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Abstract: We test the consistency with which Simmons’ model can predict the local 

current density obtained for flat metal-vacuum-metal junctions. The image potential 

energy used in Simmons’ original papers had a missing factor of 1/2. Beside this 

technical issue, Simmons’ model relies on a mean-barrier approximation for electron 

transmission through the potential-energy barrier between the metals. In order to test 

Simmons’ expression for the local current density when the correct image potential 

energy is included, we compare the results of this expression with those provided by a 

transfer-matrix technique. We also consider the current densities provided by a 

numerical integration of the transmission probability obtained with the WKB 

approximation and Simmons’ mean-barrier approximation. The comparison between 

these different models shows that Simmons’ expression for the local current density 

actually provides results that are in good agreement with those provided by the 

transfer-matrix technique, for a range of conditions of practical interest. We show that 

Simmons’ model provides good results in the linear and field-emission regimes of 

current density versus voltage plots. It loses its applicability when the top of the 

potential-energy barrier drops below the Fermi level of the emitting metal.  

Keywords: Field Electron Emission, Theory, Metal-Vacuum-Metal Junction, Transmission 

Probability, Mean-Barrier Approximation, Transfer-Matrix Technique. 
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I. Introduction 

Analytical models are extremely useful for 

the study of field electron emission. They 

provide indicative formulae for the emission 

current achieved with given physical 

parameters. This enables quantitative 

understanding of the role of these parameters. 

Analytical models also support the extraction 

of useful information from experimental data. 

They certainly guide the development of 

technologies. These analytical models depend 

however on a series of approximations, 

typically the WKB (JWKB) approximation for 

the transmission of electrons through a 

potential-energy barrier [1–4]. It is therefore 

natural to question the accuracy of these 

models. 
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The accuracy with which the Murphy-

Good formulation of Fowler-Nordheim 

theory [5–8] actually accounts for field 

electron emission from a flat metal surface 

was investigated in previous work [9–13]. 

The approach adopted by Mayer consists of 

comparing the results of this analytical 

model with those provided by a transfer-

matrix technique [11–14]. This technique 

provides exact solutions of Schrödinger’s 

equation for this field-emission process. The 

comparison with the Murphy-Good 

expression �MG = (��B�/�)/ sin 
��B�
� � ×

��F
��
Φ

����exp �−� FΦ

!
"/�# for the current 

density obtained with an applied electrostatic 

field F, a work function Φ and a temperature 

T revealed that the results of this analytical 

model are essentially correct, within a factor 

of the order 0.5-1. In the Murphy-Good 

expression, a=1.541434 × 10−6 A eV V−2, b 

= 6.830890 eV−3/2 V nm−1 [10], kB is 

Boltzmann’s constant, tF and vF are 

particular values of well-known special 

mathematical functions that account for the 

image interaction [7, 15], � = ℏ$�/
(2�F√2'Φ) with e the elementary positive 

charge and m the electron mass. ℏ is 

Planck’s constant h/2π. This study enabled 

the determination of a correction factor λMG 

to use with the Murphy-Good expression in 

order to get an exact result [13]. 

The objective of the present work is to 

apply the same approach to the analytical 

model developed by Simmons for the local 

current density through flat metal-vacuum-

metal junctions [16–20]. Simmons’ original 

model is widely cited in the literature. It was 

however noted that the image potential energy 

used in the original papers missed out a factor 

of ½ [18, 21]. An error in the current density 

obtained for a triangular barrier in the low-

voltage range (Eq. 25 of Ref. 16) was also 

mentioned [20]. Beside these technical issues, 

Simmons’ original model relies on a mean-

barrier approximation for the transmission of 

electrons through the potential-energy barrier 

in the junction. It is natural to question this 

approximation and test the accuracy of the 

equation proposed by Simmons for the current 

density obtained in flat metal-vacuum-metal 

junctions when the correct image potential 

energy is included. We use for this purpose the 

transfer-matrix technique, since it provides 

exact solutions for this barrier model. This 

work aims to provide a useful update and a 

numerical validation of Simmons’ model. 

This article is organized as follows. In Sec. 

II, we present the transfer-matrix technique 

that is used as reference model for the 

quantum-mechanical simulation of metal-

vacuum-metal junctions. In Sec. III, we 

present the main ideas of Simmons’ theory. 

This presentation essentially focusses on the 

results that are discussed in this work. In Sec. 

IV, we compare the results of different models 

for the current density obtained in flat metal-

vacuum-metal junctions. We finally conclude 

this work in Sec. V. 

II. Modeling of Metal-Vacuum-

Metal Junctions by a Transfer-

Matrix Technique 

The metal-vacuum-metal junction 

considered in this work is represented in Fig. 

1. For this particular example, a static 

voltage V of 5 V is applied between the two 

metals. These metals have a Fermi energy (F 

of 10 eV and a common work function Φ of 

4.5 eV. The gap spacing D between the two 

metals is 2 nm. We refer by µ I to the Fermi 

level of the left-side metal (Region I). The 

Fermi level of the right-side metal (Region 

III) is then given by µ III = µ I − eV, where e 

refers to the elementary positive charge. For 

convenience, when presenting Simmons’ 

theory, we will use the Fermi level µ I of the left-

side metal as reference (zero value) for all 

potential-energy values discussed in this 

work. The total electron energy E will also be 

defined with respect to µ I. We will only 

consider positive values for the applied 

voltage V, so that the net electron current 

will always flow from the left to the right. 

The potential energy in Regions I and III is 

then given by VI = µ I −(F and VIII = µ I 

−eV−(F. The potential energy in the 

vacuum gap (0 ≤ z ≤ D) is given by )(*) =
+, +Φ− $�* + )image(*), where F=V/D is 

the magnitude of the electrostatic field 

induced by the voltage V. Vimage(z) refers to 

the image potential energy that applies to an 

electron situated between two flat metallic 

surfaces (see Eq. 7 in Sec. III). This vacuum 

region is also referred to as Region II. 
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FIG. 1. Potential energy in a metal-vacuum-metal junction. A static voltage V of 5 V is applied. The gap 

spacing D is 2 nm. We take for convenience the Fermi level µ I of the left-side metal as reference for the 

potential-energy values. 

 

In order to establish scattering solutions in 

cartesian coordinates, we assume that the wave 

functions are periodic along the lateral x and y 

directions (these directions are parallel to the 

flat surface of the two metals). We take a 

lateral periodicity L of 10 nm for the wave 

functions (this value is sufficiently large to 

make our results independent of L). The 

boundary states in Region I and III are given 

respectively by: 

Ψ.,0I,±(23⃗ , �) =
$i(�x,567�y,89)$±.:";

ℏ
" <=>?I@>A

x,5" >A
y,8" B$�iCD/ℏ and 

Ψ.,0III,±(23⃗ , �) =
$i(�x,567�y,89)$±.:";

ℏ
" <=>?III@>A

x,5" >A
y,8" B$�iCD/ℏ, 

where i = √−1 and the ± signs refer to the 

propagation direction of these boundary 

states relative to the z-axis. E is the total 

electron energy. �x,. = F"G
H  and �y,0 = I"G

H  

are the lateral components of the 

wavevector (i and j are two integers also 

used to enumerate the boundary states). 

Jz = J − ℏ
"

";
�x,5" 7�y,8" � corresponds to the 

normal component of the electron energy. 

By using a transfer-matrix technique, we can 

establish scattering solutions of Schrödinger’s 

equation � ℏ"
�KΔ+ )(23⃗ )#Ψ(23⃗ , �) = Fℏ L

LMΨ(23⃗ , �). 

The idea consists of propagating the 

boundary states Ψ.,0III,±
 of Region III across the 

vacuum gap (Region II). Since the potential 

energy is independent of x and y, there is no 

coupling between states associated with 

different values of i or j and one can consider 

the propagation of these states separately. For 

the propagation of these states, we assume that 

the potential energy in Region II varies in 

steps of width ∆z along the direction z. For 

each integer s ranging backwards from D/∆z 

to 1, the potential energy is thus replaced by 

the constant value )N = O
"PQ<(N��)ΔB@7Q(NΔB)R. 

The solutions of Schrödinger’s equation are 

then (i) simple plane waves 

SN$.:";
ℏ

" (=T>?U)B + VN$�.:";
ℏ

" (=T>?U)B
 when 

Jz = J − ℏ
"

";
�x,5" 7�y,8" � > )N, (ii) real 

exponentials SN$�:";
ℏ

" (?U>=z)B +
VN$:";

ℏ
" (?U>=z)B

 when Jz < )N or (iii) linear 

functions SN + VN* when Jz = )N. One can 

get arbitrarily close to the exact potential-

energy barrier by letting ∆z → 0 (we used 

∆z=0.0001 nm). The propagation of the states 

Ψ.,0III,±
 across Region II is then achieved by 

matching continuity conditions for the wave 

function Ψ and its derivative YΨ
YT at the 

boundaries of each step ∆z, when going 

backwards from z = D to z = 0 [11]. The layer-

addition algorithm presented in a previous 

work should be used to prevent numerical 

instabilities [22]. The solutions finally 

obtained for z = 0 are expressed as linear 

combinations of the boundary states Ψ.,0I,±
 in 

Region I. 
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This procedure leads to the following set of 

solutions: 

ΨZ .,0
7 =⏞B\] �.,077

Ψ.,0I,7 + �.,0�7
Ψ.,0I,� =⏞B^_

Ψ.,0III,7
,         (1) 

ΨZ .,0
� =⏞B\] �.,07�

Ψ.,0I,7 + �.,0��
Ψ.,0I,� =⏞B^_

Ψ.,0III,�
,         (2) 

where the complex numbers �.,0±± correspond to 

the coefficients of these solutions in Region I. 

We can then take linear combinations of 

these solutions in order to establish scattering 

solutions that correspond to single incident 

states Ψ.,0I,7
 in Region I or Ψ.,0III,�

 in Region III. 

These solutions will have the form 

Ψ.,07 =⏞B\]
Ψ.,0I,7 + .̀,0�7

Ψ.,0I,� =⏞B^_
.̀,077
Ψ.,0III,7

,         (3) 

Ψ.,0� =⏞B\]
.̀,0��
Ψ.,0I,� =⏞B^_

Ψ.,0III,� + .̀,07�
Ψ.,0III,7

,         (4) 

where the complex numbers .̀,077 and .̀,0�7 

provide respectively the coefficients of the 

transmitted and reflected states for an incident 

state Ψ.,0I,7
 in Region I. The complex numbers 

.̀,0�� and .̀,07� provide respectively the 

coefficients of the transmitted and reflected 

states for an incident state Ψ.,0III,�
 in Region III. 

These coefficients are given by .̀,077 =
P�.,077R��

, .̀,0�7 = �.,0�7P�.,077R��
, .̀,0�� = �.,0�� −

�.,0�7P�.,077R���.,07� and .̀,07� =
−P�.,077R���.,07�.[23] 

These scattering solutions are finally used 

to compute the local current density J that 

flows from Region I to Region III. The idea 

consists of integrating the contribution of each 

incident state Ψ.,0I,7
 in Region I (this provides 

the current-density contribution moving to the 

right) as well as the contribution of each 

incident state Ψ.,0III,�
 in Region III (this 

provides the current-density contribution 

moving to the left). The net value of the 

current density is given by the difference 

between these two contributions. The detailed 

expression for the current density J has been 

established in previous work [24–26]. It is 

given formally by: 

�TM = �
b"

�c
d e ∑ gI(J) hIII,(5,8)

hI,(5,8) i .̀,077i�
.,0 �Jj

QI
−

�
b"

�c
d e ∑ gIII(J) hI,(5,8)

hIII,(5,8) i .̀,0��i�
.,0 �Jj

QIII
,          (5) 

where the summations are restricted to 

solutions that are propagative both in Region I 

and Region III. This requires Jz = J −
ℏ"
";
�x,5" 7�y,8" � > max ()I, )III).               

oI,(.,0) = ℏ
;:";

ℏ" <=z>?I@ and oIII,(.,0) =
ℏ
;:";

ℏ" <=z>?III@ represent the normal component 

of the electron velocity in Regions I and III. 
hIII,(5,8)
hI,(5,8) i .̀,077i�

 and 
hI,(5,8)

hIII,(5,8) i .̀,0��i�
 both represent 

the transmission probability pTM of the 

potential-energy barrier in Region II, at the 

normal energy Jz. gI(J) = 1/q1 +
expr(J − +I)/�B�st and gIII(J) =
1/q1 + expr(J − +III)/�B�st finally refer to 

the Fermi distributions in Regions I and III 

[27].  

One can show mathematically that Eq. 5, 

with u ≫ 1, is equivalent to: 

�TM = e Δx(JB)pTM
j

yz{ (QI,QIII) (Jz)�Jz,   (6) 

where the integration is over the normal 

energy Jz instead of the total energy E. 

pTM(Jz) = hIII,(5,8)
hI,(5,8) i .̀,077i� = hI,(5,8)

hIII,(5,8) i .̀,0��i�
 is 

the transmission probability of the potential-

energy barrier at the normal energy Jz. 

Δx(Jz) = xI(Jz) − xIII(Jz), with xI(Jz) =
|G;}

~! �B�ln �1 + exp 
− Cz��I

�B� �# and 

xIII(Jz) = |G;}
~! �B�ln �1 +

exp 
− Cz��I7cV

�B� �# represent the incident 

normal-energy distributions of the two 

metals. This expression of the local current 

density is more standard in the field 

emission community. 

For the integration over E in Eq. 5 or Jz in 

Eq. 6, we use a step ∆E of 0.01 eV. It was 

checked that Eq. 5 and Eq. 6 provide 

identical results. A room temperature T of 

300 K is assumed in this work. 

III. Simmons’ Model for the 

Current Density in Flat Metal-

Vacuum-Metal Junctions 

We present now the main ideas of 

Simmons’ model for the local current density 

through a flat metal-vacuum-metal junction 

(see Fig. 1). This presentation focuses on the 

results that are actually required for a 

comparison with the transfer-matrix results. 
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We keep for consistency the notations 

introduced in the previous section. 

A. Potential-Energy Barrier 

The potential energy in the vacuum gap 

(0 ≤ z ≤ D) is given by [16]: 

)(*) = +I + Φ − $�* − �
�

c"
���� � �

�B +
∑ 
 �_

(�_)"�B" − �
�_�j��� #,                     (7) 

where the last term of Eq. 7 accounts for the 

image potential energy Vimage(z) that applies to 

an electron situated between two flat metallic 

surfaces [28]. In Simmons’ original papers 

[16, 17], there is a factor 1/2 missing in the 

image potential energy. This factor 1/2, which 

is included for correction in Eq. 7, comes from 

the self-interaction character of the image 

potential energy (the image charges follow 

automatically the displacement of the electron 

and work must actually only be done on the 

electron). This technical error was mentioned 

later by Simmons [18]. It was also pointed out 

in a paper by Miskovsky et al. [21]. 

In order to derive analytical expressions for 

the local current density, Simmons introduces 

a useful approximation for the image potential 

energy: )image(*) ≅ −1.15� _"
B(_�B) [16]. The 

potential energy in the vacuum gap can then 

be approximated by: 

)(*) = +I + Φ − $�* − 1.15� _"
B(_�B),         (8) 

where � = }"
O�G��

ln"� . We provide here a 

corrected expression for �; this includes the 

missing factor ½. 

B. Mean-Barrier Approximation for the 

Transmission Probability 

With Jz = J − ℏ"
";<�x

"7�y
"@ the normal 

component of the energy, the probability for 

an electron to cross the potential-energy 

barrier in Region II is given, within the 

simple WKB approximation,[1-4] by: 

p��� = exp �− �√�K
ℏ e r)(*) − Jzs�/��*B"

BO �,          

            (9) 

where z1 and z2 are the classical turning 

points of the barrier at the normal energy Ez 

(i.e., the solutions of V(z1) = V(z2) = Ez with 

z1 ≤ z2). Simmons then replaces V(z) by V(z) 

= µ I + �(z), where �(z) = Φ − eFz + Vimage(z) 

represents the difference between V(z) and 

the Fermi level µ I of the left-side metal (this is 

the metal that actually emits electrons for a 

positive voltage). He finally proposes a 

mean-barrier approximation for the 

transmission probability [16]: 

pSim = exp �− �√�K
ℏ �Δ*r�� − (JB −

+I)s�/��,         (10) 

where ∆z = z2 − z1 represents here the width 

of the barrier at the Fermi level of the left-side 

metal (i.e., for Ez = µ I). �� =
O

T">TO e �(*)�*B"
BO  represents the mean barrier 

height above the Fermi level of the left-side 

metal. β is a correction factor related to the 

mean-square deviation of �(*) with respect to 

�� [16]. For the barrier shown in Eq. 7 (image 

potential energy included), Simmons 

recommends using β = 1. The mathematical 

justification of Eq. 10 can be found in the 

Appendix of Ref. 16. 

C. Analytical Expression for the Local 

Current Density 

In his original paper [16], Simmons 

proposes a general formula for the net local 

current density J that flows between the two 

metals of the junction (see Eq. 20 of Ref. 16). 

The idea consists of integrating the 

contribution to the current density of each 

incident state in the two metals (the 

transmission of these states through the 

potential-energy barrier is evaluated with Eq. 

10). Different analytical approximations were 

introduced by Simmons to achieve this result 

(in particular, in Eqs. 15, 16 and 18 that lead 

to Eq. 20 of Ref. 16; they require 
"√";

ℏ �Δ*(�� + $V)�/� ≫ 1). The temperature-

dependence of the current density was 

established in Ref. 19. The final expression, 

which accounts for the temperature, is given 

by: 

�Sim = �] × ���B�
��� (���B�) × ��� exp<−S���/�@ −

(�� + $V) exp<−S(�� + $V)�/�@�,       (11) 

where �] = }
ℏ("G��T)", S = "√";

ℏ �Δ* and V =
�

"�� O/". The term �] � ���exp<−S���/�@ accounts 

for the current moving to the right. The term 

�] (�� + $V) exp<−S(�� + $V)�/�@ accounts 
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for the current moving to the left. The 

temperature-dependence is contained in the 

factor 
���B�

��� (���B�) [19, 29]. As mentioned 

previously, a temperature T of 300 K is 

considered in this work. 

For a potential-energy barrier approximated 

by Eq. 8, Simmons provides an approximation 

for the classical turning points at the Fermi 

level of the left-side metal [16]. If eV < Φ, 

with Φ the local work function, these turning 

points are given by: 

*� = 1.2�p/Φ
*� = pr1 − 9.2�/(3Φ + 4� − 2$V)s + *�. 

           (12) 

Otherwise, if eV ≥ Φ, they are given by: 

*� = 1.2�p/Φ
*� = (Φ − 5.6λ) 
 _

cV
� .        (13) 

These expressions are calculated with the 

corrected factor � = }"
O�G��

ln"� . We can then 

compute the width ∆z = z2 − z1 of the barrier 

at the Fermi level of the left-side metal as 

well as the mean barrier height �� above this 

Fermi level (�� represents the mean barrier 

height, over the range ∆z, experienced by an 

electron tunneling with a normal energy 

equal to the left-side Fermi level) [16]. The 

result is given by: 

�� = Φ − cV(BO7B")
�_ − �.�¤¥_

B"�BO  ln �B"(_�BO)
BO(_�B")#.  (14) 

With Simmons’ recommendation to use 

� = 1, we can compute each quantity in Eq. 

11. This is the equation we want to test 

numerically by comparing its predictions with 

the results of the transfer-matrix technique. 

JSim depends on the mean-barrier 

approximation of the transmission probability 

(Eq. 10), on the analytical approximations 

introduced by Simmons to establish Eq. 11 

and on Eqs. 12, 13 and 14 for ∆z = z2 − z1 

and ��. 

D. Numerical Expressions for the Local 

Current Density 

It is actually possible to integrate 

numerically the transmission probability pSim 

provided by Eq. 10. By analogy with the 

current density JTM provided by the transfer-

matrix formalism, the current density obtained 

by the numerical integration of pSim will be 

given by: 

�Sim-num
= 1

u�
2$
ℎ ª « gI(J)pSim 
J

.,0

j

QI
− ℏ"

�K
�x,5" 7�y,8" �� �J
− 1

u�
2$
ℎ ª « gIII(J)

.,0
pSim 
J

j

QIII
− ℏ"

�K
�x,5" 7�y,8" �� �J                                    (15) 

= e Δx(Jz)pSim(Jz)�Jz
j

yz{ (QI,QIII)        (16) 

in the standard formulation. pSim is obtained 

here by a numerical evaluation of Eq. 10 (∆z 

= z2 − z1 and �� are evaluated on the exact 

barrier given in Eq. 7). The comparison of 

JSim−num with the results of Eq. 11 will 

validate the approximations that lead to this 

analytical expression. 

It will also be interesting to consider the 

current density obtained by a numerical 

integration of the transmission probability 

provided by the simple WKB approximation 

(Eq. 9). The result will be given by: 

����
=  1

u�
2$
ℎ ª « g,(J)p��� 
J

.,0

j

Q®
− ℏ"

�K
�¯,5" 7�°,8" �� �J
− 1

u�
2$
ℎ ª « g,,,(J)

.,0
p��� 
J

j

Q®®®
− ℏ"

�K
�¯,5" 7�°,8" �� �J                                         (17) 

= e Δx(Jz)pWKB(Jz)�Jz
j

yz{ (QI,QIII)        (18) 

in the standard formulation. JWKB will enable a 

useful comparison with Simmons’ theory 

given the fact that the transmission probability 

used by Simmons is actually an approximation 

of the WKB expression. 

IV. Comparison between Different 

Models for the Local Current 

Density 
We can compare at this point the local 

current densities provided by the transfer-

matrix technique (JTM by Eq. 5 or Eq. 6), 

Simmons’ analytical expression (JSim by Eq. 
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11), a numerical integration of Simmons’ 

formula for the transmission probability 

(JSim−num by Eq. 16) and a numerical 

integration of the transmission probability 

provided by the WKB approximation (JWKB by 

Eq. 18). 

In order to understand the different 

regimes that appear in typical J-V plots, we 

will start by showing the dJ/dE distributions 

obtained for a few representative cases. This 

will illustrate the “linear regime” and the 

“field-emission regime” that are indeed 

appropriately described by Simmons’ 

equation 11. In the “linear regime”, the 

difference µ I − µ III between the Fermi level of 

the two metals is smaller than the width of 

the total-energy distribution of the right-

flowing and left-flowing contributions to the 

current. These two contributions tend to 

cancel out except in an energy window of 

the order of µ I − µ III, which is equal to eV. 

In the “field-emission regime”, the Fermi 

level µ III of the right metal is sufficiently far 

below µ I to make the contribution of the left-

flowing current negligible. The diode current 

is essentially determined by the right-flowing 

current, which increases rapidly with V. The 

“flyover regime” will be beyond the predictive 

capacities of Simmons’ theory. In this regime, 

the top Vtop of the potential-energy barrier 

drops below µ I, so that electrons at the Fermi 

level of the left metal can fly over the top of 

this barrier, provided Jz = J − ℏ"
";<�x

"7�y
"@ >

)top.  
We consider for the moment a gap spacing 

D of 2 nm and three representative values of 

the applied voltage V: 0.5 V, 5 V and 30 V. 

The potential-energy distribution V(z) and the 

total-energy distribution of the current density 

dJ/dE obtained for these values of the applied 

voltage are represented in Figs. 2, 3 and 4. The 

dJ/dE distributions are calculated by the 

transfer-matrix technique.  

With an applied voltage V of 0.5 V (Fig. 

2), the Fermi level µ III = µ I −eV of the right-

side metal (”Region III”) is 0.5 eV below the 

Fermi level µ I of the left-side metal (”Region 

I”). The rightwards-moving and leftwards-

moving currents in the junction cancel out 

except in the energy window between µ III and 

µ I (± a few kBT, as a result of the effect of 

temperature on the electron energy 

distributions fI(E) and fIII(E)). The 

integrated net current density J that flows 

from left to right is 1.5 × 10−6 A/cm2. We are 

in the “linear regime” of the J-V plot. The 

net current density J depends indeed 

essentially on the separation between µ III 

and µ I, which is equal to eV. The mean 

barrier height �� at the Fermi level is 3.2 eV. 

Since eV≪ ��, Eq. 11 will predict a linear J-

V dependence in this regime. 

  

  
FIG. 2. Potential energy V(z) (top) and total-energy distribution of the current density dJ/dE (bottom) for an 

applied voltage V of 0.5 V. dJ/dE is calculated by the transfer-matrix technique. We take for 

convenience the Fermi level µ I of the left-side metal as reference for the potential-energy values. 
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With an applied voltage V of 5 V (Fig. 

3), the Fermi level µ III = µ I − eV of the right-

side metal is 5 eV below the Fermi level µ I 

of the left-side metal. The net current that 

flows through the junction is essentially 

determined by the right-flowing current from 

the left-side metal (”Region I”). The left-

flowing current from the right-side metal 

(”Region III”) only contributes for normal 

energies 5 eV or more below µ I. Its 

influence on the net current is negligible. 

The local current density J that flows from 

left to right is 6.2 A/cm2. The total-energy 

distribution of the local current density 

dJ/dE (shown in Fig. 3) is a classical field-

emission profile. The electrons that are 

emitted by the left-side metal cross the 

potential-energy barrier in the junction by a 

tunneling process. The local current density J 

increases rapidly with V. We are in the “field-

emission regime” of the J-V plot. The mean 

barrier height �� at the Fermi level is 2.6 eV in 

this case. Since eV> ��, Eq. 11 will predict a 

non-linear J-V dependence. 

 

 
FIG. 3. Potential energy V(z) (top) and total-energy distribution of the current density dJ/dE (bottom) for an 

applied voltage V of 5 V. dJ/dE is calculated by the transfer-matrix technique. We take for convenience 

the Fermi level µ I of the left-side metal as reference for the potential-energy values. 

 

With an applied voltage V of 30 V (Fig. 

4), the top )top of the potential-energy 

barrier drops below the Fermi level µ I of the 

left-side metal. All incident electrons with a 

normal energy Jz = J − ℏ"
";<�x

"7�y
"@ > )top 

can actually cross the junction without 

tunneling, although quantum-mechanical 

reflection effects will occur. There is no 

classical turning point z1 or z2 at the Fermi 

level µ I of the left-side metal and Simmons’ 

model for the transmission probability pSim 

and the local current density JSim loses any 
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applicability. The mean barrier height �� at the 

Fermi level can not be calculated in this case, 

since the turning points z1 and z2 are not 

defined. We are in the “flyover regime” of the 

J-V plot. It is probably interesting for future 

work to extend Simmons’ theory so that it also 

applies in this regime. It has been shown by 

Zhang that in the flyover regime, it is 

necessary to account for space charge effects 

[30]. 

 

 
FIG. 4. Potential energy V(z) (top) and total-energy distribution of the current density dJ/dE (bottom) for an 

applied voltage V of 30 V. dJ/dE is calculated by the transfer-matrix technique. We take for 

convenience the Fermi level µ I of the left-side metal as reference for the potential-energy values. 

 

There is also the possibility that at very 

high current densities, the junction heating 

will be so great that junction destruction will 

occur. We are not aware of any work on this 

effect that is specifically in the context of 

MVM devices, but for conventional field 

electron emitters, it is usually thought [31, 32] 

that heating-related destructive effects will 

occur for current densities of order 107 to 108 

A/cm2 or higher. The situation can become 

very complicated if in reality there are 

nanoprotrusions on the emitting surface that 

cause local field enhancement, and hence local 

enhancement of the current density, or if 

heating due to slightly lower current densities 

can induce the formation and/or growth of 

nanoprotrusions by means of 

thermodynamically driven electroformation 

processes. Detailed examination of these 
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heating-related issues is beyond the scope of 

the present work. 

The J-V plot finally obtained for an applied 

voltage V that ranges between 0.01 V and 100 

V is represented in Fig. 5. The figure 

represents the local current density JTM 

obtained by the transfer-matrix technique (Eq. 

5 or Eq. 6; the results are identical), the 

current density JWKB obtained by a numerical 

integration of pWKB (Eq. 18), the current 

density JSim−num obtained by a numerical 

integration of pSim (Eq. 16) and the current 

density JSim provided by Simmons’ analytical 

model (Eq. 11). These results correspond to a 

gap spacing D of 2 nm. The linear, field-

emission and flyover regimes are clearly 

indicated. The results provided by the different 

models turn out to be in excellent agreement 

up to a voltage V of 10 V. JSim−num deviates 

progressively from the other models beyond 

this point. The agreement between JTM, JWKB 

and JSim is remarkable, considering the fact 

that the current density varies over 19 orders of 

magnitude for the conditions considered. 

Simmons’ analytical model (Eq. 11) turns out 

to provide a very good estimate of the 

current density achieved in the linear and 

field-emission regimes. Simmons’ analytical 

model however stops working when Eqs. 13 

and 14 do not provide �� ≥ 0, which is the 

case in the flyover regime (the top of the 

potential-energy barrier drops indeed below 

the Fermi level µ I of the left-side metal and 

Eq. 10 for the transmission probability loses 

any applicability). 

 
FIG. 5. J-V plot for a metal-vacuum-metal junction whose gap spacing D is 2 nm. The four curves 

correspond to JTM (solid), JWKB (dashed), JSim−num (dot-dashed) and JSim (dotted). These results 

correspond to a common work function Φ of 4.5 eV, a Fermi energy εF of 10 eV and a temperature T of 

300 K. 

 

Fig. 6 shows more clearly the differences 

between the different models. This figure 

presents the ratios JWKB/JTM, JSim−num/JTM and 

JSim/JTM between the current densities JWKB, 

JSim−num and JSim provided by Eqs. 18, 16 and 

11 and the transfer-matrix result JTM (Eq. 6). 

The figure shows that JWKB, JSim−num and JSim 

actually follow the transfer-matrix result JTM 

within a factor of the order 0.5-2 up to an 

applied voltage V of 10 V. The current density 

JWKB obtained by a numerical integration of 

pWKB with respect to normal energy (Eq. 18) 

follows in general the transfer-matrix result 

more closely. The current density JSim derived 

from Simmons’ theory still provides very 

decent results. JSim (Eq. 11) is the analytical 

expression derived by Simmons (main focus 

of this article). JWKB and JSim−num require a 

numerical evaluation of the transmission 

probability (by Eq. 9 or Eq. 10) and a 

numerical integration of this transmission 

probability with respect to normal energy to 

finally obtain the current density. They are 

presented only for comparison. We note that 

JWKB tends here to overestimate the local 

current densities. This behavior was already 

observed with the Schottky-Nordheim barrier 

that is relevant to field electron emission from 
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a flat metal, when considering normal energies 

in the vicinity of the Fermi level of a metal 

whose physical parameters are the same as 

those considered at this point (Φ = 4.5 eV and 

(¶=10 eV) [11, 12]. As shown in Ref. 13, 

underestimation of the local current densities 

by the simple WKB approximation is also 

possible for smaller values of (¶. We note 

finally that JSim−num and JSim provide close 

results up to an applied voltage V of 10 V. 

This proves that the approximations that lead 

to JSim are reasonable up to this point. JSim−num, 

which is based on a numerical integration of 

pSim, starts then over-estimating the current 

density. Simmons’ mean-barrier 

approximation is actually a poor model of the 

transmission probability when the potential-

energy barrier becomes too small (we can 

indeed have Ez−µ I > �� for values of Ez that 

have a non-negligible ∆N(Ez), while in reality 

Ez−µ I < �(*) in the potential-energy barrier). 

Simmons’ analytical expression for the local 

current density (JSim by Eq. 11) appears to be 

more robust in these conditions. JSim−num and 

JSim can not be applied in the flyover regime. 

 
FIG. 6. Ratio JWKB/JTM (dashed), JSim−num/JTM (dot-dashed) and JSim/JTM (dotted) for a metal-vacuum-metal 

junction whose gap spacing D is 2 nm. These results correspond to a common work function Φ of 4.5 

eV, a Fermi energy εF of 10 eV and a temperature T of 300 K. 

 

We finally provide in Table 1 a more 

systematic study of the ratio JSim/JTM between 

the current density JSim provided by Simmons’ 

analytical model (Eq. 11) and the current 

density JTM provided by the transfer-matrix 

technique (Eq. 6). These JSim/JTM ratios are 

calculated for different values of the gap 

spacing D, work function Φ and applied 

voltage V. The values considered for D (0.5, 1, 

2 and 5 nm), Φ (1.5, 2,... 5 eV) and V (0.01, 

0.1, 1 and 10 V) are of practical interest when 

applying Simmons’ theory for the current 

density in metal-vacuum-metal junctions. The 

results show that Simmons’ analytical 

expression for the local current density 

actually provides results that are in good 

agreement with those provided by the 

transfer-matrix technique. The factor 

JSim/JTM that expresses the difference 

between the two models is of the order 0.3-3.7 

in most cases. Simmons’ model obviously 

loses its applicability when Eq. 14 for �� 

predicts a mean barrier height at the left-side 

Fermi level �� < 0. In conditions for which 

�� ≥ 0, Simmons’ analytical expression (Eq. 

11) turns out to provide decent estimations 

of the current density J that flows in the 

metal-vacuum-metal junction considered in 

this work. This justifies the use of Simmons’ 

model for these systems. 
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TABLE 1. Ratio JSim/JTM between the local current density JSim provided by Simmons’ 

analytical model and the current density JTM provided by the transfer-matrix technique, for 

different values of the gap spacing D, the common metal work function Φ and the applied 

voltage V. The Fermi energy (F is 10 eV and the temperature T is 300 K. 

 D=0.5 nm 

Φ (eV) V=0.01 V V=0.1 V V=1 V V=10 V 

1.5 / / / / 

2.0 / / / / 

2.5 / / / / 

3.0 / / / / 

3.5 0.362 0.367 0.327 / 

4.0 0.470 0.478 0.558 / 

4.5 0.481 0.489 0.587 / 

5.0 0.462 0.470 0.562 / 

 D=1 nm 

Φ (eV) V=0.01 V V=0.1 V V=1 V V=10 V 

1.5 0.872 0.871 / / 

2.0 1.811 1.898 2.605 / 

2.5 1.562 1.630 2.550 / 

3.0 1.265 1.312 1.969 / 

3.5 1.029 1.062 1.511 / 

4.0 0.852 0.876 1.189 0.088 

4.5 0.721 0.739 0.964 1.494 

5.0 0.622 0.635 0.802 1.993 

 D=2 nm 

Φ (eV) V=0.01 V V=0.1 V V=1 V V=10 V 

1.5 2.781 3.056 3.670 / 

2.0 2.137 2.297 3.604 / 

2.5 1.594 1.687 2.633 / 

3.0 1.218 1.275 1.893 0.961 

3.5 0.962 0.999 1.409 1.205 

4.0 0.784 0.809 1.092 1.482 

4.5 0.656 0.674 0.877 1.259 

5.0 0.563 0.576 0.726 1.097 

 D=5 nm 

Φ (eV) V=0.01 V V=0.1 V V=1 V V=10 V 

1.5 1.328 1.411 0.391 / 

2.0 1.384 1.500 1.349 0.683 

2.5 1.080 1.150 1.362 0.847 

3.0 0.851 0.895 1.118 0.814 

3.5 0.689 0.717 0.897 0.700 

4.0 0.572 0.592 0.731 0.565 

4.5 0.487 0.501 0.608 0.434 

5.0 0.423 0.434 0.518 0.310 
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It has been assumed in this modeling paper 

that both electrodes are smooth, flat and 

planar. This may not be an adequate modeling 

approximation and it may be that in some real 

devices, the electrostatic field near the 

emitting electrode varies somewhat across the 

electrode surface. In such cases, the “real 

average current density” is probably better 

expressed as Jav = αn Jlocal, where Jlocal is the 

local current density at a typical hot spot and 

the parameter αn (called here the “notional 

area efficiency”) is a measure of the apparent 

fraction of the electrode area that is 

contributing significantly to the current flow. 

However, there is no good present knowledge 

of the values of either of these quantities. It is 

also necessary to be aware that smooth-surface 

conceptual models disregard the existence of 

atoms and do not attempt to evaluate the role 

that atomic-level wave-functions play in the 

physics of tunneling. In the context of field 

electron emission [33–35], it is known that 

these smooth-surface models are unrealistic 

and that the neglect of atomic-level effects 

creates uncertainty over the predictions of the 

smooth-surface models. At present, it is 

considered that the derivation of accurate 

atomic-level theory is a very difficult problem, 

so reliable assessment of the error in the 

smooth-surface models is not possible at 

present. However, in the context of field 

electron emission, our present guess is that the 

smooth-surface models may over-predict by a 

factor of up to 100 or more, or under-predict 

by a factor of up to 10 or more. Recent results 

obtained by Lepetit are consistent with these 

estimations [36]. Uncertainties of this general 

kind will also apply to the Simmons’ results 

and to the results derived in this paper. 

V. Conclusions 

We used a transfer-matrix technique to test 

the consistency with which Simmons’ 

analytical model actually predicts the local 

current density J that flows in flat metal-

vacuum-metal junctions. Simmons’ analytical 

model relies on a mean-barrier approximation 

for the transmission probability. This enables 

the derivation of an analytical expression for 

the current density. In Simmons’ original 

papers, there is a missing factor of 1/2 in the 

image potential energy. This factor was 

included for correction in our presentation of 

Simmons’ theory. We then compared the 

current density JSim provided by this analytical 

model with the current density JTM provided 

by a transfer-matrix technique. We also 

considered the current densities provided by a 

numerical integration of the transmission 

probability obtained with the WKB 

approximation and Simmons’ mean-barrier 

approximation. The comparison between these 

different models shows that Simmons’ 

analytical model for the current density 

provides results that are in good agreement 

with an exact solution of Schrödinger’s 

equation for a range of conditions of practical 

interest. The ratio JSim/JTM used to measure the 

accuracy of Simmons’ model takes values of 

the order 0.3-3.7 in most cases, for the 

conditions considered in this work. Simmons’ 

model can obviously only be used when the 

mean-barrier height at the Fermi level Φ�  is 

positive. This corresponds to the linear and 

field-emission regimes of J-V plots. Future 

work may extend the range of conditions 

considered for this numerical testing of 

Simmons’ model and seek establishing a 

correction factor to use with Simmons’ 

equation in order to get more exact results. 
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