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Abstract: In this paper, we describe the motion of ideal hydrodynamics in a rotating frame
by the equations of motion using Caputo's fractional derivative. Then, from the fractional
Euler-Lagrangian equation, we obtain the equations that describe the motion of ideal fluid
in fractional form, the Hamiltonian density and the energy-stress tensor obtained in
fractional form from the fluid Lagrangian density. Finally, from the Hamiltonian density,
we also find the Hamiltonian equations of motion for the ideal fluid in fractional form.
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Introduction

Fractional calculus is one of the
generalizations of the classical calculus. It has
been used successfully in various fields of
science and engineering [1-4]. The physical and
geometrical meanings of the fractional
derivatives have been investigated by several
authors. The fractional calculus has grown up as
a pure mathematical filed useful for mathematics
only and had no acceptable geometrical or
physical interpretation for nearly three decades.
But, it did not remain as a mere field of
mathematics and rose to the physical world. The
first book on the topic was published by Oldham
and Spinier in 1974 [1-4]. During the past
decade, several studies were conducted on the
fractional  variational calculus and its
applications. These applications include classical
and quantum mechanics, field theory, optimal
control and fractional minimization problem [1-
4].

Fractional calculus appeared in many
science and engineering fields, and has recently
become widely used, because studies proved that
the fractional derivatives and integrals are
appropriate to solve many problems, such as the
problem of viscoelasticity, which has been
solved by Caputo [1-4].

In fluid field, Saarloos [4] showed that the
density function (mass, momentum and energy
fields) obeys a Liouville equation for
hydrodynamic ideal fluid. Poplawski [5]
combined two variational approaches (Taub and
Ray) to relativistic hydrodynamics of perfect
fluid into another simple formulation. Kass [6]
used an Eulerian and Lagrangian representation
of all prognostic variables to solve the equations
in fluid dynamics, among many others.

The main goal of this work is to derive the
equations of motion for ideal hydrodynamics in a
rotating frame from the Lagrangian density and
the Hamiltonian density in fractional form and
determine the energy-stress tensor in fractional
form by using Caputo's fractional derivative.

Basic Definitions

In fractional calculus, there are many
definitions of derivatives: Riemann-Liouville,
Caputo, Marchaud and Riesz fractional
derivatives [7]. In this work, we use the Caputo
fractional derivative. Caputo introduced the
definition of Riemann-Liouville fractional
derivative called Caputo’s derivative in 1967, as
shown in [8].
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Db =t ftb(r - (= %)“f(r)dr
(1)
Df = = [(6 - DM (P (d
@)

where o (¢ € +R ) is the order of derivative and
n—1 < a<n, where nisaninteger. (a,b €
R ) and (T' ) denotes Euler's gamma function.

If a = n, then:
DY [f(D] = @f(t) (3a)
Dy [f(O] = (- 1)“@f(t) (3b)
The properties of Caputo’s fractional

derivative are [9]:
First, the derivative of a constant is zero:
DF(C) =0. 4)

Another property is that the Caputo
fractional derivative for the power function (t")
where p = 0, has the following expression:

r'(p+1) _
CPO(+1) — p—a
oDE) = ot B )

Finally, the Leibniz rule for the Caputo

fractional derivative is:

DE(E(DE®) = Tio(D) (DX ) g (0 -
S a)<(f(t)g(t)) (0)) (6)

where the derivative of two functions is
continuous in [0, t] and t > 0, ER,n—1<
a<n €N.

Lagrangian  Density for  Ideal
Hydrodynamics in a Rotating Frame

Ideal fluid does not exist, but some fluids
have a very small viscosity that can be neglected.
That means that the ideal fluid should be
inviscid, steady, incompressible and irrotational
[10].

The frames of reference are of two kinds:

An inertial frame in which Newton's law of
inertia holds, where the velocity of the motion is
constant ; and a non-inertial frame such as
rotating frame, where net force causes
acceleration [11].

In rotating frame, the Lagrangian density for
ideal hydrodynamics is :
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L =pg E (v2 +2Qv - (OXr)
+02(r2 - (@ r)z)) — o)

~ e(Fpo ™, 50)]

™)

where p,: the density of the fluid at zero time.

v: the velocity of the fluid and it is the time
derivative of position (v = 9,r).

r: displacement field.
®(r): gravitational potential.

e: internal energy per unit mass and it is a
function of e(V,s); where the specific
volume is :

V=pt ®)
and s: is the specific entropy.

At fixed coordinates (a),

s(a,t) = so(a) (%a)
and
pla,t) = F'py(a) . (9b)
Hence, the deformation tensor (Fj;) is :
ar;
i = 5g (10)
and F = det(Fij) .
The cofactor (Cjj) of (Fyj) is :
aF
Cij = oy (11)

= ‘;—f : the angular rate.

1) : the rotating axis.

The Euler-Lagrangian equation of motion
for the displacement field () is [12] :

oL L L L
or 6“(6r.a) _6r_a°(6r.o)_

9L
2% (3%;) = o

where

(12)

91y =a(d )—a(ar)—a
To = 0(0or) =0d{5,) =0V

ar; _
(a—,) OF;.

Then, Eq.(11) becomes :

0rqa =0(0,r) =



Equations of Motion for Ideal Hydrodynamics in Rotating Frame Using Caputo's Definition

oL oL oL
% 5y(2) -2, (aFU) —0. (13)

Now, deriving the Lagrangian density for
ideal hydrodynamics in a rotating frame from
Eq. (7) with respect to the displacement field (1)

yields:
2 = (2 (vx2) + 22( ~ (2-1)0)
~ acp(r))
ar
(14)
and

do (g—j) = dypo (v +0- (ﬁXr))

= po (Bov +0- (ﬁXaor))

90 (%) = po (80v + 2 - (2xv)) (15)

and

3 oL — 3 de
a aFi]- = 0Oa | = Po aFL_]_

oL de oV
% 575) = 00 (=0 55375
From thermodynamics (de = T'ds — pdV);
with constant entropy, we get :
de
av

where T: temperature in Kelvin.

(16a)

-p

S @ entropy.
p : pressure.
V : volume.

Eq. (15a) becomes:

oL av
0q (aFu) =0, (pop aFu) .

From Eqgs. (8) and (9b), we have:
V=pT1t=(F"py(@)™ =Fps(a).
Substituting this result in Eq. (16b), we get:
2L _ 0rost\ _ 5 (, 2
%a (3Fij) = % (pop OFj ) = a (p 3Fij)'
(16¢)

Using Eq. (11) and Eq. (10), Eq. (16¢)
becomes:

(16b)

oL dap dp dr;
a<6FU) a(p U) Y aa] Y ari aa]
dp
= Glugy
13
oL\ _ . op
% (o) = F 50 (17)

Substituting Eqgs. (14), (15) and (17) in Eq.
(13), we obtain:

o (.(2 (vXx2)+02*(r—(2- r).@)) -

_aom
or
-Po (Bov +0- (.(?Xv)) -F g—fi
(13)
From the properties of cross-product

(v X0 = —0Xv), Eq. (18) becomes:

[pom (v X2) + 02(r — (2 -7))

0®
-5 (o

—0(vX0)) - F S—Z] =0

_ 9o
or

a
-po(0ov) — F a—fi

o (212 (vx0)+0%(r—(2- r)f))) y

(19)

Dividing Eq. (19) by the deformation force
(F), we have:

20 (vX0)
poF~ 1| +22(r—(2-7)0)

_ 00(r) =0. (2())
or

-1 _ 9
pPoF~1(0v) ar:

Using Eq. (9b) and rearranging Eq. (20), it
becomes:

p(Qv) = [p <2.(2 (vx2)+0%*(r—(2-7)0)

6(D(r)) dop
o _B_ri

(e2))

which is the Lagrangian equation of motion for
71



Article
ideal hydrodynamics in a rotating frame.

To determine the Hamiltonian density (H)
[12]:

H=nr—L=mn(0yr) —L=nv—-—L (22)
where (1) is the conjugate momentum [12]:

p=0%_ 9 _oL_
=9 T 3@g) v Po

(v +0- (.QXr)) .
(23)
The Hamiltonian density (H) from Eq. (22)

1s:

Po (v +0- (ﬁXr)) v

70— 1/ v*+20v-(0xr)
—Po §<+.(22 (rz - (2 -r)2)>
—@(r) —e(Fpy ™", o)
Po (vz +Qv- (.QXr))
H =

1{ v*+20v-(0Xr)

—Po §<+.(22 (rz - (2 -r)2)>

—@(r) —e(Fpo™, 8o)
1 1 ~

9= [y = o (322 (2~ @)

- o) - e(Fpo‘l,So))]-

24

The Hamiltonian equation of motion for the
displacement field (r) is:

P — -0 (). (25)

ar;

Deriving the Hamiltonian density from Eq.
(24) with respect to the displacement field (r),
we obtain:

oK ~ A\ 9D(r)
= —po (2(r = (2-7)2) - 222) . (260)
From Eq. (17), we get:
L _ . ap
Oy =F 5. (26b)

In addition, the conjugate momentum from
Eq. (23)is 7 = po (v + 2 - (2X)).

Taking the time derivative for the conjugate
momentum, we obtain :

T = doPo (v +0- (ﬁXr))
= po (Bov +0- (.QXBOr))
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T = po (Bov +0- (.(?Xv)) (26¢)
Substituting Eqs. (26a), (26b) and (26c) in
Eq. (25), we get:
~ A\ 0D(r)
- Po (Qz(r -(2:1)0) _T) =

—Po (Bov +0- (.QXv)) —-F g—fi .

Using 2Xv = —v X0,

—po (22(r - (2-7)2) - 222) =

Po (—60v+.(2-(vX.(7))—F g—fi.

Rearranging the equation, we get:

po(Bv) = [po <.(2 (wX2)+02%(r—(2-7)0)

0®(r) dop
o )_ F a_rl]

@7
Dividing Eq. (27) by the deformation force
(F) and using Eq. (9b), we get:
p(0ov) = [p <.(2 (vx2)+0%(r—(2-1)0)

6(D(r)) dop
ar _B_ri

(28)
which is the Hamiltonian equation of motion.

The energy-stress tensor can be determined
as follows:

For the energy-stress tensor (TQ), deriving
the Lagrangian density in Eq. (7) with respect to
the time derivative of displacement field (947 =
v) then substituting the result in the equation
below, we get [13]:

0o_ 0L _r=0 _
To_a(aor)aor L—avv L (29)
po(v+0-(ﬁXr))v

To =

L[ V*+20v- (2x7)
—Po E<+.(22 (rz — (.(7 -r)2)>
—@(r) —e(Fpo ™, o)
1

1 ~
T¢ = [Epovz ~ po (502 (- (@-7)%)

- () - e(Fpo‘1,So))]-
(30)

The result is the same as with the
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Hamiltonian density, T = .

The energy-stress tensor (T?) is:
TO = a_La_r = B_L
Yoa(0r) Tt v

= po (v +0- (ﬁXr)) o;r

air

(€3]
The energy-stress tensor (T¢) is:
=2,
°Ta0mn ™"
(32a)

6rl _
From Eq. (10), (ar— 2, Fij) , Eq.

(32a) becomes:

. 0L
Té = aor.

(32b)

From the previous derivation of Lagrangian
equation of motion:

oL
aFy pCij .

Then, Eq. (32b) becomes:

T = Cijpv. (33)
The energy-stress tensor (T]-i) is:
1= 5650 = CypdyT. (34)
The energy-stress tensor (T}) is:
T} = a—Lalr —L=C;pdr— L
a(0;r) J

where Bir = Fija then Tii = CL]pFL] - L.

From Eq (11), CL]FL] =F
T} =pF— L (35)
The Lagrangian Density for Ideal

Hydrodynamics in Rotating Frame

To obtain the fractional Lagrangian density
for ideal hydrodynamics in rotating frame,

assume that v = % =71, then Eq. (7) becomes:
1(.- 5 A 2 2
L = po [E(r + 207 - (Qxr) + 0% (r? -
1272— Pr—e(Fp0—1,50) .

The fractional form then is:
(éDEFr)?
+20(EDE ) - (2Xr)
c=polfz\ T ST 66
+0°(rc — (.(2 . r) )
— @) —e(Fpo ™, 50)
The Euler-Lagrangian equation in fractional
form is:

L oL
cDa Db P} cDa

CD[{ aL + CD[{ aL

SenB T ax; B
‘;Db r t 6x‘§Db r

_+CDb P)
=0. (37)

Derive the Lagrangian density from Eq. (36)
as follows:

aL
57 Po (.(2 (DErXR)+0%(r—(2-7)0)
acp(r))
ar
(38a)
oL PN
Dy Gepa = D5 po (SDEX r+a- (QXT))
C aL cna cna
(D5 3 epay = Po (¢pg spg v+ 0
- (2x¢Dg )
Use D = —EDE
oL
D 5epay = —po ((&DFYr +a
- (2x¢pgT))
(38b)
Now,
aL
pE — —
¥7h 9 epa r
oL
(gDJ?L r Fij)a then x(‘;Dg W:
L
xf-;Dg( (6F")
Yy
cpa _ 9L _ cpa (9L _
xi™b aCDxL xi™b aFl]

de oV
cnHa — -
xiDb ( Po v aFij) .

(39a)
From thermodynamics, we getz—sz —p,
then Eq. (39a) becomes:
oL av
%Db 3epay = %D (pop ;}) (39b)

Using Eq. (8), Eq. (9b) and Eq. (11), then
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Eq. (39b) becomes:

L  _ cpa aFpgt\ _
Db acDa —xiDb (Pop aFij -

dF
Db (P F) = 5Dy (pcij) =
ij
CijDy p
Let ;Dy p = —aDx; p

oL
5Dy 2 1 —CijéDy p
= _CL]ngriDap = —( FL] riDap
oL
Db 6CD3‘(1 = _FTL;DJZP (40)
cnB 0L _ o 0B 0L _
aDy 6§Df o= 0 ’ani ax‘EDf . 0 41)

Substituting the results in Egs. (38a), (38b),
(40) and (41) in Eq. (37), we obtain:

2 (¢Dg rX0)
o\ - (@ n)a) -22) |
_ (ng )2 _ cna
Po <+:2-(f2xgugf r))~ Frbap
(42)

Use SDfF r X0 = —0XEDE r, then Eq. (42)
becomes:

2 (EDfF r XQ)
P <+m(r ~(2:1)0)- #> o
00 (Lo (o xy) = F 08P
9o (zg (0 r X0) + 02(r — (2-1)2)

09
220N gy ((0E )

— FSDEp=0

Rearranging the equation, we get:
po ((EDE)?r) = [po <212 (¢Df r X0)

+02(r - (2:7)2) -

— F SDg p].

6(D(r))

Dividing the equation by the deformation force
(F) and using Eq. (9b), we get:
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p ((GDE)*r) =
20 (¢pErx0)
’ (mzo - (2-1)0) -
— Dz p

6(D(r)>
L @3)

The fractional conjugate momentum is:

(my), = = po (ng‘ r+0- (ﬁXr)) )
(44)

aL
a(spg r)

The Hamiltonian density (H) in fractional
form is:

H=mDf r—L. (45)

Substituting the fractional conjugate
momentum from Eq. (44) and the Lagrangian
density from Eq.(36) in Eq.(45) , the
Hamiltonian density () becomes:

[ po (ng‘ r+0- (ﬁXr)) D& r
(&Df r)?
H = % +20(5DE ) - (2X7)
~po +0?(r? —(.(Z-r) )
—&(r) —e(Fpo~L,s0)
< (aDF r)? )
+05DE - (QXr)
H =po 1 +20(ci€g r’ ~
3 pgr) - (Q2xr)
+02(? - (2- r)z)
—®(r) —e(Fpo~" s0)
~(§DE T2
H=po|| —32207 = (@) (46)
+ o) +e(Fpy 1, s0)

which is the Hamiltonian density for ideal
hydrodynamics in a rotating frame in fractional
form.

The fractional Hamiltonian equation of
motion for the displacement field (r) is:

oOH oL
2% = Df my + DL mp + D seoe st
1A
oL
cph . 4
Xi axin ( 7)

Deriving the Hamiltonian density (H) with

respect to(r), we get:

=po (-0 - (2-1)D) + ‘9‘””). (482)
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In addition, calculate the conjugate
momentum(7):
oL
(=5 )
(ma)r = po (§DF T+ 0-(0x7))
(48b)
(T[,B’)r =0
From Eq. (40), we obtain:
D sy = —F D&
' (48¢)

cnbB L =0

alyx; =
xi 6x‘§Df r

Substituting the results in Eq. (48a, b, c) in
Eq. (47), we have:

o (02— (@ 1)+ 222 =
|¢Dg po (6DE 7+ 0+ (2X7)) - F £DE p
oo (-7 = (21)2) ;. 2000 _

po (£D§ EDE T +0 - (AX5DE 1))
—FDip

Use $Df =-EDF  and
DErXN

[po (_m(r —(2-1)0) + a‘g—“)] _

po (—(6DE)?r + 0~ (D¢ rX0))
—FyDep

-0XSDEr =

Q- (¢pg rXQ)
poCeng 2 =|"" <+!22(r - (2 -r)ﬁ)) .

9o ()
0 arT - Frc;DJ?ip

(49)

Dividing Eq. (49) by deformation force (F)
and using Eq. (9b), we get:
2-(5DFrx0)
p 2(r = (0 -7)0
ocepgyr = |7\ T2 (r—(2-r)2)

(1) Cha
or - Ti x,;p

(50)

The equation of motion from the fractional
Hamiltonian density is the same as the classical
oneas —> 1.

The energy- stress tensor can be determined
as follows:

0L

0 _ cna . __
To = gaparaliT—L
1
5 (GDE 1)?
To=|po| —l02¢2-(2-r) ||- D

+@(r) +e(Fpy ™, s0)
We find that T = 7(.

The energy-stress tensor (T) is:

T) = #ﬁ,r aDg v where (DF r = Fy;
T = po (DEr + Q- (2Xr) ) Fyj . (52)
The energy-stress tensor (T() is:
; aL
Té = 65D§.T ngrrgDJ%rzFl
)
Ty = T aDEr = CypiDEr . (53)
The energy-stress tensor (T]-i) is:
i aL
T} = Pepi T aDx; 7= Cijp oDx; 7. (54)
The energy-stress tensor (T}) is:
i aL
T = 3ep% 7 eDFr—L=CijpeDir— L

where (DZ v = Fj;
Tii = CyjpFi; — L

From Eq. (11), C;F;; = F, then:

Ti=pF— L. (55)
Conclusion
The fluid field has very important

applications and it is necessary to study its
movement to explain the phenomena related. In
calculus, the variation principle is used to find
the equations that describe the motion of fluid
and the calculations in fractional form give more
accurate results. In this paper, we found that the
equations of motion for fluids in a rotating frame
could be derived in fractional form. Using the
Caputo's fractional derivative and at @ = 1, the
Lagrangian equation of motion, the Hamiltonian
equation of motion and the energy-stress tensor
for the displacement field () in a rotating frame
of fluid dynamics are reduced to the classical
results, so that the fractional results agree with
the classical ones.
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