

Volume 12, Number 1, 2019. pp. 17-36

Corresponding Author: Alexandre Mayer Email: alexandre.mayer@unamur.be

Jordan Journal of Physics

ARTICLE

A Genetic Algorithm for Addressing Computationally Expensive

Optimization Problems in Optical Engineering

A. Mayer a and Michaël Lobet a,b

a
 Department of Physics, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.

b
 John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9

Oxford Street, 02138 Cambridge, MA, USA.

Received on: 2/7/2018; Accepted on: 14/11/2018

Abstract: We present a genetic algorithm that we developed in order to address

computationally expensive optimization problems in optical engineering. The idea consists

of working with a population of individuals representing possible solutions to the problem.

The best individuals are selected. They generate new individuals for the next generation.

Random mutations in the coding of parameters are introduced. This strategy is repeated

from generation to generation until the algorithm converges to the global optimum of the

problem considered. For computationally expensive problems, one can analyze the data

collected by the algorithm in order to infer more rapidly the final solution. The use of a

mutation operator that acts on randomly-shifted Gray codes helps the genetic algorithm

escape local optima and enables a wider diversity of displacements. These techniques

reduce the computational cost of optical engineering problems, where the design

parameters have a finite resolution and are limited to a realistic range. We demonstrate the

performance of this algorithm by considering a set of 22 benchmark problems in 5, 10 and

20 dimensions that reflect the conditions of these engineering problems. We finally show

how these techniques accelerate the determination of optimal structures for the broadband

absorption of electromagnetic radiations.

Keywords: Genetic Algorithm, Optical Engineering, Optimization, Quadratic

Approximation, Gray Codes, Metamaterials.

PACS: 02.60.Pn, 42.15.Eq, 42.25.Bs, 78.67.Pt.

Introduction

The design of optical devices requires at

some point the search for optimal parameters

in order to achieve maximal performances.

With genetic algorithms (GAs), natural

selection is mimicked in order to determine

this set of optimal parameters. The idea

consists of working with a virtual population

of individuals representing possible solutions

to the problem. The initial population consists

of random individuals. The best individuals

are then selected. They generate new

individuals for the next generation. Random

mutations in the coding of parameters are

finally introduced. When repeated from

generation to generation, this strategy enables

the determination of a globally optimal set of

parameters [1-6].

Optical engineering problems are typically

computationally expensive due to the

numerous degrees of freedom and the CPU

time involved by the numerical modeling. It is

therefore desirable to solve the optimization

problem ideally by a single run of the GA and

with a reduced number of fitness evaluations.

The fitness is defined as the objective function

to be optimized. When the time required by

Article Mayer and Lobet

 18

the fitness evaluations is largely superior to

the time required by the GA itself, it makes

sense to establish a record with all fitness

evaluations in order to avoid any duplication

of these calculations. The GA also gains at

being organized in a way that enables all

fitness calculations in a given generation to be

addressed at the same time. This allows indeed

a massive parallelization of these calculations

on modern supercalculators. The genetic

algorithm finally gains at being combined with

a mathematical analysis of the collected data

in order to accelerate convergence to the final

solution. The objective is to determine the

global optimum as quickly as possible

(reduced number of generations) and with a

reduced number of fitness evaluations.

One can guide the algorithm to promising

directions and accelerate the refinement of the

final solution by coupling the genetic

algorithm with a local optimizer (memetic

algorithm) [7-13]. A first approach consists of

applying a local optimization procedure on the

solutions established by the genetic algorithm,

either regularly (starting from best-so-far

solutions established at each generation by the

GA) or after the GA has converged (starting

from the final best solutions established by the

GA) [5, 8]. This approach requires however an

extra budget of fitness evaluations. Another

approach consists of working on the data

already collected by the genetic algorithm in

order to avoid an increase in the number of

fitness evaluations. An idea consists of

establishing different approximations of the

fitness (reduced models) in order to implement

this local optimization [14-19], improve the

genetic operators [20, 21], estimate the

robustness of solutions [22] or avoid

unnecessary evaluations of the fitness [23-25].

The data collected by the GA can actually be

analyzed by a variety of mathematical

methods. Methods based on the Singular

Values Decomposition were used to estimate

the evolution direction and increase the

population diversity [26]. This technique was

also used to qualify potential candidates for

the next generation [27]. Recent papers finally

considered training neural networks in order to

guide the genetic algorithm [20, 28-31]. A

neural network is then trained on the data

collected by the GA in order to establish

reduced models of the fitness and suggest

promising solutions.

In optical engineering problems, the

physical parameters to determine have a finite

resolution due to physical or experimental

limitations in the fabrication of a device [32-

37]. The decision variables have therefore a

finite number of possible values (typically of

the order of 1000). A binary encoding of these

decision variables offers the advantage to

account for this discrete set of possible values

at all stages of the algorithm. Optical

engineering problems that rely on numerical

simulations for the evaluation of the fitness

have also as specificity the fact that the fitness

is generally accurate to only three or four

significant digits. Optimizing the fitness

beyond this limited accuracy does not make

any sense. The genetic algorithm on the

contrary gains at being tuned to achieve a

target accuracy that is both realistic and

appropriate for these applications (typically

Δftarget~10-4).

We present in this article an algorithm that

we developed in order to account for these

different issues when addressing optical

engineering problems. Our approach consists

of establishing at each generation a quadratic

approximation of the fitness in the close

neighborhood of the best-so-far individual in

order to infer more rapidly the global

optimum. We also consider randomly-shifted

Gray codes when applying mutations in order

to improve exploration and escape local

optima. These modifications of the well-

known genetic algorithm reduce the

computational cost of optical engineering

problems, where the design parameters have a

finite resolution and are limited to a realistic

range. This article is organized as follows. The

main lines of our algorithm are presented in

the next section. Then, we apply our algorithm

to typical benchmark problems in 5, 10 and 20

dimensions in order to demonstrate its

performance. Then, we provide a real optical

engineering application. Finally, we conclude

this article.

Description of the Genetic

Algorithm

The genetic algorithm described in

this section aims at determining the global

optimum (depending on the application, it

will be the global minimum or the global

maximum) of an objective function � =

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 19

�(��, … ��), where n is the number of

decision variables. �
 ∈ [�

min, �

max], with

a discretization step ∆�
. The boundaries

�

min and �

max must be specified at the

beginning of the search. ∆�
 accounts for

the experimental resolution of each

decision variable. The variables �
 are

represented by sequences of binary digits

(genes). We use the Gray code to interpret

the bit content of these genes [5, 38]. The

decision variables are then given by

�
 = �

min + 〈gene �〉 × ∆
,where 〈gene �〉 ∈

[0, 2�� − 1] refers to the value of the gene.

The bit length �
 of each gene is the first

integer for which �

min + (2�� − 1) × ∆
≥

�

max. ��
�� = ∑ �

�

 � refers to the total

number of bits in a DNA; i.e., the set of

genes used for coding the n decision

variables.

A detailed pseudocode of our

algorithm can be found in Appendix A.

We present here only the main ideas of

this algorithm, which are as follows: We

consider a population of npop = 50

individuals. We start with a random

population. We evaluate the fitness

�(��, … ��) of each individual and sort the

population from the best individual to the

worst one. We save the computed
!�""⃗ , �(�""⃗)$ data in a record. We compute the

genetic similarity s of the population; s

corresponds to the fraction of bits in the

population whose value is identical to the

best individual [32, 38]. We then define a

progress indicator % = |' − 0.5|/0.5,

which takes values between 0 and 1. The

worst nrand = even [0.1×npop × (1-p)]

individuals of the population are then

replaced by random individuals (even [.]

stands for the nearest even integer). These

random individuals are transferred to the

next generation. The remaining N = npop -

nrand individuals of the current population

participate to the usual steps of selection,

crossover and mutation. We hence select

N parents in this subset of N individuals

by a rank-based roulette wheel selection,

noting that a given individual can be

selected several times [5, 32]. For any pair

of parents, we define two children for the

next generation either (i) by a one-point

crossover of the parents' DNA (probability

of 70%) or (ii) by a simple replication of

the parents. The children obtained by

crossover are subjected to a modified

mutation operator that acts on randomly-

shifted Gray codes (see Appendix B),

using m = 0.95/nbits as mutation rate for

individual bit flips. We apply at this point

a local optimization procedure on the
!�""⃗ , �(�""⃗)$ data collected so far by the

genetic algorithm in order to guess the

final solution (see Appendix C). If the

result of this local optimization can be

accepted, it replaces the last individual

already scheduled for the next generation

(a random individual if nrand > 0). Before

evaluating the fitness of the individuals

finally scheduled for the next generation,

we check the records in order to avoid any

duplication of these evaluations. We then

evaluate the fitness of the individuals

scheduled for the next generation for

which no !�""⃗ , �(�""⃗)$ data was found. We

sort the new population and apply elitism

in order to make sure that the best solution

achieved so far is not lost when going

from one generation to the next [5]. We

apply these different steps from generation

to generation until a termination criterion

is met.

The organization of the algorithm

ensures that all fitness calculations in a

given generation can be evaluated in

parallel, since there is only one round of

fitness evaluations per generation. In this

implementation, the parents are not

transferred automatically to the next

generation, since this leads to premature

convergence to solutions that are not

globally optimal. We found in previous,

unpublished work that a crossover rate of

70% maintains a good balance between

the conservation of good solutions

(individuals transferred to the next

generation without any modification) and

the exploration of new solutions

(individuals modified by the operators of

crossover and mutation). The mutation

rate m = 0.95/nbits is settled automatically

by the number of bits used for the

representation of the decision variables.

We found in previous work that the

optimal mutation rate decreases with the

dimension of the problem. Maintaining

m×nbits<1 is also motivated by biological

evidence [39]. This condition ensures

Article Mayer and Lobet

 20

indeed that the best individuals in the

population have a chance to be unaffected

by mutations. We confirmed empirically

that this improves in the long term the

quality of the solutions established by the

genetic algorithm. The use of a mutation

operator that acts on randomly-shifted

Gray codes helps the genetic algorithm

escape local optima, since the

displacements generated by this mutation

operator have a wider diversity (see

Appendix B). This improves also the

exploration of the decision variable space.

The local optimization procedure finally

provides a useful guidance to the genetic

algorithm by indicating, generation after

generation, directions to consider based on

collected data. The technical parameters of

this algorithm were tuned on test problems

in 5, 10 and 20 dimensions, for conditions

that reflect those encountered in optical

engineering problems [40]. We

demonstrate the performance of this

algorithm on an extended set of test

problems in the next section.

Application to Test Problems in

5, 10 and 20 Dimensions

In optical engineering problems that

stimulated this work [32-34], the decision

variables xi must be determined only up to

a precision Δxi due to experimental

limitations in the fabrication of a device.

We will therefore consider in this section

test problems for which ∆�
 = (�

max −

�

min)/4096 in order to reflect the

conditions of these applications. This

corresponds to ni=12 bits per gene, since

212 = 4096. We will also consider that the

global minimum of the test problems

considered in this section is found if the

objective function is within a margin

∆�target of 10-4 compared to the exact

solution. This reflects again the accuracy

with which solutions should be established

in these optical engineering applications.

Our objective was to determine the global

minimum of this type of problems with a

high chance of success in one run and with

a reduced number of fitness evaluations

(since we accept a margin ∆�target on the

global minimum, technically we actually

seek determining a "global ∆�target-optimal

solution". Since the algorithm is

stochastic, there is of course no guarantee

on optimality).

The 22 benchmark functions

considered in this work are given in Table

1. The boundaries [�

min, �

max] considered

for each function are provided as well as

the number of bits ni used for the

representation of each decision variable

(ni=12, except for Schwefel 7, where

ni=16) [41]. With this setting of the

experiment, all gene values can be

accepted and there is a point in the grid for

which the target ∆�target of 10-4 can

actually be reached. In order to make sure

that our results do not depend on a specific

encoding of the decision variables and in

order to break easy symmetries, we

consider for each instance of the genetic

algorithm a random shift of the domain

[�

min, �

max] considered for each decision

variable. This randomization of the

boundaries is limited to integer multiples

of ∆�
 = (�

max − �

min)/2�� in order to

make sure that the point for which the

target ∆�target of 10-4 can actually be

reached remains on the grid. The limits

considered for this randomization of the

boundaries are given in the fourth column

of Table 1.

When running the genetic algorithm

on a given function �(�""⃗) in order to

determine its global minimum, we

consider that the target ∆�target is reached

if |�(�""⃗ best) − �opt
∗)| ≤ ∆�target, where

�(�""⃗ best) is the best-so-far solution found

by the genetic algorithm and �opt
∗ the exact

global minimum. By running the genetic

algorithm #run times on each test function,

we can measure the probability 01∆�target2

with which the target ∆�target is reached by

a given run of the algorithm. This quantity

is calculated by 01∆�target2=#success/#run,

where #success refers to the number of

successful runs. We can also measure the

average number of fitness evaluations

required to reach ∆�target. This quantity is

calculated by 〈�eval〉=#eval(target not

reached)/#success, where #eval(target not

reached) is the number of fitness

evaluations in all generations for which

the target ∆�target was not reached

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 21

(summing over the #run executions of the

GA) [11]. 〈�eval〉 includes fitness

evaluations in runs that failed to meet the

target. Accounting for failed attempts

makes sense, since they must be paid in

real-world applications. They consume

indeed CPU time and cause a delay in the

resolution of a problem. Our efforts to

tune the genetic algorithm therefore

focusses on 〈�eval〉 as a measure for the

computational cost associated with a given

target ∆�target. Another measure commonly

used in the literature is 〈�eval
∗ 〉, the average

number of fitness evaluations required to

reach ∆�target when this target is actually

reached. 〈�eval
∗ 〉 does not account for failed

attempts. Similarly, 〈�gen
∗ 〉 measures the

average number of generations required to

reach a ∆�target for runs that actually reach

this target. 〈�gen
∗ 〉 is representative of how

fast a solution is found, if found.

TABLE 1. List of test functions with the boundaries [�

min, �

max] considered for the decision

variables and the number of bits ni used for the representation of each gene. The fourth

column indicates the limits considered for the randomization of the boundaries when

running a given instance of the genetic algorithm. Names: Sphere (#1), Rotated Hyper-

Ellipsoid (#2), Rosenbrock (#3), Modified Dixon-Price (#4), Mayer (#5), Schwefel 7 (#6),

Levy (#7), Rastrigin (#8), Ackley (#9), Griewank (#10), Cosine Mixture (#11),

Exponential (#12), Levy and Montalvo 1 (#13), Levy and Montalvo 2 (#14), Zakharov

(#15), Schwefel 3 (#16), Brown 3 (#17), Cigar (#18), Sinusoidal (#19), Trigonometric 1

(#20), Pinter (#21) and Whitley (#22).

Article Mayer and Lobet

 22

The results obtained with our

algorithm, when considering the

benchmark problems of Table 1 for n = 5,

10 and 20 dimensions, are summarized in

Table 2. Tables 3, 4 and 5 provide the

01∆�target2, 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉
values obtained for individual functions

when considering a target ∆�target of 10-4.

For these benchmark problems, we

consider a maximum of 30×nbits

generations for a given run of the

algorithm. The algorithm is interrupted if

(i) there is no improvement of the best

fitness in the last 1.5×nbits generations, (ii)

the mean value of the genetic similarity s

over the last 1.5×nbits generations is higher

than 1-3m, (iii) s≥1-m or (iv) the number

of fitness evaluations exceeds 10000×n.

The different columns of Table 2 show the

results obtained when considering/not

considering (i) local optimizations based

on quadratic approximations of the fitness

and (ii) a mutation operator that acts on

randomly-shifted Gray codes. The table

provides the probability of success in one

run 01∆�target2 and the average number of

fitness evaluations 〈�eval〉 for different

values of ∆�target. It also specifies the

number of functions for which the target

was reached at least once in ten runs. This

comparison between different versions of

our algorithm proves the advantage of

using a mutation operator that acts on

randomly-shifted Gray codes and a local

optimization procedure that works on the

data collected by the algorithm (see

Appendix B and Appendix C).

By using the local optimization

procedure and a mutation operator that

acts on randomly-shifted Gray codes, we

achieve a probability of success in one run

01∆�target2 of 94.9% for �=5 dimensions,

92.3% for �=10 dimensions and 89.0% for

�=20 dimensions when considering a

target ∆�target of 10-4 (these values

correspond to an average over the 22

benchmark problems; the values obtained

for individual functions can be found in

Tables 3, 4 and 5). The average number of

fitness evaluations 〈�eval〉 required to

reach this target is 1724 for �=5

dimensions, 5104 for �=10 dimensions

and 19870 for �=20 dimensions. This

corresponds to 〈�eval〉/� ratios of 345 for

� =5 dimensions, 510 for � =10

dimensions and 993 for � =20 dimensions.

We meet therefore our objective to

determine the global minimum of these

test problems with a high probability of

success in one run (01∆�target2=89-95%),

while keeping to a budget of fitness

evaluations 〈�eval〉 of the order of

~1000 × �. In contrast, when the

techniques presented in the two

Appendices are not used, the probability

of success in one run 01∆�target2 is

reduced to 75.6% for �=5 dimensions,

62.5% for �=10 dimensions and 46.7% for

�=20 dimensions. The number of

functions for which the global minimum is

determined at least once in ten runs

decreases rapidly with the dimension of

the problem, going from 18 functions out

of 22 for problems in 5 dimensions to only

15 functions out of 22 for problems in 20

dimensions. The average number of

fitness evaluations required to reach a

given target is also significantly higher.

The local optimization procedure

improves significantly the ability of the

genetic algorithm to determine the global

minimum (a global ∆�target -optimal

solution) of the functions considered

(increase of 01∆�target2). This conclusion

was tested for statistical significance [42].

This technique also accelerates the

algorithm by reducing the number of

fitness evaluations (decrease of 〈�eval〉).
Although originally intended to accelerate

the refinement of the final solution, this

technique actually provides a useful

guidance to the genetic algorithm by

indicating, generation after generation,

directions to consider based on collected

data. This is especially useful for functions

that require displacements in preferential

directions, like the function #3

(Rosenbrock). It is also useful for

functions whose large-scale structure leads

to the global minimum despite the

presence of many local minima, like the

function #10 (Griewank). For functions

that have a single minimum, like the

function #1 (Sphere) and the function #2

(Rotated Hyper-Ellipsoid), the procedure

is actually able to finalize the

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 23

minimization as soon as a sufficient

number of data points have been collected.

Other functions, like the function #12

(Exponential), the function #17 (Brown 3)

and the function #18 (Cigar), have their

global minimum also much more rapidly

determined.

TABLE 2. Results obtained for test problems in 5, 10 and 20 dimensions. The different

columns correspond to results obtained when considering/not considering (i) local

optimizations based on quadratic approximations of the fitness and (ii) a mutation

operator that acts on randomly-shifted Gray codes. 01∆�target2 represents the probability

to reach a target ∆�target by a single run of the GA. 〈�eval〉 is the average number of fitness

evaluations required to reach this target, counting runs that fail to meet the target.

#fct(P≥10%) is the number of functions for which the target was reached at least once in

ten runs. The last column provides for comparison the results obtained with CMA-ES

when using the same population size of 50 individuals. These statistics were generated by

running the genetic algorithm 100 times on each test function.

Article Mayer and Lobet

 24

TABLE 3. Results obtained for each test function when considering a target ∆�target of 10-4

for problems in 5 dimensions. The local optimization procedure as well as a mutation

operator that acts on randomly-shifted Gray codes are used by the genetic algorithm. The

quantities represented are the probability of success in one run (01∆�target2), the average

number of fitness evaluations required to reach the target counting runs that fail to meet

the target (〈�eval〉), the average number of fitness evaluations required to reach the target

counting only runs that reach the target (〈�eval
∗ 〉) and the average number of generations

required to reach the target counting only runs that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉
corresponds to the number of generations beyond that associated with the initial

population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉 is also indicated.

These statistics were generated by running the genetic algorithm 100 times on each test

function.

The use of a mutation operator that

acts on randomly-shifted Gray codes

provides a further boost to our results.

Table 2 reveals indeed that the probability

to determine the global minimum (a global

∆�target-optimal solution) of the functions

considered by a single run of the genetic

algorithm is improved by this technique.

This conclusion was also tested for

statistical significance [43]. It applies

whether the local optimization procedure

is used or not. Table 2 reveals consistently

that the number of fitness evaluations

required to determine the global minimum

of the functions considered is reduced by

this technique. The use of randomly-

shifted Gray codes when applying

mutations helps the genetic algorithm

escape local minima, since the

displacements generated by these

mutations have a wider diversity (see

Appendix A). This is especially useful for

functions with many local minima, like

the function #6 (Schwefel), the function

#8 (Rastrigin), the function #11 (Cosine

Mixture), the function #13 (Levy and

Montalvo 1), the function #14 (Levy and

Montalvo 2) and the function #21 (Pinter).

The wider variety of displacements

generated by the use of randomly-shifted

Gray codes improves exploration of the

decision variable space, which results in a

higher probability to detect the global

minimum of the functions considered.

This technique represents a useful

complement to the local optimization

procedure used in this work.

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 25

TABLE 4. Results obtained for each test function when considering a target ∆�target of 10-4

for problems in 10 dimensions. The local optimization procedure as well as a mutation

operator that acts on randomly-shifted Gray codes are used by the genetic algorithm. The

quantities represented are the probability of success in one run (01∆�target2), the average

number of fitness evaluations required to reach the target counting runs that fail to meet

the target (〈�eval〉), the average number of fitness evaluations required to reach the target

counting only runs that reach the target (〈�eval
∗ 〉) and the average number of generations

required to reach the target counting only runs that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉
corresponds to the number of generations beyond that associated with the initial

population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉 is also indicated.

These statistics were generated by running the genetic algorithm 100 times on each test

function.

The genetic algorithm presented in

this work generally achieves good results

on the test problems considered. The

functions #20 (Trigonometric 1) and #22

(Whitley) remain however challenging. It

is interesting at this point to compare our

results with those provided by the

reference algorithm CMA-ES [44-46].

CMA-ES, for Covariance-Matrix

Adaptation-Evolution Strategy, is a

genetic algorithm that relies on a real-

value encoding of the decision variables.

Mutations consist of random normally-

distributed perturbations of the decision

variables. The covariance matrix that

actually controls the distribution of these

mutations is adapted along the

optimization. When applying CMA-ES to

our test problems with the same

population size of 50 individuals, it

actually achieves a probability of success

in one run 01∆�target = 10452 of 84.1%

for �=5 dimensions, 81.7% for �=10

dimensions and 72.0% for �=20

Article Mayer and Lobet

 26

dimensions [47]. These results are

included in Table 2. A detailed analysis of

the results achieved with CMA-ES on

individual test functions for �=20

dimensions can be found in Table 6. The

comparison with Table 5 shows that the

algorithm presented in this work achieves

respectable performances for the class of

problems considered. The use of a

mutation operator that acts on randomly-

shifted Gray codes enables indeed our

genetic algorithm to escape local optima

more easily. This improves its ability to

determine the true global minimum of the

multimodal functions considered in this

work.

TABLE 5. Results obtained for each test function when considering a target ∆�target of 10-4

for problems in 20 dimensions. The local optimization procedure as well as a mutation

operator that acts on randomly-shifted Gray codes are used by the genetic algorithm. The

quantities represented are the probability of success in one run (01∆�target2), the average

number of fitness evaluations required to reach the target counting runs that fail to meet

the target (〈�eval〉), the average number of fitness evaluations required to reach the target

counting only runs that reach the target (〈�eval
∗ 〉) and the average number of generations

required to reach the target counting only runs that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉
corresponds to the number of generations beyond that associated with the initial

population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉 and 〈�gen

∗ 〉 is also indicated.

These statistics were generated by running the genetic algorithm 100 times on each test

function.

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 27

TABLE 6. Results obtained with CMA-ES for each test function when considering a target

∆�target of 10-4 for problems in 20 dimensions. CMA-ES is used with a population size of

50 individuals. The quantities represented are the probability of success in one run

(01∆�target2), the average number of fitness evaluations required to reach the target

counting runs that fail to meet the target (〈�eval〉), the average number of fitness

evaluations required to reach the target counting only runs that reach the target (〈�eval
∗ 〉)

and the average number of generations required to reach the target counting only runs

that reach the target (〈�gen
∗ 〉). 〈�gen

∗ 〉 corresponds to the number of generations beyond

that associated with the initial population. The standard deviation (std) of 〈�eval〉, 〈�eval
∗ 〉

and 〈�gen
∗ 〉 is also indicated. These statistics were generated by running CMA-ES 100

times on each test function.

Application in Optical

Engineering

In order to provide a real-world

application in optical engineering, we

consider the maximization of broadband

absorption by a metamaterial. The

structures considered in this work consist

of 2-D periodic arrays of truncated square-

based pyramids made of 3 stacks of

titanium/poly (methyl methacrylate)

(Ti/PMMA) layers (see Fig. 1). These

pyramids stand on a flat support that

consists of successive uniform layers of

Au (60 nm), Cr (5 nm) and amorphous Si

(1 micron). Previous work has shown that

periodic arrays of truncated square-based

pyramids made of successive stacks of

metal/dielectric layers can lead to the

quasi-perfect absorption of

electromagnetic radiations over a wide

wavelength range. By considering

pyramids made of 20 stacks of Au/Ge

layers, Lobet et al. could indeed achieve

an integrated absorptance of 98% of

incident light over a 0.2-5.8 µm

wavelength range [48, 49]. This ultra-

broadband absorption is essentially due to

(i) an efficient anti-reflection property of

these pyramidal structures [50, 51] and (ii)

a well-designed coupling between the

localized surface plasmons found at the

metal/dielectric interfaces of each stack

[52-55].

Article Mayer and Lobet

 28

FIG. 1. Square-based pyramids made of 3 stacks of Ti/PMMA layers. The support of the pyramids consists

of uniform layers of Au (60 nm), Cr (5 nm) and a-Si (1 micron). We assume an infinite substrate of Si

(ε=16).

In order to reduce the difficulty of

fabricating structures made of many

different layers, we will consider in this

work pyramids that consist of only three

stacks of Ti/PMMA layers (see Fig. 1

again). Our objective is to maximize the

absorption of incident radiations in the

wavelength range 420-1600 nm by tuning

the geometrical parameters of the system.

The objective function (fitness) for this

problem is therefore defined by 6(%) =

100 ×
8 9(:);:<max

<min
:max4:min

, where =min=420 nm

and =max=1600 nm. >(=) refers to the

absorptance of normally incident

radiations at the wavelength =. It is

calculated by a Rigorous Coupled Waves

Analysis (RCWA) method [56, 57]. This

method solves Maxwell's equations

numerically in laterally periodic systems.

We used this method with 11×11 plane

waves and reported values for the

refractive indices [58-60]. The parameters

to determine in order to maximize the

figure of merit 6 are (i) the lateral period P

of the system, (ii) the lateral dimensions

L1, L2 and L3 of the three stacks of

Ti/PMMA layers and (iii) the thicknesses

t1, t2 and t3 of the three PMMA layers (the

subscripts 1, 2 and 3 refer respectively to

the top, medium and bottom stacks of the

nanopyramids). The thickness of each Ti

layer is fixed at 15 nm. In order to reduce

the search to a realistic range, we actually

consider P values between 50 and 500 nm,

L1, L2 and L3 values between 50 and 500

nm and t1, t2, t3 values between 50 and 250

nm. We account for the experimental

resolution with which these structures can

possibly be fabricated by considering a

discretization step of 1 nm for these

different quantities. In order to obtain

pyramidal structures, we finally impose

that the genetic algorithm only considers

solutions for which L1<L2<L3≤P [61].

With these specifications, we hence have

seven decision variables to determine and

1.3×1016 possible parameter

combinations! Each simulation takes

approximately one hour of CPU time. We

are therefore in conditions where it is

impossible to test all parameter

combinations. We are also in conditions

where the time required by the fitness

evaluations is largely superior to the time

required for running the genetic algorithm.

In order to show the advantage of

using the techniques developed in

Appendix B and Appendix C, we

represent in Fig. 2 the fitness (figure of

merit 6) of the best individual as a

function of the number of generations.

When using a mutation operator that acts

on randomly-shifted Gray codes

(Appendix B) and a local optimization

procedure that analyzes the collected data

(Appendix C), the genetic algorithm

determines after 167 generations and 4628

fitness evaluations the final solution

(global optimum associated with a figure

of merit 6=99.757%; the parameters found

by the GA are the following: L1=155 nm,

t1=124 nm, L2=285 nm, t2=126 nm,

L3=416 nm, t3=98 nm and P=416 nm). If

all fitness calculations in a given

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 29

generation run in parallel, this solution is

actually obtained after 7 days. When the

techniques described in Appendix B and

Appendix C are not used, the genetic

algorithm stops after 266 generations and

6275 fitness evaluations without finding

the global optimum (the solution found in

this case corresponds to a figure of merit

6=99.726%; the parameters associated

with this solution are the following:

L1=161 nm, t1=125 nm, L2=295 nm,

t2=126 nm, L3=431 nm, t3=97 nm and

P=431 nm). The GA stopped in this case,

because the mean value of the genetic

similarity s over the last 1.5×nbits

generations was higher than 1-3m, where

the total number of bits nbits is 60 and the

mutation rate m=0.95/nbits is 1.6% for this

application. If all fitness calculations in a

given generation run in parallel, this sub-

optimal solution is obtained after 11 days.

As shown in the previous section, several

runs are typically necessary on difficult

problems when the techniques of

Appendix B and Appendix C are not used.

This would be the case here. Fig. 2 shows

that the modified version of the genetic

algorithm (techniques of Appendix B and

Appendix C used) actually outperforms

the classical version of the genetic

algorithm (techniques of Appendix B and

Appendix C not used) after only 50

generations.

FIG. 2. Best fitness (figure of merit η) when optimizing a structure made of three stacks of Ti/PMMA

layers. Solid: the GA is used with a mutation operator that acts on randomly-shifted Gray codes

(Appendix B) and a local optimization procedure (Appendix C). Dashed: the GA does not use the

techniques developed in Appendix B and Appendix C. The stars indicate when the best solution is

found.

Conclusions

This article describes a genetic

algorithm that we developed in order to

address computationally expensive

optimization problems in optical

engineering. For these problems, the

decision variables are characterized by a

finite set of possible values due to

experimental limitations in the fabrication

of a device. A target accuracy of 10-4 on

the objective function is also sufficient for

these applications. The technical

parameters of our algorithm were tuned to

address these conditions. The organization

of the algorithm enables a massive

parallelization of the fitness calculations.

The data collected by the genetic

algorithm is analyzed by a local

optimization procedure in order to infer

more rapidly the final solution. This

procedure, which relies on quadratic

approximations of the fitness in the close

neighborhood of the best-so-far solution,

provides a useful guidance to the genetic

algorithm by indicating, generation after

generation, directions to consider based on

these collected data. We also use a

mutation operator that acts on randomly-

shifted Gray codes. This helps the genetic

algorithm escape local optima. It also

improves the exploration of the decision

Article Mayer and Lobet

 30

variable space by enabling a wider

diversity of displacements. We applied

this algorithm to a set of 22 benchmark

problems in 5, 10 and 20 dimensions in

order to demonstrate its performance. The

results prove that the techniques presented

in this work improve significantly the

ability of the genetic algorithm to

determine the global minimum of these

problems. The average number of fitness

evaluations required to determine these

solutions is also significantly reduced.

This algorithm was already applied

successfully to a variety of

computationally expensive optimization

problems in optical engineering. We

showed in this article how these

techniques accelerate the optimization of

square-based pyramidal structures for the

broadband absorption of electromagnetic

radiations.

Appendix A: Pseudocode of the

Genetic Algorithm

Initialize a Population of npop random

individuals.

Compute the fitness �(�⃗) of each individual in

the Population.

Save the calculated !�⃗, �(�⃗)$ data in the

Records.

Sort the Population from best to worst

individuals.

Save !�⃗best, �best$=best-so-far solution.

For k ranging from 1 to ngen:

 Compute genetic similarity s of the Population.

 Set % = |' − 0.5|/0.5,

nrand=even[0.1×npop×(1-p)] and N=npop-nrand.

 Define, for the modified mutation operator, a

random shift
 ∈ [0, 2�� − 1] for each gene

� ∈ [1, �].

 Pool(N+1:npop) = nrand random individuals.

 For i ranging from 1 to N/2:

 Select Parent1 in Population(1:N) by a rank-

based roulette wheel selection.

 Select Parent2 in Population(1:N) by a rank-

based roulette wheel selection.

 If rnd ≤ 0.7:

 {Child1,Child2}=1-point crossover between

{Parent1,Parent2}.

 Apply_Mutation=True.

 Else:

 {Child1,Child2}={Parent1,Parent2}.

 Apply_Mutation=False.

 If Apply_Mutation:

 Apply modified mutation operator on Child1

(see Appendix B).

 Apply modified mutation operator on Child2

(see Appendix B).

 Pool(1+(i-1)*2)=Child1.

 Pool(2+(i-1)*2)=Child2.

 Guess=Local Optimization using !�⃗, �(�⃗)$ data

in the Records (see Appendix C).

 If Guess can be accepted:

 Pool(N)=Guess.

 Check the Records to avoid any duplication in

the fitness evaluations.

 Compute the fitness �(�⃗) of each new

individual in the Pool.

 Save the calculated !�⃗, �(�⃗)$ data in the

Records.

 Sort the Pool from best to worst individuals.

 Set new Population=Pool.

 If best individual in new Population not as good

as previous !�⃗best, �best$:

 Choose random integer � ∈ [1, �pop].
 Population(�)= �⃗best.

 Update sorting of Population.

 Save !�⃗best, �best$=best-so-far solution.

 Exit if a stopping criterion is met.

Appendix B: Modified Mutation

Operator Based on Randomly-

Shifted Gray Codes

The decision variables are represented by

�
 = �

min + 〈gene �〉 × ∆
, where 〈gene �〉 ∈

[0, 2�� − 1] stands for the value coded by the ni

binary digits of the gene. We use the Gray code

to interpret the value of this gene [5, 39]. A Gray

code is characterized by the fact that successive

numbers differ only by one bit (see Table 7). It is

therefore always possible to move from �
 to

�
 + Δ�
 by changing a single bit. This is an

advantage compared to standard binary, where

several bit changes are typically necessary [62].

The use of Gray codes enables thus mutations to

perform a fine tuning of the decision variables.

By changing the ni-2 other bits of the gene,

mutations will generate wider displacements in

the decision variable space. These wider

displacements are important for exploration. The

displacements generated by mutations depend

however artificially on the coding considered

and this is a limit to exploration.

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 31

TABLE 7. Comparison between decimal, standard binary, the original Gray code and a

shifted version of the Gray code (circular permutation by 3 steps).

The idea to improve the mutation operator is

hence to apply this operator to the encoding

obtained with shifted versions of the Gray code.

It consists actually of a circular permutation of

the original encoding; see last column of Table 7

[62-64]. At each generation, a random shift in

the range [0, 2�� − 1] is attributed to each gene.

This shift is specific to the gene. It is identical

for all individuals of the current generation. Its

value is reset at each generation. A possible

implementation of the modified mutation

operator is given in Table 8. This modified

mutation operator receives genes that are

expressed in the original Gray code. Before

applying mutations, the original chain of binary

digits 〈gene �〉 is translated from the original

Gray code to the shifted Gray code (in Table 7,

this comes to moving from column 3 to column

4 on the line associated with the original

encoding). Mutations are then applied on the

modified encoding. The result is finally

translated back from the shifted Gray code to the

original Gray code (in Table 7, this comes to

moving back from column 4 to column 3 on the

line associated with the modified version of the

gene). Since the result of this modified mutation

operator is expressed in the original Gray code

(reference encoding used in the rest of the

algorithm), adaptation related to this reference

encoding can still take place.

TABLE 8. Possible implementation of the modified mutation operator. Operations 1, 2 and 3

transform 〈gene �〉 from the original Gray code to the shifted Gray code. Operation 4

introduces mutations on the encoding obtained with this shifted Gray code. Operations 5,

6 and 7 transform the modified gene from the shifted Gray code to the original Gray code.

The shift assigned to each gene is the same for all individuals in the population. It is reset

randomly at each generation.

Article Mayer and Lobet

 32

Illustrative example: Let us consider the

number "3" (010 in the original Gray code; see

third column of Table 7). Individual bit flips can

lead to "2" (011), "4" (110) and "0" (000). This

possible transition between "3" and "0" is

specific to the original Gray code. There is no

direct transition to the other entries of the table.

If we consider a circular permutation by three

steps of the original Gray code (last column of

Table 7), the number "3" is now encoded by

"101". Individual bit flips lead now to "2" (111),

"4" (100) and "6" (001). There is a possible

transition between "3" and "6" (instead of "3"

and "0"). By changing the shift introduced in the

Gray code at each generation, we reset the

transitions generated by individual bit flips.

Illustration with Rastrigin's function:

Rastrigin's function (fct#8 in Table 1) provides a

good illustration for the benefit of using

randomly-shifted Gray codes when applying

mutations. This function has many local minima.

The global minimum is for �
=0 (i=1,… n).

When searching for the global minimum of

Rastrigin's function in n=10 dimensions, it turns

out that the algorithm described in Sec. 2 fails

most of the times at finding this global minimum

if the mutation operator does not shift the Gray

code. The reason is that xi=0 is represented by

110000000000 in our case if we work in the

original domain [-5.12, 5.12] (we have indeed

�

min=-5.12 and Δ�
=0.0025; a gene value of

2048 is represented by 110000000000 in the

original Gray code). The closest local minimum

is at �
= 0.995, which is represented by

110101001001. There is a difference of four bits

between these two encodings and the genetic

algorithm has a hard time finding the appropriate

bit changes once trapped in this local minimum.

Fig. 3 shows that there is a poor diversity in the

displacements generated by mutations if no

shifting of the Gray code is considered. By

considering randomly-shifted versions of the

Gray code when applying mutations, we increase

the diversity of the displacements generated by

these mutations. This helps the genetic algorithm

escape the local minimum to eventually find the

global minimum. The second part of Fig. 3

shows that there is indeed a wider diversity in

the displacements generated by mutations when

considering randomly-shifted Gray codes.

FIG. 3. Application of the genetic algorithm to Rastrigin's function in 10 dimensions. The blue dots

represent individuals considered by the genetic algorithm. The star represents the best solution found by

the algorithm. The algorithm was interrupted after 10000 evaluations of the fitness. Top: There is no

shift of the Gray code when applying mutations; the genetic algorithm is trapped in a local minimum.

Bottom: Mutations are applied to randomly-shifted versions of the Gray code; the algorithm finds the

global minimum.

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 33

Appendix C: Local Optimization

Based on a Quadratic

Approximation of the Fitness

The data collected by the genetic

algorithm can be analyzed, generation

after generation, in order to infer more

rapidly the final solution. The idea

consists of establishing a quadratic

approximation of the fitness in the close

neighborhood of the best-so-far solution.

We then inject in the population an

individual that corresponds to the

optimum of this approximation [65]. We

chose as reference point (�""⃗ ref) the best-so-

far solution found by the genetic

algorithm. In order to establish the

quadratic approximation, we will use

Nselect distinct data points from the records

established by the genetic algorithm. A

data point �""⃗ is selected if max

|@�4@�,ref|

A@�
≤

B, where B specifies the width of the

selection, in units of Δ�
. We take B=5 as

initial value each time we start this

procedure.

The expression to establish has the

form:

�(�""⃗) = CD + >""⃗ �. E""⃗ + F
G
E""⃗ . >HE""⃗ , (1)

where E""⃗ = Δ4�(�""⃗ − �""⃗ ref) with Δ =
diag[Δ��, … Δx�]/max
Δ�
 a diagonal

matrix that contains appropriate scaling

factors. CD is a scalar, >""⃗ � is a vector of

size n and >H is a symmetric matrix of size

n×n. Since >H is symmetric, there is a total

of Ncoeff=1+n+n.(n+1)/2 coefficients to

determine. We must ensure at this point

that Nselect≥2Ncoeff, by increasing B if

needed. To establish the quadratic

approximation, we define a vector �⃗ of

size Nselect that contains the �(�""⃗) values of

the selected data points and a vector >""⃗ of

size Ncoeff that contains the unknown

coefficients in CD, >""⃗ � and >H. The

equation to solve can then be written as:

�⃗ = L>""⃗ , where L is an Nselect×Ncoeff

matrix with coefficients defined from Eq.

(1). Since the system �⃗ = L>""⃗ is

overdetermined, we actually require that

M�⃗ − L>""⃗ M
H
 be minimized (by an

appropriate choice of >""⃗). We compute for

this purpose the singular values

decomposition (SVD) of the matrix M

[66]. This gives L = NΣP�, where N is an

orthonormal matrix of size Nselect×Ncoeff

and P is an orthonormal matrix of size

Ncoeff×Ncoeff. Σ is a diagonal matrix of size

Ncoeff×Ncoeff that contains the singular

values QR of the matrix L. The solution of

minM�⃗ − L>""⃗ M
H
 is then given by >""⃗ =

PΣSN��⃗, where ΣS is a diagonal matrix of

size Ncoeff×Ncoeff whose diagonal elements

are defined by QR
4� if QR ≥ T × Qmax (with

Qmax = maxRQR) and 0 otherwise. T

accounts for the relative accuracy of �(�""⃗).

Once the quadratic approximation has

been established, the solution of ∇""⃗ � = 0 is

given formally by �""⃗ ∗ = �""⃗ ref − Δ>H
4�>""⃗ �.

Since the matrix >H may be non-

invertible, we use an approach based on

the spectral decomposition of >H. Since

the matrix >H is symmetric, its

eigensystem >H�""⃗ R = =R�""⃗ R is characterized

by real eigenvalues =R and its eigenvectors

�""⃗ R form an orthonormal basis. It is useful

at this point to define =max = maxR|=R|
and =min = minR|=R|. The solution of

∇""⃗ � = 0 can then be expressed as:

�""⃗ ∗ = �""⃗ ref − Δ ∑ @""⃗ V.9""⃗ F

:V
R �""⃗ R, (2)

where the sum is restricted to the

eigenvalues =R that satisfy |=R| ≥ Tinv ×
=max in order to avoid numerical

instabilities. For analytical functions, we

take T=10-10 and Tinv = 10 :max

:min
W. For

problems in which the fitness has an

accuracy limited to three significant digits,

we recommend using Tinv = T = 10-3. If

the solution �""⃗ ∗ provided by this approach

can be accepted, it replaces the last

individual scheduled for the next

generation. We repeat otherwise this

procedure up to three times by increasing

the width of the selection (B → B + 2).

Acknowledgments

Alexandre Mayer is funded by the Fund

for Scientific Research (F.R.S.-FNRS) of

Belgium. He is member of NaXys, Namur

Institute for Complex Systems, University of

Namur, Belgium. This work was performed

Article Mayer and Lobet

 34

while Michaël Lobet was a recipient of a

fellowship of the Belgian American

Educational Foundation. The authors

acknowledge Benoit Hackens, Nicolas

Reckinger, Luc Henrard and Sarah Griesse-

Nascimento for useful discussions on the

nanopyramids. This research used resources

of the “Plateforme Technologique de Calcul

Intensif (PTCI)” (http://www.ptci.unamur.be)

located at the University of Namur,

Belgium, which is supported by the F.R.S.-

FNRS under the convention No. 2.5020.11.

The PTCI is member of the “Consortium des

Equipements de Calcul Intensif (CECI)”

(http://www.ceci-hpc.be).

References

[1] Holland, J., “Adaptation in Natural and

Artificial Systems”, (University of Michigan

Press, Ann Arbor, Mich., 1975).

[2] De Jong, K., Ph.D. Thesis, University of

Michigan, (1975), Ann Arbor, Mich.

[3] Goldberg, D., “Genetic Algorithms in

Search, Optimization and Machine

Learning”, (Addison-Wesley, Reading,

Mass., 1989).

[4] Haupt, R. and Werner, D., “Genetic

Algorithms in Electromagnetics”, (J. Wiley

and Sons, Hoboken, NJ, 2007).

[5] Eiben, A. and Smith, J., “Introduction to

Evolutionary Computing”, 2nd Edn.

(Springer-Verlag, Berlin, 2007).

[6] Eiben, A. and Smith, J., Nature, 521 (2015)

476.

[7] Hinton, G. and Nowlan, S., Complex

Systems, 1 (1987) 495.

[8] Krasnogor, N. and Smith, J., IEEE T. Evolut.

Comput., 9 (2005) 474.

[9] Chen, X., Ong, Y.-S., Lim, M.-H. and Tan,

K., IEEE T. Evolut. Comput., 15 (2011) 591.

[10] Neri, F., Cotta, C. and Moscato, P.,

“Handbook of Memetic Algorithms”,

(Springer, Berlin, 2011).

[11] Posik, P., Huyer, W. and Pal, L., Evol.

Comput., 20 (2012) 509.

[12] Sapin, E., De Jong, K. and Shehu, A.,

Proceedings of the Genetic and Evolutionary

Computation Conference, Denver (2016), 85.

[13] Nguyen, P. and Sudholt, D., Proceedings of

the Genetic and Evolutionary Computation

Conference, Kyoto (2018), 1071.

[14] Powell, M., Large-Scale Non-linear

Optimization, 83 (2006) 255.

[15] Wanner, E., Guimaraes, F., Takahashi, R.

and Fleming, P., IEEE C. Evolut. Comput.,

(2007) 677.

[16] Wanner, E., Guimaraes, F., Takahashi, R.

and Fleming, P., Evol. Comput., 16 (2008)

185.

[17] Deep, K. and Das, K., Appl. Math.

Comput., 203 (2008) 86.

[18] da Cruz, A., Wanner, E., Cardoso, R. and

Takahashi, R., IEEE C. Evol. Computat.,

(2011) 1217.

[19] Fonseca, C. and Wanner, E., IEEE C. Evol.

Computat., (2016) 4911.

[20] Rasheed, K., Ni, X. and Vattam, S., Soft

Comput., 9 (2005) 29.

[21] Regis, R. and Shoemaker, C., IEEE T.

Evolut. Comput., 8 (2004) 490.

[22] Paenke, I., Branke, J. and Jin, Y., IEEE T.

Evolut. Comput., 10 (2006) 405.

[23] Jones, D.R., J. Global Optim., 21 (2001)

345.

[24] Jin, Y., Swarm Evol. Comput., 1 (2011) 61.

[25] Forrester, A., Sobester, A. and Keane, A.,

“Engineering Design via Surrogate

Modelling: A Practical Guide”, (J. Wiley and

Sons, Chichester, UK, 2008).

[26] De Lucia, A., M., D.P., Oliveto, R. and

Panichella, A., Proceedings of the Genetic

and Evolutionary Computation Conference,

Philadelphia (2012), 617.

[27] Martin, J. and Rasheed, K., Proceedings of

the 2003 Congress on Evolutionary

Computation, Canberra (2003), 1612.

[28] Marim, L., Lemes, M. and Dal Pino, A.,

Phys. Rev. A, 67 (2003) 033203.

A Genetic Algorithm for Addressing Computationally Expensive Optimization Problems in Optical Engineering

 35

[29] Javadi, A., Farmani, R. and Tan, T., Adv.

Eng. Inform., 19 (2005) 255.

[30] Patra, T., Meenakshisundaram, V., Hung,

J.-H. and Simmons, D., ACS Comb. Sci., 19

(2017) 96.

[31] Garciarena, U., Santana, R. and Mendiburu,

A., Proceedings of the Genetic and

Evolutionary Computation Conference,

Kyoto (2018), 849.

[32] Mayer, A. and Bay, A., J. Opt., 17 (2015)

025002.

[33] Mayer, A., Gaouyat, L., Nicolay, D.,

Carletti, T. and Deparis, O., Opt. Express, 22

(2014) A1641.

[34] Mayer, A., Muller, J., Herman, A. and

Deparis, O., Proc. SPIE 9546, San Diego

(2015), 95461N.

[35] Lin, A. and Phillips, J., Sol. Energ. Mat.

Sol. C., 92 (2008) 1689.

[36] Wang, C., Yu, S., Chen, W. and Sun, C.,

Sci. Rep., 3 (2013) 1.

[37] Yu, S., Wang, C., Sun, C. and Chen, W.,

Struct. Multidisc. Optim., 50 (2014) 367.

[38] Judson, R., Reviews in Computational

Chemistry, 10 (1997) 1.

[39] Smith, J., “Evolutionary Genetics”, 2nd

Edn., (Oxford University Press, 1998).

[40] Mayer, A., Proceedings of the Genetic and

Evolutionary Computation Conference

Companion, Berlin (2017), 195.

[41] For Schwefel 7 (fct #6 in Table 1), we

actually consider ni=16 bits per gene, since

we can otherwise not get sufficiently close to

the exact solution xi=420.96874636.

[42] The hypothesis H0="01∆�target2 not

improved by the local optimization

procedure" is rejected at a confidence level

α=0.005 by a right-tailed z-test, where YD =
01∆�target2 for the reference model (no local

optimization) and 'D
H = #run ∗ YD ∗ (1 −

 YD). We used ∆�target=10-4 and #run=100 in

our numerical experiment. This confidence

level holds for problems in 5, 10 and 20

dimensions and whether shifted Gray codes

are used or not.

[43] The hypothesis H0="01∆�target2 not

improved by shifted Gray codes" is rejected

at a confidence level α=0.05 by a right-tailed

z-test, where YD = 01∆�target2 for the

reference model (no shift of the Gray code)

and 'D
H = #run ∗ YD ∗ (1 − YD). We used

∆�target=10-4 and #run=100 in our numerical

experiment. This confidence level holds for

problems in 5, 10 and 20 dimensions and

whether the local optimization procedure was

used or not.

[44] Hansen, N. and Ostermeier, A., Evol.

Comput., 9 (2001) 159.

[45] Hansen, N., “Towards a New Evolutionary

Computation. Advances on Estimation of

Distribution Algorithms”, (Springer, Berlin,

2006), 75.

[46] Hansen, N., Proceedings of the Genetic and

Evolutionary Computation Conference,

Montreal (2009), 2389.

[47] CMA-ES accounts for the boundaries

[�

min, �

max] specified in Table 1. The

starting point 〈�⃗〉D used by CMA-ES is a

random position in the search domain. We

finally take Q(D) = (�

max − �

min)/3 as

recommended.

[48] Lobet, M., Lard, M., Sarrazin, M., Deparis,

O. and Henrard, L., Opt. Express, 22 (2014)

12678.

[49] Lobet, M. and Henrard, L., 8th International

Congress on Advanced Electromagnetic

Materials in Microwaves and Optics,

Copenhagen (2014), 190.

[50] Clapham, P. and Hutley, M., Nature, 244

(1973) 281.

[51] Deparis, O., Vigneron, J.-P., Agustsson, O.

and Decroupet, D., J. Appl. Phys., 106 (2009)

094505.

[52] Prodan, E., Radlo, C., Halas, N. and

Nordlander, P., Science, 302 (2003) 419.

[53] Christ, A., Zentgraf, T., Tikhodeev, S.,

Gippius, N., Kuhl, J. and Giessen, H., Phys.

Rev. B, 74 (2006) 155435.

[54] Liu, N., Guo, H., Fu, L., Kaiser, S.,

Schweizer, H. and Giessen, H., Adv. Mater.,

19 (2007) 3628.

Article Mayer and Lobet

 36

[55] Pu, M., Feng, Q., Hu, C. and Luo, X.,

Plasmonics, 7 (2012) 733.

[56] Moharam, M. and Gaylord, T., J. Opt. Soc.

Am. A, 71 (1981) 811.

[57] Lobet, M. and Deparis, O., Proc. SPIE

8425, Brussels (2012), 842509.

[58] Johnson, P. and Christy, R., Phys. Rev. B, 9

(1974) 5056.

[59] Ordal, M., Bell, R., Alexander, R.,

Newquist, L. and Querry, M., Appl. Opt., 27

(1988) 1203.

[60] Beadie, G., Brindza, M., Flynn, R.,

Rosenberg, A. and Shirk, J., Appl. Optics, 54

(2015) 139.

[61] For applications with constraints on

acceptable gene values, the genetic algorithm

will only consider individuals that match

these constraints. The crossover operator

makes in this case nbits-1 attempts to generate

children with acceptable gene values. If these

attempts fail, children will be simple copies

of the parents. The mutation operator is

repeated from scratch on the input DNA until

it generates a DNA with acceptable gene

values.

[62] Rowe, J., Whitley, D., Barbulescu, L. and

Watson, J.-P., Evol. Comput., 12 (2004) 47.

[63] Barbulescu, L., Watson, J.-P. and Whitley,

D., 17th National Conference on Artificial

Intelligence, Austin (2000), 879.

[64] Whitley, D., Information and Software

Technology, 43 (2001) 817.

[65] We use a quadratic approximation of the

fitness, because establishing this

approximation and its optimum is easily

tractable for problems in up to 20 dimensions

as in this work and because it is indeed

appropriate to describe the local behavior of

the fitness in the region of interest. Advanced

methods are available for higher dimensions

or for situations in which the time required by

this analysis is no more negligible compared

to that required for evaluating the fitness [14-

16,19].

[66] Golub, G. and Kahan, W., J. Soc. Ind. Appl.

Math. Ser. B Numer. Anal., 2 (1965) 205.

