒ߲

,ݎ ߲ = ߲(߲ݎ) = ߲ ൬డ
డೕ

൰ = ܨ߲ . 

Then, Eq.(11) becomes :  
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డℒ
డ 

− ߲ ቀడℒ
డ௩

ቁ − ߲ ൬ డℒ
డிೕ

൰ = 0 .                     (13)  

Now, deriving the Lagrangian density for 
ideal hydrodynamics in a rotating frame from 
Eq. (7) with respect to the displacement field (ݎ) 
yields: 

 
߲ℒ
ݎ ߲

= ߩ ൬ߗ ൫ߗߕ ݒ൯ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

−
(ݎ)ߔ߲

ݎ߲
൰  

                              (14) 

and 

߲ ൬
߲ℒ
ݒ߲

൰  =  ߲ߩ ቀݒ + ߗ ∙ ൫ߗݎߕ൯ቁ

= ߩ  ቀ߲ݒ + ߗ ∙ ൫ߗ߲ߕݎ൯ቁ 

߲ ቀడℒ
డ௩

ቁ  = ߩ ቀ߲ݒ + ߗ ∙ ൫ߗݒߕ൯ቁ        (15) 

and 

߲ ቆ
߲ℒ

ܨ߲
ቇ = ߲  ቆ– ߩ  

߲݁
ܨ߲

ቇ 

߲ ൬ డℒ
డிೕ

൰ = ߲  ൬−ߩ  డ
డ

డ
డிೕ

൰ .                   (16a) 

From thermodynamics (݀݁ = ݏ݀ܶ −  ;(ܸ݀
with constant entropy, we get : 
݀݁
ܸ݀

=  −

where ܶ: temperature in Kelvin. 

 .entropy : ݏ 

 .pressure :  

 ܸ : volume. 

Eq. (15a) becomes: 

߲ ൬ డℒ
డிೕ

൰ = ߲  ൬ߩ డ
డிೕ

൰ .      (16b)  

From Eqs. (8) and (9b), we have: 

ܸ = ଵିߩ = ଵି((ܽ)ߩଵିܨ) = ߩܨ
ିଵ(ܽ). 

Substituting this result in Eq. (16b), we get: 

߲ ൬ డℒ
డிೕ

൰ = ߲  ൬ߩ డிఘబ
షభ

డிೕ
൰ = ߲ ൬ డி

డிೕ
൰ . 

          (16c) 

Using Eq. (11) and Eq. (10), Eq. (16c) 
becomes: 

߲ ቆ
߲ℒ

ܨ߲
ቇ = ߲൫ܥ  ൯  = ܥ

߲
߲ ܽ

= ܥ 
߲
ݎ߲

ݎ߲

߲ ܽ

= ܨܥ 
߲
ݎ߲

 

߲ ൬ డℒ
డிೕ

൰ = డ ܨ
డ

          (17)  

Substituting Eqs. (14), (15) and (17) in Eq. 
(13), we obtain: 

⎣
⎢
⎢
⎢
ߩ⎡ ൭

൯ߗߕ ݒ൫ ߗ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

− డః()
డ

൱

– ߩ ቀ߲ݒ + ߗ ∙ ൫ߗݒߕ൯ቁ − డ ܨ
డ ⎦

⎥
⎥
⎥
⎤

= 0 . 

           (18) 

From the properties of cross-product 
ߗߕ ݒ) =  :Eq. (18) becomes ,( ݒߕߗ− 

ቈߩ(ߗ ൫ߗߕ ݒ൯ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

−
(ݎ)ߔ߲

ݎ߲
)– ߩ ቀ߲ݒ

− ൯ቁߗߕ ݒ൫ߗ −  ܨ
߲
ݎ߲

൨ = 0  

 

⎣
⎢
⎢
⎢
ߩ⎡ ൭

൯ߗߕ ݒ൫ ߗ2 + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

− డః()
డ

൱

– (ݒ߲)ߩ − డ ܨ
డ ⎦

⎥
⎥
⎥
⎤

= 0. 

.           (19) 

Dividing Eq. (19) by the deformation force 
(F), we have:  

⎣
⎢
⎢
⎢
⎢
⎡
ଵିܨߩ ൮

൯ߗߕ ݒ൫ ߗ2
ݎଶ൫ߗ+ − ൫ߗ ∙ ൯ߗ൯ݎ

− డః()
డ

൲

 
(ݒ߲)ଵିܨߩ− −  డ

డ ⎦
⎥
⎥
⎥
⎥
⎤

= 0.            (20) 

Using Eq. (9b) and rearranging Eq. (20), it 
becomes: 

(ݒ߲)ߩ = ቈߩ ቆ2ߗ ൫ߗߕ ݒ൯ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

−
(ݎ)ߔ߲

ݎ߲
൰ – 

߲
ݎ߲

  

                (21)  

which is the Lagrangian equation of motion for 
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ideal hydrodynamics in a rotating frame. 

To determine the Hamiltonian density (ℋ) 
[12]: 

 ℋ = ݎ̇ ߨ − ℒ = − (ݎ߲)ߨ  ℒ = ݒߨ − ℒ     (22)  

where (ߨ) is the conjugate momentum [12]:  

ߨ = డℒ
డ̇

 =  డℒ
డ(డబ)

= డℒ
డ௩

= ߩ ቀݒ + ߗ ∙ ൫ߗݎߕ൯ቁ . 
           (23) 

The Hamiltonian density (ℋ) from Eq. (22) 
is: 

ℋ =

⎣
⎢
⎢
⎢
⎢
⎡ ߩ ቀݒ + ߗ ∙ ൫ߗݎߕ൯ቁ  ݒ 

ߩ−  ൮
1
2

൭
ଶݒ + ݒߗ2 ∙ ൫ߗݎߕ൯

ଶߗ+ ቀݎଶ − ൫ߗ ∙ ൯ݎ
ଶ

ቁ
൱

(ݎ)ߔ − − ߩܨ)݁
ିଵ, (ݏ

൲

⎦
⎥
⎥
⎥
⎥
⎤

 

ℋ =

⎣
⎢
⎢
⎢
⎢
⎡ ߩ ቀݒଶ + ݒߗ ∙ ൫ߗݎߕ൯ቁ 

ߩ−  ൮
1
2

൭
ଶݒ + ݒߗ2 ∙ ൫ߗݎߕ൯

ଶߗ+ ቀݎଶ − ൫ߗ ∙ ൯ଶݎ
ቁ

൱

(ݎ)ߔ − − ߩܨ)݁
ିଵ, (ݏ

൲

⎦
⎥
⎥
⎥
⎥
⎤

 

ℋ = ቈ
1
2

ଶݒߩ − ߩ   ቆ
1
2

ଶߗ ቀݎଶ − ൫ߗ ∙ ൯ଶݎ
ቁ

− (ݎ)ߔ  − ߩܨ)݁
ିଵ,   .)ቇݏ

                 (24) 

The Hamiltonian equation of motion for the 
displacement field (ݎ) is:  
డℋ
డ

= ߨ̇− − ߲ ൬ డℒ
డ ,

൰ .         (25)  

Deriving the Hamiltonian density from Eq. 
(24) with respect to the displacement field (ݎ), 
we obtain: 
డℋ
డ

= ߩ − ቀߗଶ൫ݎ − ൫ߗ ∙ ൯ߗ൯ݎ − డః()
డ

ቁ  .    (26a)  

From Eq. (17), we get: 

߲
డℒ

డ ,
= డ ܨ

డ
  .       (26b) 

In addition, the conjugate momentum from 
Eq. (23) is ߨ = ߩ ቀݒ + ߗ ∙ ൫ߗݎߕ൯ቁ. 

Taking the time derivative for the conjugate 
momentum, we obtain : 

ߨ̇ = ߲ߩ ቀݒ + ߗ ∙ ൫ߗݎߕ൯ቁ

= ߩ ቀ߲ݒ + ߗ ∙ ൫ߗ߲ߕݎ൯ቁ 

ߨ̇ = ߩ ቀ߲ݒ + ߗ ∙ ൫ߗݒߕ൯ቁ        (26c) 

Substituting Eqs. (26a), (26b) and (26c) in 
Eq. (25), we get: 

ߩ − ቀߗଶ൫ݎ − ൫ߗ ∙ ൯ߗ൯ݎ − డః()
డ

ቁ =

ߩ− ቀ߲ݒ + ߗ ∙ ൫ߗݒߕ൯ቁ − డ ܨ
డ

 . 

Using  ߗݒߕ = ߗߕ ݒ− , 

ߩ − ቀߗଶ൫ݎ − ൫ߗ ∙ ൯ߗ൯ݎ − డః()
డ

ቁ =

ߩ ቀ−߲ݒ + ߗ ∙ ൫ߗߕ ݒ൯ቁ − డ ܨ
డ

 . 

Rearranging the equation, we get: 

(ݒ߲)ߩ = ቈߩ ቆߗ ∙ ൫ߗߕ ݒ൯ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

−
(ݎ)ߔ߲

ݎ߲
൰ −  ܨ

߲
ݎ߲

.  

           (27)  

Dividing Eq. (27) by the deformation force 
(F) and using Eq. (9b), we get: 

(ݒ߲)ߩ = ቈߩ ቆߗ ∙ ൫ߗߕ ݒ൯ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

−
(ݎ)ߔ߲

ݎ߲
൰ −  

߲
ݎ߲

 

                     (28) 

which is the Hamiltonian equation of motion. 

 The energy-stress tensor can be determined 
as follows: 

For the energy-stress tensor ( ܶ
), deriving 

the Lagrangian density in Eq. (7) with respect to 
the time derivative of displacement field (߲ݎ =
 then substituting the result in the equation (ݒ
below, we get [13]: 

ܶ
 = డℒ

డ(డబ) ߲ݎ − ℒ =  డℒ
డ௩

ݒ − ℒ        (29)  

ܶ
 =  

⎣
⎢
⎢
⎢
⎢
⎡ ߩ  ቀݒ + ߗ ∙ ൫ߗݎߕ൯ቁ ݒ

ߩ −  ൮
ଵ
ଶ

൭
ଶݒ + ݒߗ2 ∙ ൫ߗݎߕ൯

ଶߗ+ ቀݎଶ − ൫ߗ ∙ ൯ଶݎ
ቁ

൱

(ݎ)ߔ − − ߩܨ)݁
ିଵ, (ݏ

൲

⎦
⎥
⎥
⎥
⎥
⎤

  

ܶ
 = ቈ

1
2

ଶݒߩ − ߩ   ቆ
1
2

ଶߗ ቀݎଶ − ൫ߗ ∙ ൯ଶݎ
ቁ

− (ݎ)ߔ  − ߩܨ)݁
ିଵ,   .)ቇݏ

           (30) 

The result is the same as with the 
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Hamiltonian density, ܶ
 = ℋ. 

The energy-stress tensor ( ܶ
) is: 

ܶ
 =

߲ℒ
߲(߲ݎ) ߲ݎ =  

߲ℒ
ݒ߲ ߲ݎ

= ߩ ቀݒ + ߗ ∙ ൫ߗݎߕ൯ቁ ߲  . ݎ

                 (31)  

The energy-stress tensor ( ܶ
) is:  

 ܶ
 =

߲ℒ
߲( ߲ݎ) ߲ݎ  

              (32a) 

From Eq. (10) , ൬ ߲ ݎ = డ
డೕ

=  .൰ , Eqܨ

(32a) becomes: 

ܶ
 =

߲ℒ
ܨ߲

߲ݎ.  

            (32b) 

From the previous derivation of Lagrangian 
equation of motion: 

 డℒ
డிೕ

=  . ܥ

Then, Eq. (32b) becomes: 

ܶ
 =  (33)           . ݒܥ

The energy-stress tensor ( ܶ
) is: 

ܶ
 = డℒ

డ(డ) ߲ݎ = ܥ ߲(34)        . ݎ  

The energy-stress tensor ( ܶ
) is: 

ܶ
 =

߲ℒ
߲(߲ݎ) ߲ݎ − ℒ = ܥ ߲ ݎ −  ℒ 

where ߲ݎ = , then ܶܨ
 = ܨܥ −  ℒ . 

From Eq. (11), ܥܨ =  ܨ

ܶ
 = ܨ −  ℒ                 (35) 

The Lagrangian Density for Ideal 
Hydrodynamics in Rotating Frame  

 To obtain the fractional Lagrangian density 
for ideal hydrodynamics in rotating frame, 
assume that ݒ = డ

డ௧
=  :then Eq. (7) becomes , ݎ̇

ℒ = ߩ  ቂ ଵ
ଶ

൬̇ݎଶ + ݎ̇ߗ2 ∙ ൫ߗݎߕ൯ + ଶߗ ቀݎଶ −
 . (0ݏ,0−1ߩܨ)݁−ݎߔ −2ݎ∙ߗ

The fractional form then is: 

ℒ = ߩ

⎣
⎢
⎢
⎢
⎡

 

⎝

⎜
⎛ଵ

ଶ
൮

( ௧ܦ
ఈ  

 ଶ(ݎ

)ߗ2+ ௧ܦ
ఈ  

 (ݎ ∙ ൫ߗݎߕ൯

ଶݎ)ଶߗ+ − ൫ߗ ∙ ൯ଶݎ
)

൲

(ݎ)ߔ − − ߩܨ)݁
ିଵ, (ݏ ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

  .    (36) 

The Euler-Lagrangian equation in fractional 
form is: 

൦

 డℒ
డ

+ ܦ
ఈ ௧

 డℒ
డ 

ഀ ೌ
  

+ ܦ
ఈ  ௫

 డℒ
డ ೣ

ഀ  ೌ
  

+ ௧ܦ
ఉ 

 డℒ

డ ್
ഁ  

  
+ ௫ܦ

ఉ  
 డℒ

డ ್
ഁ ೣ

  

൪ = 0 .     (37) 

Derive the Lagrangian density from Eq. (36) 
as follows:  
߲ℒ
ݎ ߲

= ߩ  ൬ߗ ൫ ௧ܦ
ఈ 

 ൯ߗߕ ݎ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

−
(ݎ)ߔ߲

ݎ߲
൰ 

                          (38a) 

ܦ
ఈ  ௧

 డℒ
డ 

ഀ  ೌ
  

= ܦ
ఈ  ௧

 ߩ  ቀ ௧ܦ
ఈ 

 ݎ + ߗ ∙ ൫ߗݎߕ൯ቁ  

ܦ
ఈ  ௧

 ߲ℒ
௧ܦ ߲

ఈ 
 ݎ 

= ߩ  ቀ ܦ
ఈ ௧

 ௧ܦ
ఈ  

 ݎ + ߗ

∙ ൫ߗߕ ܦ
ఈ ௧

   ൯ቁݎ

Use ܦ
ఈ  ௧

 = − ௧ܦ
ఈ 

  

ܦ
ఈ  ௧

 ߲ℒ
௧ܦ ߲

ఈ 
 ݎ 

= ߩ−  ቀ( ௧ܦ
ఈ 

 )ଶݎ + ߗ

∙ ൫ߗߕ ௧ܦ
ఈ 

   ൯ቁݎ
             (38b) 

Now, 

ܦ
ఈ  ௫

 ߲ℒ
௫ܦ ߲

ఈ  
 ݎ 

 

But, ( ௫ܦ
ఈ  

 ݎ  = ܦ ), thenܨ 
ఈ  ௫

 డℒ
డ ೣ

ഀ  ೌ
  

=

ܦ
ఈ  ௫

 ൬ డℒ
డிೕ

൰ 

ܦ
ఈ  ௫

 డℒ
డ ೣ

ഀ  ೌ
  

= ܦ
ఈ  ௫

 ൬ డℒ
డிೕ

൰ =

ܦ
ఈ  ௫

  ൬−ߩ  డ
డிೕ

൰  = ܦ
ఈ  ௫

  ൬−ߩ  డ
డ

డ
డிೕ

൰ . 
              (39a) 

From thermodynamics, we get ௗ
ௗ

=  ,−
then Eq. (39a) becomes: 

ܦ
ఈ  ௫

 డℒ
డ ೣ

ഀ  ೌ
  

= ܦ
ఈ  ௫

  ൬ߩ డ
డிೕ

൰ .     (39b) 

Using Eq. (8), Eq. (9b) and Eq. (11), then 



Article  Jaradat and Al-Fuqaha 

 74

Eq. (39b) becomes:  

ܦ
ఈ  ௫

 డℒ
డ ೣ

ഀ  ೌ
  

= ܦ
ఈ  ௫

  ൬ߩ డிఘబ
షభ

డிೕ
൰ =

ܦ
ఈ  ௫

 ൬ డி
డிೕ

൰   = ܦ
ఈ ௫

 ൫ܥ ൯  =

ܥ ܦ
ఈ ௫ 

   

 Let ܦ
ఈ ௫ 

 = − ௫ܦ
ఈ  

  

ܦ 
ఈ ௫

 డℒ
డ ೣ

ഀ  ೌ
  

 = ܥ −  ௫ܦ
ఈ  

   

 = ܥ −  ܦ
ఈ  

 ௫ܦ
ఈ  

  = ௫ܦ ܨܥ − 
ఈ  

   

ܦ 
ఈ ௫

 డℒ
డ ೣ

ഀ  ೌ
  

= ௫ܦ ܨ − 
ఈ  

          (40)  

௧ܦ
ఉ 

 డℒ

డ ್
ഁ 

  
= 0 , ௫ܦ

ఉ  
 డℒ

డ ್
ഁ  ೣ

  
= 0        (41)  

Substituting the results in Eqs. (38a), (38b), 
(40) and (41) in Eq. (37), we obtain: 

⎣
⎢
⎢
⎢
⎡ ߩ ൭

൫ ߗ ௧ܦ
ఈ 

 ൯ߗߕ ݎ

ݎଶ൫ߗ+ − ൫ߗ ∙ ൯ߗ൯ݎ − డః()
డ

൱

ߩ−  ቆ
( ௧ܦ

ఈ  
 )ଶݎ

ߗ+ ∙ ൫ߗߕ ௧ܦ
ఈ 

 ൯ݎ
ቇ − ௫ܦ ܨ 

ఈ  


⎦
⎥
⎥
⎥
⎤

= 0 . 

                (42)  

Use ܦ௧
ఈ 

 ߗߕ ݎ = ߕߗ−  ௧ܦ
ఈ 

  then Eq. (42) ,ݎ
becomes: 

 

⎣
⎢
⎢
⎢
⎡ ߩ ൭

൫ ߗ ௧ܦ
ఈ 

 ൯ߗߕ ݎ

ݎଶ൫ߗ+ − ൫ߗ ∙ ൯ߗ൯ݎ − డః()
డ

൱

ߩ−  ቆ
( ௧ܦ

ఈ  
 )ଶݎ

ߗ− ∙ ൫ ௧ܦ
ఈ 

 ൯ߗߕ ݎ
ቇ − ௫ܦ ܨ

ఈ  


⎦
⎥
⎥
⎥
⎤

= 0  

ߩ ቆ2ߗ ൫ ௧ܦ
ఈ 

 ൯ߗߕ ݎ + ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ

−
(ݎ)ߔ߲

ݎ߲
൰ − )) ߩ ௧ܦ

ఈ 
 )ଶݎ)  

− ௫ܦ ܨ 
ఈ  

 = 0 

Rearranging the equation, we get: 

)) ߩ ܦ


௧
ఈ  )ଶݎ) = ቈߩ ቆ2ߗ ൫ ܦ


௧
ఈ ൯ߗߕ ݎ 

+ ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ −
(ݎ)ߔ߲

ݎ߲
൰

− ௫ܦ ܨ 
ఈ  

  . 

Dividing the equation by the deformation force 
 :and using Eq. (9b), we get (ܨ)

)) ߩ ܦ


௧
ఈ  )ଶݎ) =

⎣
⎢
⎢
⎢
ߩ⎡ ൭

൫ ߗ2 ܦ


௧
ఈ ൯ߗߕ ݎ 

ݎଶ൫ߗ+ − ൫ߗ ∙ ൯ߗ൯ݎ − డః()
డ

൱

௫ܦ −
ఈ  



 ⎦
⎥
⎥
⎥
⎤
 .       (43)  

The fractional conjugate momentum is:  

(ఈߨ) = డℒ
డ൫ 

ഀ ೌ
  ൯

= ߩ   ቀ ௧ܦ
ఈ 

 ݎ + ߗ ∙ ൫ߗݎߕ൯ቁ . 
                (44)  

The Hamiltonian density (ℋ) in fractional 
form is: 

ℋ = ௧ܦ ߨ
ఈ  

 ݎ  − ℒ .         (45) 

Substituting the fractional conjugate 
momentum from Eq. (44) and the Lagrangian 
density from Eq.(36) in Eq.(45) , the 
Hamiltonian density (ℋ) becomes: 

ℋ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ ߩ  ቀ ௧ܦ

ఈ 
 ݎ + ߗ ∙ ൫ߗݎߕ൯ቁ ܦ௧

ఈ 
 ݎ 

ߩ −  

⎝

⎜
⎛ଵ

ଶ
൮

( ௧ܦ
ఈ 

 ଶ(ݎ

)ߗ2+ ௧ܦ
ఈ 

 (ݎ ∙ ൫ߗݎߕ൯

ଶݎ)ଶߗ+ − ൫ߗ ∙ ൯ଶݎ
)

൲

(ݎ)ߔ − − ߩܨ)݁
ିଵ, (ݏ ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎥
⎤

   

ℋ = ߩ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡  ቆ

( ௧ܦ
ఈ 

 ଶ(ݎ

ߗ+ ௧ܦ
ఈ  

 ݎ  ∙ ൫ߗݎߕ൯
ቇ 

− 

⎝

⎜
⎛ଵ

ଶ
൮

( ௧ܦ
ఈ 

 ଶ(ݎ

)ߗ2+ ௧ܦ
ఈ 

 (ݎ ∙ ൫ߗݎߕ൯

ଶݎ)ଶߗ+ − ൫ߗ ∙ ൯ଶݎ
)

൲

(ݎ)ߔ − − ߩܨ)݁
ିଵ, (ݏ ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

ℋ = ߩ

⎣
⎢
⎢
⎢
⎡

 

⎝

⎜
⎛

ଵ
ଶ

( ௧ܦ
ఈ 

 ଶ(ݎ

− ଵ
ଶ

ଶݎ)ଶߗ − ൫ߗ ∙ ൯ݎ
ଶ

)
(ݎ)ߔ + + ߩܨ)݁

ିଵ, (ݏ
 ⎠

⎟
⎞

⎦
⎥
⎥
⎥
⎤

           (46)  

which is the Hamiltonian density for ideal 
hydrodynamics in a rotating frame in fractional 
form. 

The fractional Hamiltonian equation of 
motion for the displacement field (ݎ) is:  
డℋ
డ

= ܦ 
ఈ ௧

 ఈߨ + ௧ܦ
ఉ 

 ఉߨ + ܦ
ఈ  ௫

 డℒ
డ ೣ

ഀ  ೌ
  

+

௫ܦ
ఉ  

 డℒ

డ ್
ഁ  ೣ

  
  .        (47)  

Deriving the Hamiltonian density (ℋ) with 
respect to(ݎ), we get: 
డℋ
డ

= ߩ  ቀ−ߗଶ(ݎ − ൫ߗ ∙ (ߗ൯ݎ +  డః()
డ

 ቁ .   (48a)  
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In addition, calculate the conjugate 
momentum(ߨ): 

(ఈߨ) = డℒ
డ൫ 

ഀ ೌ
  ൯

  

�
(ఈߨ) = ߩ   ቀ ௧ܦ

ఈ 
 ݎ + ߗ ∙ ൫ߗݎߕ൯ቁ 

 
(ఉߨ)  = 0 

 

൪ .         (48b)  

From Eq. (40), we obtain: 

�
ܦ

ఈ  ௫
 డℒ

డ ೣ
ഀ  ೌ

  
 = ௫ܦ ܨ − 

ఈ  


௫ܦ 
ఉ  

 డℒ

డ ್
ഁ ೣ

  
= 0

൪ .                    (48c)  

Substituting the results in Eq. (48a, b, c) in 
Eq. (47), we have: 

ቂߩ  ቀ– ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ + డః()
డ

 ቁቃ =

ቂ ܦ
ఈ  ௧

 ߩ  ቀ ௧ܦ
ఈ 

 ݎ + ߗ ∙ ൫ߗݎߕ൯ቁ − ௫ܦ ܨ 
ఈ  

 ቃ  

ߩ  ൬– ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ
 

+ డః()
డ

൰൨ =


ߩ ቀ ܦ

ఈ ௧
 ௧ܦ

ఈ  
 ݎ + ߗ ∙ ൫ߗߕ ܦ

ఈ  ௧
 ൯ቁݎ

௫ܦ ܨ −
ఈ  


൩  

Use ܦ
ఈ ௧

 = − ௧ܦ
ఈ 

  and −ߗߕ ௧ܦ
ఈ  

 ݎ =
௧ܦ

ఈ 
 ߗߕݎ  

ߩ  ൬– ݎଶ൫ߗ − ൫ߗ ∙ ൯ߗ൯ݎ + డః()
డ

 
൰൨ =


ߩ  ቀ−( ௧ܦ

ఈ 
 )ଶݎ + ߗ ∙ ൫ ௧ܦ

ఈ 
 ൯ቁߗߕݎ

௫ܦ ܨ −
ఈ  


൩  

)ߩ ௧ܦ
ఈ  

 )ଶݎ =

⎣
⎢
⎢
ߩ⎡  ቆ

ߗ ∙ ൫ ௧ܦ
ఈ  

 ൯ߗߕݎ
ݎଶ൫ߗ+ − ൫ߗ ∙ ൯ߗ൯ݎ

ቇ

ߩ −
డః()

డ
 − ௫ܦ ܨ 

ఈ  
 ⎦

⎥
⎥
⎤
 . 

           (49)  

Dividing Eq. (49) by deformation force (ܨ) 
and using Eq. (9b), we get: 

)ߩ ௧ܦ
ఈ  

 )ଶݎ =

⎣
⎢
⎢
⎢
⎡
ቌ ߩ

ߗ ∙ ൫ ௧ܦ
ఈ  

 ൯ߗߕݎ
ݎଶ൫ߗ+ − ൫ߗ ∙ ൯ߗ൯ݎ

 
ቍ

డః() ߩ−
డ

 − ௫ܦ 
ఈ  


⎦
⎥
⎥
⎥
⎤

 . 

           (50)  

The equation of motion from the fractional 
Hamiltonian density is the same as the classical 
one as → 1 .  

The energy- stress tensor can be determined 
as follows: 

ܶ
 = డℒ

డ 
ഀ ೌ

  
௧ܦ

ఈ  
 ݎ − ℒ   

ܶ
 =

⎣
⎢
⎢
⎡
ߩ  

⎝

⎛

ଵ
ଶ

( ௧ܦ
ఈ  

 ଶ(ݎ

− ଵ
ଶ

ଶݎ)ଶߗ − ൫ߗ ∙ ൯ଶݎ
)

(ݎ)ߔ + + ߩܨ)݁
ିଵ, ⎠ (ݏ

⎞

⎦
⎥
⎥
⎤
 .       (51)  

We find that ܶ
 = ℋ. 

The energy-stress tensor ( ܶ
) is:  

ܶ
 = డℒ

డ 
ഀ

ೌ
  

௫ܦ 
ఈ  

 ௫ܦ ݁ݎℎ݁ݓ ݎ
ఈ  

 ݎ =    ܨ

ܶ
 =  ൫ߩ ௧ܦ

ఈ 
 ݎ + ߗ ∙ ൫ߗݎߕ൯ ൯ ܨ  .       (52)  

The energy-stress tensor ( ܶ
) is: 

ܶ
 = డℒ

డ ೣ
ഀ

ೌ
  

௧ܦ 
ఈ


 , ݎ  ௫ܦ

ఈ  
 ݎ =   ܨ

ܶ
 = డℒ

డிೕ 
௧ܦ 

ఈ

 = ݎ  ܥ  ௧ܦ

ఈ

   (53)            .  ݎ 

The energy-stress tensor ( ܶ
) is: 

ܶ
 = డℒ

డ ೣ
ഀ

ೌ
  

௫ೕܦ
ఈ


 ݎ  = ௫ೕܦ ܥ

ఈ

   (54)       . ݎ 

The energy-stress tensor ( ܶ
) is: 

ܶ
 = డℒ

డ ೣ
ഀ

ೌ
  

௫ܦ
ఈ


 ݎ  − ℒ = ܥ ௫ܦ

ఈ

 ݎ  −  ℒ  

where ܦ௫
ఈ  

 ݎ =  ܨ

ܶ
 = ܨܥ −  ℒ  

From Eq. (11), ܥܨ =  :then ,ܨ

ܶ
 = ܨ −  ℒ .          (55)  

Conclusion 
 The fluid field has very important 

applications and it is necessary to study its 
movement to explain the phenomena related. In 
calculus, the variation principle is used to find 
the equations that describe the motion of fluid 
and the calculations in fractional form give more 
accurate results. In this paper, we found that the 
equations of motion for fluids in a rotating frame 
could be derived in fractional form. Using the 
Caputo's fractional derivative and at ߙ = 1, the 
Lagrangian equation of motion, the Hamiltonian 
equation of motion and the energy-stress tensor 
for the displacement field (ݎ) in a rotating frame 
of fluid dynamics are reduced to the classical 
results, so that the fractional results agree with 
the classical ones. 
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