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Abstract: We present a genetic algorithm that we developed in order to address 

computationally expensive optimization problems in optical engineering. The idea consists 

of working with a population of individuals representing possible solutions to the problem. 

The best individuals are selected. They generate new individuals for the next generation. 

Random mutations in the coding of parameters are introduced. This strategy is repeated 

from generation to generation until the algorithm converges to the global optimum of the 

problem considered. For computationally expensive problems, one can analyze the data 

collected by the algorithm in order to infer more rapidly the final solution. The use of a 

mutation operator that acts on randomly-shifted Gray codes helps the genetic algorithm 

escape local optima and enables a wider diversity of displacements. These techniques 

reduce the computational cost of optical engineering problems, where the design 

parameters have a finite resolution and are limited to a realistic range. We demonstrate the 

performance of this algorithm by considering a set of 22 benchmark problems in 5, 10 and 

20 dimensions that reflect the conditions of these engineering problems. We finally show 

how these techniques accelerate the determination of optimal structures for the broadband 

absorption of electromagnetic radiations.  

Keywords: Genetic Algorithm, Optical Engineering, Optimization, Quadratic 

Approximation, Gray Codes, Metamaterials. 
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Introduction 

The design of optical devices requires at 

some point the search for optimal parameters 

in order to achieve maximal performances. 

With genetic algorithms (GAs), natural 

selection is mimicked in order to determine 

this set of optimal parameters. The idea 

consists of working with a virtual population 

of individuals representing possible solutions 

to the problem. The initial population consists 

of random individuals. The best individuals 

are then selected. They generate new 

individuals for the next generation. Random 

mutations in the coding of parameters are 

finally introduced. When repeated from 

generation to generation, this strategy enables 

the determination of a globally optimal set of 

parameters [1-6]. 

Optical engineering problems are typically 

computationally expensive due to the 

numerous degrees of freedom and the CPU 

time involved by the numerical modeling. It is 

therefore desirable to solve the optimization 

problem ideally by a single run of the GA and 

with a reduced number of fitness evaluations. 

The fitness is defined as the objective function 

to be optimized. When the time required by 
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the fitness evaluations is largely superior to 

the time required by the GA itself, it makes 

sense to establish a record with all fitness 

evaluations in order to avoid any duplication 

of these calculations. The GA also gains at 

being organized in a way that enables all 

fitness calculations in a given generation to be 

addressed at the same time. This allows indeed 

a massive parallelization of these calculations 

on modern supercalculators. The genetic 

algorithm finally gains at being combined with 

a mathematical analysis of the collected data 

in order to accelerate convergence to the final 

solution. The objective is to determine the 

global optimum as quickly as possible 

(reduced number of generations) and with a 

reduced number of fitness evaluations. 

One can guide the algorithm to promising 

directions and accelerate the refinement of the 

final solution by coupling the genetic 

algorithm with a local optimizer (memetic 

algorithm) [7-13]. A first approach consists of 

applying a local optimization procedure on the 

solutions established by the genetic algorithm, 

either regularly (starting from best-so-far 

solutions established at each generation by the 

GA) or after the GA has converged (starting 

from the final best solutions established by the 

GA) [5, 8]. This approach requires however an 

extra budget of fitness evaluations. Another 

approach consists of working on the data 

already collected by the genetic algorithm in 

order to avoid an increase in the number of 

fitness evaluations. An idea consists of 

establishing different approximations of the 

fitness (reduced models) in order to implement 

this local optimization [14-19], improve the 

genetic operators [20, 21], estimate the 

robustness of solutions [22] or avoid 

unnecessary evaluations of the fitness [23-25]. 

The data collected by the GA can actually be 

analyzed by a variety of mathematical 

methods. Methods based on the Singular 

Values Decomposition were used to estimate 

the evolution direction and increase the 

population diversity [26]. This technique was 

also used to qualify potential candidates for 

the next generation [27]. Recent papers finally 

considered training neural networks in order to 

guide the genetic algorithm [20, 28-31]. A 

neural network is then trained on the data 

collected by the GA in order to establish 

reduced models of the fitness and suggest 

promising solutions. 

In optical engineering problems, the 

physical parameters to determine have a finite 

resolution due to physical or experimental 

limitations in the fabrication of a device [32-

37]. The decision variables have therefore a 

finite number of possible values (typically of 

the order of 1000). A binary encoding of these 

decision variables offers the advantage to 

account for this discrete set of possible values 

at all stages of the algorithm. Optical 

engineering problems that rely on numerical 

simulations for the evaluation of the fitness 

have also as specificity the fact that the fitness 

is generally accurate to only three or four 

significant digits. Optimizing the fitness 

beyond this limited accuracy does not make 

any sense. The genetic algorithm on the 

contrary gains at being tuned to achieve a 

target accuracy that is both realistic and 

appropriate for these applications (typically 

Δftarget~10-4). 

We present in this article an algorithm that 

we developed in order to account for these 

different issues when addressing optical 

engineering problems. Our approach consists 

of establishing at each generation a quadratic 

approximation of the fitness in the close 

neighborhood of the best-so-far individual in 

order to infer more rapidly the global 

optimum. We also consider randomly-shifted 

Gray codes when applying mutations in order 

to improve exploration and escape local 

optima. These modifications of the well-

known genetic algorithm reduce the 

computational cost of optical engineering 

problems, where the design parameters have a 

finite resolution and are limited to a realistic 

range. This article is organized as follows. The 

main lines of our algorithm are presented in 

the next section. Then, we apply our algorithm 

to typical benchmark problems in 5, 10 and 20 

dimensions in order to demonstrate its 

performance. Then, we provide a real optical 

engineering application. Finally, we conclude 

this article.  

Description of the Genetic 

Algorithm 

The genetic algorithm described in 

this section aims at determining the global 

optimum (depending on the application, it 

will be the global minimum or the global 

maximum) of an objective function � =
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�(��, … ��), where n is the number of 

decision variables. �
 ∈ [�

min, �


max], with 

a discretization step ∆�
. The boundaries 

�

min and �


max must be specified at the 

beginning of the search. ∆�
 accounts for 

the experimental resolution of each 

decision variable. The variables �
 are 

represented by sequences of binary digits 

(genes). We use the Gray code to interpret 

the bit content of these genes [5, 38]. The 

decision variables are then given by 

�
 = �

min + 〈gene �〉 × ∆
,where 〈gene �〉 ∈

[0, 2�� − 1] refers to the value of the gene. 

The bit length �
 of each gene is the first 

integer for which �

min + (2�� − 1) × ∆
≥

�

max. ��
�� = ∑ �


�

 �  refers to the total 

number of bits in a DNA; i.e., the set of 

genes used for coding the n decision 

variables. 

A detailed pseudocode of our 

algorithm can be found in Appendix A. 

We present here only the main ideas of 

this algorithm, which are as follows: We 

consider a population of npop = 50 

individuals. We start with a random 

population. We evaluate the fitness 

�(��, … ��) of each individual and sort the 

population from the best individual to the 

worst one. We save the computed 
!�""⃗ , �(�""⃗ )$ data in a record. We compute the 

genetic similarity s of the population; s 

corresponds to the fraction of bits in the 

population whose value is identical to the 

best individual [32, 38]. We then define a 

progress indicator % = |' − 0.5|/0.5, 

which takes values between 0 and 1. The 

worst nrand = even [0.1×npop × (1-p)] 

individuals of the population are then 

replaced by random individuals (even [.] 

stands for the nearest even integer). These 

random individuals are transferred to the 

next generation. The remaining N = npop -

nrand individuals of the current population 

participate to the usual steps of selection, 

crossover and mutation. We hence select 

N parents in this subset of N individuals 

by a rank-based roulette wheel selection, 

noting that a given individual can be 

selected several times [5, 32]. For any pair 

of parents, we define two children for the 

next generation either (i) by a one-point 

crossover of the parents' DNA (probability 

of 70%) or (ii) by a simple replication of 

the parents. The children obtained by 

crossover are subjected to a modified 

mutation operator that acts on randomly-

shifted Gray codes (see Appendix B), 

using m = 0.95/nbits as mutation rate for 

individual bit flips. We apply at this point 

a local optimization procedure on the 
!�""⃗ , �(�""⃗ )$ data collected so far by the 

genetic algorithm in order to guess the 

final solution (see Appendix C). If the 

result of this local optimization can be 

accepted, it replaces the last individual 

already scheduled for the next generation 

(a random individual if nrand > 0). Before 

evaluating the fitness of the individuals 

finally scheduled for the next generation, 

we check the records in order to avoid any 

duplication of these evaluations. We then 

evaluate the fitness of the individuals 

scheduled for the next generation for 

which no !�""⃗ , �(�""⃗ )$ data was found. We 

sort the new population and apply elitism 

in order to make sure that the best solution 

achieved so far is not lost when going 

from one generation to the next [5]. We 

apply these different steps from generation 

to generation until a termination criterion 

is met. 

The organization of the algorithm 

ensures that all fitness calculations in a 

given generation can be evaluated in 

parallel, since there is only one round of 

fitness evaluations per generation. In this 

implementation, the parents are not 

transferred automatically to the next 

generation, since this leads to premature 

convergence to solutions that are not 

globally optimal. We found in previous, 

unpublished work that a crossover rate of 

70% maintains a good balance between 

the conservation of good solutions 

(individuals transferred to the next 

generation without any modification) and 

the exploration of new solutions 

(individuals modified by the operators of 

crossover and mutation). The mutation 

rate m = 0.95/nbits is settled automatically 

by the number of bits used for the 

representation of the decision variables. 

We found in previous work that the 

optimal mutation rate decreases with the 

dimension of the problem. Maintaining 

m×nbits<1 is also motivated by biological 

evidence [39]. This condition ensures 
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indeed that the best individuals in the 

population have a chance to be unaffected 

by mutations. We confirmed empirically 

that this improves in the long term the 

quality of the solutions established by the 

genetic algorithm. The use of a mutation 

operator that acts on randomly-shifted 

Gray codes helps the genetic algorithm 

escape local optima, since the 

displacements generated by this mutation 

operator have a wider diversity (see 

Appendix B). This improves also the 

exploration of the decision variable space. 

The local optimization procedure finally 

provides a useful guidance to the genetic 

algorithm by indicating, generation after 

generation, directions to consider based on 

collected data. The technical parameters of 

this algorithm were tuned on test problems 

in 5, 10 and 20 dimensions, for conditions 

that reflect those encountered in optical 

engineering problems [40]. We 

demonstrate the performance of this 

algorithm on an extended set of test 

problems in the next section. 

Application to Test Problems in 

5, 10 and 20 Dimensions 

In optical engineering problems that 

stimulated this work [32-34], the decision 

variables xi must be determined only up to 

a precision Δxi due to experimental 

limitations in the fabrication of a device. 

We will therefore consider in this section 

test problems for which ∆�
 = (�

max −

�

min)/4096 in order to reflect the 

conditions of these applications. This 

corresponds to ni=12 bits per gene, since 

212 = 4096. We will also consider that the 

global minimum of the test problems 

considered in this section is found if the 

objective function is within a margin 

∆�target of 10-4 compared to the exact 

solution. This reflects again the accuracy 

with which solutions should be established 

in these optical engineering applications. 

Our objective was to determine the global 

minimum of this type of problems with a 

high chance of success in one run and with 

a reduced number of fitness evaluations 

(since we accept a margin ∆�target on the 

global minimum, technically we actually 

seek determining a "global ∆�target-optimal 

solution". Since the algorithm is 

stochastic, there is of course no guarantee 

on optimality). 

The 22 benchmark functions 

considered in this work are given in Table 

1. The boundaries [�

min, �


max] considered 

for each function are provided as well as 

the number of bits ni used for the 

representation of each decision variable 

(ni=12, except for Schwefel 7, where 

ni=16) [41]. With this setting of the 

experiment, all gene values can be 

accepted and there is a point in the grid for 

which the target ∆�target of 10-4 can 

actually be reached. In order to make sure 

that our results do not depend on a specific 

encoding of the decision variables and in 

order to break easy symmetries, we 

consider for each instance of the genetic 

algorithm a random shift of the domain 

[�

min, �


max] considered for each decision 

variable. This randomization of the 

boundaries is limited to integer multiples 

of ∆�
 = (�

max − �


min)/2�� in order to 

make sure that the point for which the 

target ∆�target of 10-4 can actually be 

reached remains on the grid. The limits 

considered for this randomization of the 

boundaries are given in the fourth column 

of Table 1. 

When running the genetic algorithm 

on a given function �(�""⃗ ) in order to 

determine its global minimum, we 

consider that the target ∆�target is reached 

if |�(�""⃗ best) − �opt
∗ )| ≤ ∆�target, where 

�(�""⃗ best) is the best-so-far solution found 

by the genetic algorithm and �opt
∗  the exact 

global minimum. By running the genetic 

algorithm #run times on each test function, 

we can measure the probability 01∆�target2 

with which the target ∆�target is reached by 

a given run of the algorithm. This quantity 

is calculated by 01∆�target2=#success/#run, 

where #success refers to the number of 

successful runs. We can also measure the 

average number of fitness evaluations 

required to reach ∆�target. This quantity is 

calculated by 〈�eval〉=#eval(target not 

reached)/#success, where #eval(target not 

reached) is the number of fitness 

evaluations in all generations for which 

the target ∆�target was not reached 
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(summing over the #run executions of the 

GA) [11]. 〈�eval〉 includes fitness 

evaluations in runs that failed to meet the 

target. Accounting for failed attempts 

makes sense, since they must be paid in 

real-world applications. They consume 

indeed CPU time and cause a delay in the 

resolution of a problem. Our efforts to 

tune the genetic algorithm therefore 

focusses on 〈�eval〉 as a measure for the 

computational cost associated with a given 

target ∆�target. Another measure commonly 

used in the literature is 〈�eval
∗ 〉, the average 

number of fitness evaluations required to 

reach ∆�target when this target is actually 

reached. 〈�eval
∗ 〉 does not account for failed 

attempts. Similarly, 〈�gen
∗ 〉 measures the 

average number of generations required to 

reach a ∆�target for runs that actually reach 

this target. 〈�gen
∗ 〉 is representative of how 

fast a solution is found, if found. 

 

TABLE 1. List of test functions with the boundaries [�

min, �


max] considered for the decision 

variables and the number of bits ni used for the representation of each gene. The fourth 

column indicates the limits considered for the randomization of the boundaries when 

running a given instance of the genetic algorithm. Names: Sphere (#1), Rotated Hyper-

Ellipsoid (#2), Rosenbrock (#3), Modified Dixon-Price (#4), Mayer (#5), Schwefel 7 (#6), 

Levy (#7), Rastrigin (#8), Ackley (#9), Griewank (#10), Cosine Mixture (#11), 

Exponential (#12), Levy and Montalvo 1 (#13), Levy and Montalvo 2 (#14), Zakharov 

(#15), Schwefel 3 (#16), Brown 3 (#17), Cigar (#18), Sinusoidal (#19), Trigonometric 1 

(#20), Pinter (#21) and Whitley (#22). 
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The results obtained with our 

algorithm, when considering the 

benchmark problems of Table 1 for n = 5, 

10 and 20 dimensions, are summarized in 

Table 2. Tables 3, 4 and 5 provide the 

01∆�target2, 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉 
values obtained for individual functions 

when considering a target ∆�target of 10-4. 

For these benchmark problems, we 

consider a maximum of 30×nbits 

generations for a given run of the 

algorithm. The algorithm is interrupted if 

(i) there is no improvement of the best 

fitness in the last 1.5×nbits generations, (ii) 

the mean value of the genetic similarity s 

over the last 1.5×nbits generations is higher 

than 1-3m, (iii) s≥1-m or (iv) the number 

of fitness evaluations exceeds 10000×n. 

The different columns of Table 2 show the 

results obtained when considering/not 

considering (i) local optimizations based 

on quadratic approximations of the fitness 

and (ii) a mutation operator that acts on 

randomly-shifted Gray codes. The table 

provides the probability of success in one 

run 01∆�target2 and the average number of 

fitness evaluations 〈�eval〉 for different 

values of ∆�target. It also specifies the 

number of functions for which the target 

was reached at least once in ten runs. This 

comparison between different versions of 

our algorithm proves the advantage of 

using a mutation operator that acts on 

randomly-shifted Gray codes and a local 

optimization procedure that works on the 

data collected by the algorithm (see 

Appendix B and Appendix C). 

By using the local optimization 

procedure and a mutation operator that 

acts on randomly-shifted Gray codes, we 

achieve a probability of success in one run 

01∆�target2 of 94.9% for �=5 dimensions, 

92.3% for �=10 dimensions and 89.0% for 

�=20 dimensions when considering a 

target ∆�target of 10-4 (these values 

correspond to an average over the 22 

benchmark problems; the values obtained 

for individual functions can be found in 

Tables 3, 4 and 5). The average number of 

fitness evaluations 〈�eval〉 required to 

reach this target is 1724 for �=5 

dimensions, 5104 for �=10 dimensions 

and 19870 for �=20 dimensions. This 

corresponds to 〈�eval〉/� ratios of 345 for 

� =5 dimensions, 510 for � =10 

dimensions and 993 for � =20 dimensions. 

We meet therefore our objective to 

determine the global minimum of these 

test problems with a high probability of 

success in one run (01∆�target2=89-95%), 

while keeping to a budget of fitness 

evaluations 〈�eval〉 of the order of 

~1000 × �. In contrast, when the 

techniques presented in the two 

Appendices are not used, the probability 

of success in one run 01∆�target2 is 

reduced to 75.6% for �=5 dimensions, 

62.5% for �=10 dimensions and 46.7% for 

�=20 dimensions. The number of 

functions for which the global minimum is 

determined at least once in ten runs 

decreases rapidly with the dimension of 

the problem, going from 18 functions out 

of 22 for problems in 5 dimensions to only 

15 functions out of 22 for problems in 20 

dimensions. The average number of 

fitness evaluations required to reach a 

given target is also significantly higher. 

The local optimization procedure 

improves significantly the ability of the 

genetic algorithm to determine the global 

minimum (a global ∆�target -optimal 

solution) of the functions considered 

(increase of 01∆�target2). This conclusion 

was tested for statistical significance [42]. 

This technique also accelerates the 

algorithm by reducing the number of 

fitness evaluations (decrease of 〈�eval〉). 
Although originally intended to accelerate 

the refinement of the final solution, this 

technique actually provides a useful 

guidance to the genetic algorithm by 

indicating, generation after generation, 

directions to consider based on collected 

data. This is especially useful for functions 

that require displacements in preferential 

directions, like the function #3 

(Rosenbrock). It is also useful for 

functions whose large-scale structure leads 

to the global minimum despite the 

presence of many local minima, like the 

function #10 (Griewank). For functions 

that have a single minimum, like the 

function #1 (Sphere) and the function #2 

(Rotated Hyper-Ellipsoid), the procedure 

is actually able to finalize the 
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minimization as soon as a sufficient 

number of data points have been collected. 

Other functions, like the function #12 

(Exponential), the function #17 (Brown 3) 

and the function #18 (Cigar), have their 

global minimum also much more rapidly 

determined. 

 

TABLE 2. Results obtained for test problems in 5, 10 and 20 dimensions. The different 

columns correspond to results obtained when considering/not considering (i) local 

optimizations based on quadratic approximations of the fitness and (ii) a mutation 

operator that acts on randomly-shifted Gray codes. 01∆�target2 represents the probability 

to reach a target ∆�target by a single run of the GA. 〈�eval〉 is the average number of fitness 

evaluations required to reach this target, counting runs that fail to meet the target. 

#fct(P≥10%) is the number of functions for which the target was reached at least once in 

ten runs. The last column provides for comparison the results obtained with CMA-ES 

when using the same population size of 50 individuals. These statistics were generated by 

running the genetic algorithm 100 times on each test function. 
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TABLE 3. Results obtained for each test function when considering a target ∆�target of 10-4 

for problems in 5 dimensions. The local optimization procedure as well as a mutation 

operator that acts on randomly-shifted Gray codes are used by the genetic algorithm. The 

quantities represented are the probability of success in one run (01∆�target2), the average 

number of fitness evaluations required to reach the target counting runs that fail to meet 

the target (〈�eval〉), the average number of fitness evaluations required to reach the target 

counting only runs that reach the target (〈�eval
∗ 〉) and the average number of generations 

required to reach the target counting only runs that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉 
corresponds to the number of generations beyond that associated with the initial 

population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉 is also indicated. 

These statistics were generated by running the genetic algorithm 100 times on each test 

function. 

 
 

The use of a mutation operator that 

acts on randomly-shifted Gray codes 

provides a further boost to our results. 

Table 2 reveals indeed that the probability 

to determine the global minimum (a global 

∆�target-optimal solution) of the functions 

considered by a single run of the genetic 

algorithm is improved by this technique. 

This conclusion was also tested for 

statistical significance [43]. It applies 

whether the local optimization procedure 

is used or not. Table 2 reveals consistently 

that the number of fitness evaluations 

required to determine the global minimum 

of the functions considered is reduced by 

this technique. The use of randomly-

shifted Gray codes when applying 

mutations helps the genetic algorithm 

escape local minima, since the 

displacements generated by these 

mutations have a wider diversity (see 

Appendix A). This is especially useful for 

functions with many local minima, like 

the function #6 (Schwefel), the function 

#8 (Rastrigin), the function #11 (Cosine 

Mixture), the function #13 (Levy and 

Montalvo 1), the function #14 (Levy and 

Montalvo 2) and the function #21 (Pinter). 

The wider variety of displacements 

generated by the use of randomly-shifted 

Gray codes improves exploration of the 

decision variable space, which results in a 

higher probability to detect the global 

minimum of the functions considered. 

This technique represents a useful 

complement to the local optimization 

procedure used in this work. 
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TABLE 4. Results obtained for each test function when considering a target ∆�target of 10-4 

for problems in 10 dimensions. The local optimization procedure as well as a mutation 

operator that acts on randomly-shifted Gray codes are used by the genetic algorithm. The 

quantities represented are the probability of success in one run (01∆�target2), the average 

number of fitness evaluations required to reach the target counting runs that fail to meet 

the target (〈�eval〉), the average number of fitness evaluations required to reach the target 

counting only runs that reach the target (〈�eval
∗ 〉) and the average number of generations 

required to reach the target counting only runs that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉 
corresponds to the number of generations beyond that associated with the initial 

population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉 is also indicated. 

These statistics were generated by running the genetic algorithm 100 times on each test 

function. 

 
 

The genetic algorithm presented in 

this work generally achieves good results 

on the test problems considered. The 

functions #20 (Trigonometric 1) and #22 

(Whitley) remain however challenging. It 

is interesting at this point to compare our 

results with those provided by the 

reference algorithm CMA-ES [44-46]. 

CMA-ES, for Covariance-Matrix 

Adaptation-Evolution Strategy, is a 

genetic algorithm that relies on a real-

value encoding of the decision variables. 

Mutations consist of random normally-

distributed perturbations of the decision 

variables. The covariance matrix that 

actually controls the distribution of these 

mutations is adapted along the 

optimization. When applying CMA-ES to 

our test problems with the same 

population size of 50 individuals, it 

actually achieves a probability of success 

in one run 01∆�target = 10452 of 84.1% 

for �=5 dimensions, 81.7% for �=10 

dimensions and 72.0% for �=20 
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dimensions [47]. These results are 

included in Table 2. A detailed analysis of 

the results achieved with CMA-ES on 

individual test functions for �=20 

dimensions can be found in Table 6. The 

comparison with Table 5 shows that the 

algorithm presented in this work achieves 

respectable performances for the class of 

problems considered. The use of a 

mutation operator that acts on randomly-

shifted Gray codes enables indeed our 

genetic algorithm to escape local optima 

more easily. This improves its ability to 

determine the true global minimum of the 

multimodal functions considered in this 

work.  

 

TABLE 5. Results obtained for each test function when considering a target ∆�target of 10-4 

for problems in 20 dimensions. The local optimization procedure as well as a mutation 

operator that acts on randomly-shifted Gray codes are used by the genetic algorithm. The 

quantities represented are the probability of success in one run (01∆�target2), the average 

number of fitness evaluations required to reach the target counting runs that fail to meet 

the target (〈�eval〉), the average number of fitness evaluations required to reach the target 

counting only runs that reach the target (〈�eval
∗ 〉) and the average number of generations 

required to reach the target counting only runs that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉 
corresponds to the number of generations beyond that associated with the initial 

population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉 is also indicated. 

These statistics were generated by running the genetic algorithm 100 times on each test 

function. 
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TABLE 6. Results obtained with CMA-ES for each test function when considering a target 

∆�target of 10-4 for problems in 20 dimensions. CMA-ES is used with a population size of 

50 individuals. The quantities represented are the probability of success in one run 

(01∆�target2), the average number of fitness evaluations required to reach the target 

counting runs that fail to meet the target (〈�eval〉), the average number of fitness 

evaluations required to reach the target counting only runs that reach the target (〈�eval
∗ 〉) 

and the average number of generations required to reach the target counting only runs 

that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉 corresponds to the number of generations beyond 

that associated with the initial population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉 

and 〈�gen
∗ 〉 is also indicated. These statistics were generated by running CMA-ES 100 

times on each test function. 

 
 

Application in Optical 

Engineering 

In order to provide a real-world 

application in optical engineering, we 

consider the maximization of broadband 

absorption by a metamaterial. The 

structures considered in this work consist 

of 2-D periodic arrays of truncated square-

based pyramids made of 3 stacks of 

titanium/poly (methyl methacrylate) 

(Ti/PMMA) layers (see Fig. 1). These 

pyramids stand on a flat support that 

consists of successive uniform layers of 

Au (60 nm), Cr (5 nm) and amorphous Si 

(1 micron). Previous work has shown that 

periodic arrays of truncated square-based 

pyramids made of successive stacks of 

metal/dielectric layers can lead to the 

quasi-perfect absorption of 

electromagnetic radiations over a wide 

wavelength range. By considering 

pyramids made of 20 stacks of Au/Ge 

layers, Lobet et al. could indeed achieve 

an integrated absorptance of 98% of 

incident light over a 0.2-5.8 µm 

wavelength range [48, 49]. This ultra-

broadband absorption is essentially due to 

(i) an efficient anti-reflection property of 

these pyramidal structures [50, 51] and (ii) 

a well-designed coupling between the 

localized surface plasmons found at the 

metal/dielectric interfaces of each stack 

[52-55]. 
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FIG. 1. Square-based pyramids made of 3 stacks of Ti/PMMA layers. The support of the pyramids consists 

of uniform layers of Au (60 nm), Cr (5 nm) and a-Si (1 micron). We assume an infinite substrate of Si 

(ε=16). 
 

In order to reduce the difficulty of 

fabricating structures made of many 

different layers, we will consider in this 

work pyramids that consist of only three 

stacks of Ti/PMMA layers (see Fig. 1 

again). Our objective is to maximize the 

absorption of incident radiations in the 

wavelength range 420-1600 nm by tuning 

the geometrical parameters of the system. 

The objective function (fitness) for this 

problem is therefore defined by 6(%) =

100 ×
8 9(:);:<max

<min
:max4:min

, where =min=420 nm 

and =max=1600 nm. >(=) refers to the 

absorptance of normally incident 

radiations at the wavelength =. It is 

calculated by a Rigorous Coupled Waves 

Analysis (RCWA) method [56, 57]. This 

method solves Maxwell's equations 

numerically in laterally periodic systems. 

We used this method with 11×11 plane 

waves and reported values for the 

refractive indices [58-60]. The parameters 

to determine in order to maximize the 

figure of merit 6 are (i) the lateral period P 

of the system, (ii) the lateral dimensions 

L1, L2 and L3 of the three stacks of 

Ti/PMMA layers and (iii) the thicknesses 

t1, t2 and t3 of the three PMMA layers (the 

subscripts 1, 2 and 3 refer respectively to 

the top, medium and bottom stacks of the 

nanopyramids). The thickness of each Ti 

layer is fixed at 15 nm. In order to reduce 

the search to a realistic range, we actually 

consider P values between 50 and 500 nm, 

L1, L2 and L3 values between 50 and 500 

nm and t1, t2, t3 values between 50 and 250 

nm. We account for the experimental 

resolution with which these structures can 

possibly be fabricated by considering a 

discretization step of 1 nm for these 

different quantities. In order to obtain 

pyramidal structures, we finally impose 

that the genetic algorithm only considers 

solutions for which L1<L2<L3≤P [61]. 

With these specifications, we hence have 

seven decision variables to determine and 

1.3×1016 possible parameter 

combinations! Each simulation takes 

approximately one hour of CPU time. We 

are therefore in conditions where it is 

impossible to test all parameter 

combinations. We are also in conditions 

where the time required by the fitness 

evaluations is largely superior to the time 

required for running the genetic algorithm. 

In order to show the advantage of 

using the techniques developed in 

Appendix B and Appendix C, we 

represent in Fig. 2 the fitness (figure of 

merit 6) of the best individual as a 

function of the number of generations. 

When using a mutation operator that acts 

on randomly-shifted Gray codes 

(Appendix B) and a local optimization 

procedure that analyzes the collected data 

(Appendix C), the genetic algorithm 

determines after 167 generations and 4628 

fitness evaluations the final solution 

(global optimum associated with a figure 

of merit 6=99.757%; the parameters found 

by the GA are the following: L1=155 nm, 

t1=124 nm, L2=285 nm, t2=126 nm, 

L3=416 nm, t3=98 nm and P=416 nm). If 

all fitness calculations in a given 
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generation run in parallel, this solution is 

actually obtained after 7 days. When the 

techniques described in Appendix B and 

Appendix C are not used, the genetic 

algorithm stops after 266 generations and 

6275 fitness evaluations without finding 

the global optimum (the solution found in 

this case corresponds to a figure of merit 

6=99.726%; the parameters associated 

with this solution are the following: 

L1=161 nm, t1=125 nm, L2=295 nm, 

t2=126 nm, L3=431 nm, t3=97 nm and 

P=431 nm). The GA stopped in this case, 

because the mean value of the genetic 

similarity s over the last 1.5×nbits 

generations was higher than 1-3m, where 

the total number of bits nbits is 60 and the 

mutation rate m=0.95/nbits is 1.6% for this 

application. If all fitness calculations in a 

given generation run in parallel, this sub-

optimal solution is obtained after 11 days. 

As shown in the previous section, several 

runs are typically necessary on difficult 

problems when the techniques of 

Appendix B and Appendix C are not used. 

This would be the case here. Fig. 2 shows 

that the modified version of the genetic 

algorithm (techniques of Appendix B and 

Appendix C used) actually outperforms 

the classical version of the genetic 

algorithm (techniques of Appendix B and 

Appendix C not used) after only 50 

generations. 

 
FIG. 2. Best fitness (figure of merit η) when optimizing a structure made of three stacks of Ti/PMMA 

layers. Solid: the GA is used with a mutation operator that acts on randomly-shifted Gray codes 

(Appendix B) and a local optimization procedure (Appendix C). Dashed: the GA does not use the 

techniques developed in Appendix B and Appendix C. The stars indicate when the best solution is 

found. 

 

Conclusions 

This article describes a genetic 

algorithm that we developed in order to 

address computationally expensive 

optimization problems in optical 

engineering. For these problems, the 

decision variables are characterized by a 

finite set of possible values due to 

experimental limitations in the fabrication 

of a device. A target accuracy of 10-4 on 

the objective function is also sufficient for 

these applications. The technical 

parameters of our algorithm were tuned to 

address these conditions. The organization 

of the algorithm enables a massive 

parallelization of the fitness calculations. 

The data collected by the genetic 

algorithm is analyzed by a local 

optimization procedure in order to infer 

more rapidly the final solution. This 

procedure, which relies on quadratic 

approximations of the fitness in the close 

neighborhood of the best-so-far solution, 

provides a useful guidance to the genetic 

algorithm by indicating, generation after 

generation, directions to consider based on 

these collected data. We also use a 

mutation operator that acts on randomly-

shifted Gray codes. This helps the genetic 

algorithm escape local optima. It also 

improves the exploration of the decision 
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variable space by enabling a wider 

diversity of displacements. We applied 

this algorithm to a set of 22 benchmark 

problems in 5, 10 and 20 dimensions in 

order to demonstrate its performance. The 

results prove that the techniques presented 

in this work improve significantly the 

ability of the genetic algorithm to 

determine the global minimum of these 

problems. The average number of fitness 

evaluations required to determine these 

solutions is also significantly reduced. 

This algorithm was already applied 

successfully to a variety of 

computationally expensive optimization 

problems in optical engineering. We 

showed in this article how these 

techniques accelerate the optimization of 

square-based pyramidal structures for the 

broadband absorption of electromagnetic 

radiations. 

Appendix A: Pseudocode of the 

Genetic Algorithm 

Initialize a Population of npop random 

individuals. 

Compute the fitness �(�⃗) of each individual in 

the Population. 

Save the calculated !�⃗, �(�⃗)$ data in the 

Records. 

Sort the Population from best to worst 

individuals. 

Save !�⃗best, �best$=best-so-far solution. 

 

For k ranging from 1 to ngen: 

  Compute genetic similarity s of the Population. 

  Set % = |' − 0.5|/0.5,  

nrand=even[0.1×npop×(1-p)] and N=npop-nrand. 

  Define, for the modified mutation operator, a 

random shift
 ∈ [0, 2�� − 1] for each gene 

� ∈ [1, �]. 
 

  Pool(N+1:npop) = nrand random individuals. 

  For i ranging from 1 to N/2: 

    Select Parent1 in Population(1:N) by a rank-

based roulette wheel selection. 

    Select Parent2 in Population(1:N) by a rank-

based roulette wheel selection. 

    If rnd ≤ 0.7: 

      {Child1,Child2}=1-point crossover between 

{Parent1,Parent2}. 

      Apply_Mutation=True. 

    Else: 

      {Child1,Child2}={Parent1,Parent2}. 

      Apply_Mutation=False. 

    If Apply_Mutation: 

      Apply modified mutation operator on Child1 

(see Appendix B). 

      Apply modified mutation operator on Child2 

(see Appendix B). 

    Pool(1+(i-1)*2)=Child1. 

    Pool(2+(i-1)*2)=Child2. 

  Guess=Local Optimization using !�⃗, �(�⃗)$ data 

in the Records (see Appendix C). 

  If Guess can be accepted: 

    Pool(N)=Guess. 

   

  Check the Records to avoid any duplication in 

the fitness evaluations. 

  Compute the fitness �(�⃗) of each new 

individual in the Pool. 

  Save the calculated !�⃗, �(�⃗)$ data in the 

Records. 

  Sort the Pool from best to worst individuals. 

  Set new Population=Pool. 

   

  If best individual in new Population not as good 

as previous !�⃗best, �best$: 

    Choose random integer � ∈ [1, �pop]. 
    Population(�)= �⃗best. 

    Update sorting of Population. 

  Save !�⃗best, �best$=best-so-far solution. 

  Exit if a stopping criterion is met. 

Appendix B: Modified Mutation 

Operator Based on Randomly-

Shifted Gray Codes 

The decision variables are represented by 

�
 = �

min + 〈gene �〉 × ∆
, where 〈gene �〉 ∈

[0, 2�� − 1] stands for the value coded by the ni 

binary digits of the gene. We use the Gray code 

to interpret the value of this gene [5, 39]. A Gray 

code is characterized by the fact that successive 

numbers differ only by one bit (see Table 7). It is 

therefore always possible to move from �
 to 

�
 + Δ�
 by changing a single bit. This is an 

advantage compared to standard binary, where 

several bit changes are typically necessary [62]. 

The use of Gray codes enables thus mutations to 

perform a fine tuning of the decision variables. 

By changing the ni-2 other bits of the gene, 

mutations will generate wider displacements in 

the decision variable space. These wider 

displacements are important for exploration. The 

displacements generated by mutations depend 

however artificially on the coding considered 

and this is a limit to exploration. 
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TABLE 7. Comparison between decimal, standard binary, the original Gray code and a 

shifted version of the Gray code (circular permutation by 3 steps). 

 
 

The idea to improve the mutation operator is 

hence to apply this operator to the encoding 

obtained with shifted versions of the Gray code. 

It consists actually of a circular permutation of 

the original encoding; see last column of Table 7 

[62-64]. At each generation, a random shift in 

the range [0, 2�� − 1] is attributed to each gene. 

This shift is specific to the gene. It is identical 

for all individuals of the current generation. Its 

value is reset at each generation. A possible 

implementation of the modified mutation 

operator is given in Table 8. This modified 

mutation operator receives genes that are 

expressed in the original Gray code. Before 

applying mutations, the original chain of binary 

digits 〈gene �〉 is translated from the original 

Gray code to the shifted Gray code (in Table 7, 

this comes to moving from column 3 to column 

4 on the line associated with the original 

encoding). Mutations are then applied on the 

modified encoding. The result is finally 

translated back from the shifted Gray code to the 

original Gray code (in Table 7, this comes to 

moving back from column 4 to column 3 on the 

line associated with the modified version of the 

gene). Since the result of this modified mutation 

operator is expressed in the original Gray code 

(reference encoding used in the rest of the 

algorithm), adaptation related to this reference 

encoding can still take place. 

TABLE 8. Possible implementation of the modified mutation operator. Operations 1, 2 and 3 

transform 〈gene �〉 from the original Gray code to the shifted Gray code. Operation 4 

introduces mutations on the encoding obtained with this shifted Gray code. Operations 5, 

6 and 7 transform the modified gene from the shifted Gray code to the original Gray code. 

The shift assigned to each gene is the same for all individuals in the population. It is reset 

randomly at each generation. 
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Illustrative example: Let us consider the 

number "3" (010 in the original Gray code; see 

third column of Table 7). Individual bit flips can 

lead to "2" (011), "4" (110) and "0" (000). This 

possible transition between "3" and "0" is 

specific to the original Gray code. There is no 

direct transition to the other entries of the table. 

If we consider a circular permutation by three 

steps of the original Gray code (last column of 

Table 7), the number "3" is now encoded by 

"101". Individual bit flips lead now to "2" (111), 

"4" (100) and "6" (001). There is a possible 

transition between "3" and "6" (instead of "3" 

and "0"). By changing the shift introduced in the 

Gray code at each generation, we reset the 

transitions generated by individual bit flips. 

Illustration with Rastrigin's function: 

Rastrigin's function (fct#8 in Table 1) provides a 

good illustration for the benefit of using 

randomly-shifted Gray codes when applying 

mutations. This function has many local minima. 

The global minimum is for �
=0 (i=1,… n). 

When searching for the global minimum of 

Rastrigin's function in n=10 dimensions, it turns 

out that the algorithm described in Sec. 2 fails 

most of the times at finding this global minimum 

if the mutation operator does not shift the Gray 

code. The reason is that xi=0 is represented by 

110000000000 in our case if we work in the 

original domain [-5.12, 5.12] (we have indeed 

�

min=-5.12 and Δ�
=0.0025; a gene value of 

2048 is represented by 110000000000 in the 

original Gray code). The closest local minimum 

is at �
= 0.995, which is represented by 

110101001001. There is a difference of four bits 

between these two encodings and the genetic 

algorithm has a hard time finding the appropriate 

bit changes once trapped in this local minimum. 

Fig. 3 shows that there is a poor diversity in the 

displacements generated by mutations if no 

shifting of the Gray code is considered. By 

considering randomly-shifted versions of the 

Gray code when applying mutations, we increase 

the diversity of the displacements generated by 

these mutations. This helps the genetic algorithm 

escape the local minimum to eventually find the 

global minimum. The second part of Fig. 3 

shows that there is indeed a wider diversity in 

the displacements generated by mutations when 

considering randomly-shifted Gray codes. 

 

 

 

  
FIG. 3. Application of the genetic algorithm to Rastrigin's function in 10 dimensions. The blue dots 

represent individuals considered by the genetic algorithm. The star represents the best solution found by 

the algorithm. The algorithm was interrupted after 10000 evaluations of the fitness. Top: There is no 

shift of the Gray code when applying mutations; the genetic algorithm is trapped in a local minimum. 

Bottom: Mutations are applied to randomly-shifted versions of the Gray code; the algorithm finds the 

global minimum. 
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Appendix C: Local Optimization 

Based on a Quadratic 

Approximation of the Fitness 

The data collected by the genetic 

algorithm can be analyzed, generation 

after generation, in order to infer more 

rapidly the final solution. The idea 

consists of establishing a quadratic 

approximation of the fitness in the close 

neighborhood of the best-so-far solution. 

We then inject in the population an 

individual that corresponds to the 

optimum of this approximation [65]. We 

chose as reference point (�""⃗ ref) the best-so-

far solution found by the genetic 

algorithm. In order to establish the 

quadratic approximation, we will use 

Nselect distinct data points from the records 

established by the genetic algorithm. A 

data point �""⃗  is selected if max

|@�4@�,ref|

A@�
≤

B, where B specifies the width of the 

selection, in units of Δ�
. We take B=5 as 

initial value each time we start this 

procedure. 

The expression to establish has the 

form:  

�(�""⃗ ) = CD + >""⃗ �. E""⃗ + F
G
E""⃗ . >HE""⃗ ,        (1) 

where E""⃗ = Δ4�(�""⃗ − �""⃗ ref) with Δ =
diag[Δ��, … Δx�]/max
Δ�
 a diagonal  

matrix that contains appropriate scaling 

factors. CD is a scalar, >""⃗ � is a vector of 

size n and >H is a symmetric matrix of size 

n×n. Since >H is symmetric, there is a total 

of Ncoeff=1+n+n.(n+1)/2 coefficients to 

determine. We must ensure at this point 

that Nselect≥2Ncoeff, by increasing B if 

needed. To establish the quadratic 

approximation, we define a vector �⃗ of 

size Nselect that contains the �(�""⃗ ) values of 

the selected data points and a vector >""⃗  of 

size Ncoeff that contains the unknown 

coefficients in CD, >""⃗ � and >H. The 

equation to solve can then be written as: 

�⃗ = L>""⃗ , where L is an Nselect×Ncoeff 

matrix with coefficients defined from Eq. 

(1). Since the system �⃗ = L>""⃗  is 

overdetermined, we actually require that 

M�⃗ − L>""⃗ M
H
 be minimized (by an 

appropriate choice of >""⃗ ). We compute for 

this purpose the singular values 

decomposition (SVD) of the matrix M 

[66]. This gives L = NΣP�, where N is an 

orthonormal matrix of size Nselect×Ncoeff 

and P is an orthonormal matrix of size 

Ncoeff×Ncoeff. Σ is a diagonal matrix of size 

Ncoeff×Ncoeff that contains the singular 

values QR of the matrix L. The solution of 

minM�⃗ − L>""⃗ M
H
 is then given by >""⃗ =

PΣSN��⃗, where ΣS is a diagonal matrix of 

size Ncoeff×Ncoeff whose diagonal elements 

are defined by QR
4� if QR ≥ T × Qmax (with 

Qmax = maxRQR) and 0 otherwise. T 

accounts for the relative accuracy of �(�""⃗ ). 

Once the quadratic approximation has 

been established, the solution of ∇""⃗ � = 0 is 

given formally by �""⃗ ∗ = �""⃗ ref − Δ>H
4�>""⃗ �. 

Since the matrix >H may be non-

invertible, we use an approach based on 

the spectral decomposition of >H. Since 

the matrix >H is symmetric, its 

eigensystem >H�""⃗ R = =R�""⃗ R is characterized 

by real eigenvalues =R and its eigenvectors 

�""⃗ R form an orthonormal basis. It is useful 

at this point to define =max = maxR|=R| 
and =min = minR|=R|. The solution of 

∇""⃗ � = 0 can then be expressed as: 

�""⃗ ∗ = �""⃗ ref − Δ ∑ @""⃗ V.9""⃗ F

:V
R �""⃗ R,         (2) 

where the sum is restricted to the 

eigenvalues =R that satisfy |=R| ≥ Tinv ×
=max in order to avoid numerical 

instabilities. For analytical functions, we 

take T=10-10 and Tinv = 10 :max

:min
W. For 

problems in which the fitness has an 

accuracy limited to three significant digits, 

we recommend using Tinv = T = 10-3. If 

the solution �""⃗ ∗ provided by this approach 

can be accepted, it replaces the last 

individual scheduled for the next 

generation. We repeat otherwise this 

procedure up to three times by increasing 

the width of the selection (B → B + 2). 
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