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Abstract: We present a theoretical study of the magnetization (M) and the 
magnetic susceptibility (χ) of single electron Gaussian quantum dot (GQD) presented in a 
magnetic field. We solve the Hamiltonian of this system including the spin by using exact 
diagonalization method. All the energy matrix elements are obtained in closed analytic 
form. We investigate the effects of temperature, magnetic field and confining potential 
depth on the behavior of magnetization and magnetic susceptibility of the quantum dot. 
Comparisons show that our results are in very good agreement with reported works.  
Keywords: Gaussian quantum dot, Magnetic field, Exact diagonalization method, 

Magnetization, Magnetic susceptibility. 
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1. Introduction 

The study of quantum dot (QD) structures has 
received great attention in recent years due to 
their physical properties and great potential 
device applications, such as quantum dot lasers, 
solar cells, single electron transistors and 
quantum computers [1- 5]. The introduction of a 
magnetic field perpendicular to the dot plane 
introduces an additional structure on the energy 
levels and correlation effects of the interacting 
electrons confined in a quantum dot. 

Different authors had solved the QD 
Hamiltonian with parabolic potentials by using 
analytical and various numerical methods [6-18]. 
The Gaussian potential has been proved to be an 
effective potential in many branches of physics. 
It has been solved approximately for a single 
particle problem by many authors [19-27]. The 
exact diagonalization and variational methods 
have been used to study the electronic, 
thermodynamic and magnetic properties of 
single and coupled QDs [28-35]. 

The purposes of this work are: first, to 
calculate the statistical energy <E> of a single 
electron confined in a Gaussian quantum dot 
(GQD) by solving the QD Hamiltonian using 
exact diagonalization method; second, the 
obtained statistical energy will be used to 
investigate the dependence of magnetization (M) 
and magnetic susceptibility (χ), as 
thermodynamic quantities, on magnetic field 
strength (B), temperature (T) and confining 
potential depth (V0), taking into account the 
presence of the spin (S). 

The structure of this paper is organized as 
follows: the Hamiltonian theory and computation 
method of a single electron in GQD are 
presented in section 2. In section 3, we show 
how to calculate magnetization and magnetic 
susceptibility from the mean energy expression. 
The final section is devoted to numerical results 
and discussion. 
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2. Theory  

The theory in this research consists mainly of 
three main parts: the two-dimensional (2D) 
Hamiltonian model, the exact diagonalization 
technique and the calculation of magnetic 
properties, such as statistical energy, 
magnetization and magnetic susceptibility. 

Quantum Dot Hamiltonian 

The Hamiltonian of a single electron system 
in an external magnetic field with the presence 
of Gaussian confinement potential is given as:  

𝐻෡ =
ଵ

ଶ௠∗ ቀ𝑃ሬ⃗ +
௘

௖
𝐴ቁ

ଶ
+ 𝑉(𝜌⃗)     (1) 

where ρሬ⃗  refers to the position vector of an 
electron, Pሬሬ⃗  is the momentum operator, m* is the 
electron effective mass and Aሬሬ⃗  is the vector 
potential corresponding to the applied magnetic 
field Bሬሬ⃗  along z-direction including the spin 
Zeeman term. The magnetic field is given by 
Bሬሬ⃗ =∇ሬሬ⃗ × Aሬሬ⃗  and 𝑉(𝜌⃗) is the confining potential 
taken as Gaussian potential,  

𝑉(𝜌) = −𝑉଴𝑒
ି

ഐమ

మೃమ     (2) 

The Hamiltonian can be rewritten as: 

𝐻෡ = −
ℏమ

ଶ௠∗ ∇ఘ
ଶ + 𝑉(𝜌) +

ଵ

଼
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ଶ
ℏ𝜔௖(𝐿෠௭ + 𝑔𝑆መ௭)     (3) 

where L෠z is the z component of the angular 
momentum of the electron, 𝜔௖ is the cyclotron 
frequency given by c= eB/ m∗, where B is the 
strength of the applied magnetic field, R is the 
quantum dot radius, V0 is the depth of the 
confining potential and g* is the effective Lande 
g-factor which equals -0.44 for GaAs. 

Exact Diagonalization Method 

The Gaussian potential term makes the 
analytical solution of this system not possible. 
We intend to solve the Hamiltonian by using the 
exact diagonalization method. The bases are 
taken to be Fock-Darwin states [21, 36], given 
as:  
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        (4) 

with 

𝛼 = ට
௠∗ఠ

ℏ
     (5) 

where n is the radial quantum number, mz is the 
azimuthal angular momentum quantum number, 
L୬ 

|୫౰| is the associated Laguerre polynomial 
and χ(σ) is the eigenstate of the spin operator S෠z. 

The Hamiltonian can be rewritten as H෡ = H෡ 0 
+H෡1; where 

𝐻෡଴ = −
ℏమ

ଶ௠∗ ∇ఘ
ଶ +
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ଶ
𝑚∗𝜔ଶ𝜌ଶ +
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             (6) 

𝐻෡ଵ = −
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𝑚∗𝜔଴
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ି
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మೃమ              (7) 

and 2 is the effective frequency, defined as: 

𝜔ଶ = 𝜔଴
ଶ +

ଵ

ସ
𝜔௖

ଶ           (8) 

where H෡଴ represents the harmonic oscillator 
Hamiltonian with well-known eigenstates |𝑛𝑚௭〉 

and with energies of En= (2n + |mz| +1) ħ 
+భ

మ
 ħc (mz + gSz). 

We can write the matrix elements of the 
complete Hamiltonian H෡ in terms of these bases 
|nmz> using Eq. 4, as:  

〈𝑛ᇱ𝑚௭หH෡ห𝑛𝑚௭〉 = 〈𝑛ᇱ𝑚௭หH෡଴ห𝑛𝑚௭〉 + 
〈𝑛ᇱ𝑚௭หH෡ଵห𝑛𝑚௭〉 

= (2n + |mz| +1) ħ + భ

మ
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The matrix element for the Gaussian 

confinement potential 〈n′mz - 𝑉଴𝑒
ି

ഐమ

మೃమ| nm୸〉 can 
be evaluated in a closed form by using the 
following Laguerre relation [16]:  
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This closed form reduces significantly the 
computation time needed in the diagonalization 
process. 

Statistical Energy, Magnetization and 
Magnetic Susceptibility 

We have used computed energies of the GQD 
system as essential data to calculate the 
statistical average energy as: 
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        (11) 

which describes the mean thermal energy of the 
electron. 

The magnetization of the GQD system is 
evaluated as the magnetic field partial derivative 
of the mean energy of the GQD. 

M ቀ𝑇, 𝐵, 𝑅, V ቁ =
ି ப〈୉(୘,୆,ୖ,୚బ )〉

ப୆
        (12) 

The magnetic susceptibility of the GQD 
system is evaluated as the second magnetic field 
derivative of the mean energy of the DQD. 

𝜒 ቀ𝑇, 𝐵, 𝑅, V ቁ = −
డమழா(୘,୆,ୖ,୚బ )வ

డమ஻
        (13) 

3. Results and Discussion 

We present our computed results for the 
energy spectra by solving the single electron 
GQD Hamiltonain using numerical 
diagonalization method and Fock-Darwin bases. 
The material parameter for GaAs medium is 
taken to be m∗ = 0.067m0; the effective Rydberg 
of R∗ = 5.83meV and Bohr radius of a∗ = 9.8 nm 
are used as energy and length, respectively. The 
energy spectra, En, are essential input data to 
calculate magnetization and magnetic 
susceptibility. Diagrams were used to illustrate 
the results. 

Quantum Dot Energy Spectra 

First, we calculate the ground state energy of 
the QD for fixed potential height (V0) and 
different QD radii, as displayed in Fig. 1. 

We show in Fig. 2 the ground state and few 
excited state energies of the Gaussian QD versus 
the magnetic field B. The figure shows clearly 
the effects of the Zeeman and the spin terms on 
each particular state. As the magnetic field 
increases, the spin and Zeeman terms show 
significant energy contribution effects. These 
results are in full agreement with the previous 
published results of Boyacioglu and Chatterjee 
[38]. 

Next, we found the average thermal energy of 
the ground state of the QD as in Fig. 3. This 
figure describes the average thermal energy 〈𝐸〉 
versus the magnetic field for GQD, taking into 
account the effect of the electron spin term. 

Fig. 3 shows that at low temperature of 5mK, 
the energy decreases as the magnetic field 
increases, because at low temperatures, the 
thermal energy contribution is small, so the 
negative energy contribution due to the spin term 
(ୡg*S෠୸) is significant and reduces the statistical 
energy; this behavior continues up to B≈4 T, 
then the energy starts increasing as the magnetic 
field increases. As the temperature increases, 
from 5mK to 10 and 20 K, the ground state 
energy curve of the QD shows a great 
enhancement. This behavior is due to the 
significant increment in the thermal energy 
contribution.  

 
FIG. 1. The calculated ground state energy of a single electron quantum dot as a function of the quantum dot size 

R at zero magnetic field B = 0 and V0 = 36.7meV. 
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FIG. 2. Computed ground and first few exited energy states of one electron GQD versus the magnetic field at V0 

= 36.7 meV and R = 10 nm. The dashed curve is for S = −1/2 and the solid curve is for S = 1/2. 

 
FIG. 3. The average thermal energy versus the strength of the magnetic field B at V0 = 36.7meV, R = 10nm, g* 

= −0.44 and T = 5 mK, 10 and 20 K, from bottom to top. 

 

In Fig. 4, we show the dependence of the 
convergence of our GQD energy spectra on the 
temperature by plotting the average energy 
versus the temperature at constant B = 2T for R 
= 10nm and V0 = 36.7 meV and various numbers 
of bases (n) used in the exact diagonalization 
process. It is clear from the figure that, to reach 

numerical stability, we need more bases as the 
temperature increases.To achieve very good 
numerical stability calculations, we raised the 
number of bases to more than 90, at high 
temperature, as shown. This behavior is also 
supported by the results of a recent work 
reported by Nammas [34]. 
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FIG. 4. Average thermal energy<E> against temperature T at V0 = 36.7 meV, R = 10nm, g* = −0.44, B = 2T 

and n = 10, 30, 50, 70, 90, 110 and 130. 

Magnetization 

In this section, we will present and discuss 
the computed results for the behavior of 
magnetization (M) as a function of QD physical 
parameters of a single electron QD confined by a 
Gaussian potential. Magnetization was 
calculated by using the computed eigenenergies 
of a confined electron in a QD, as essential input 
data.  

In Fig. 5, we present the dependence of M on 
B for fixed values of the confinement depth V0 

and quantum dot radius R, at different 
temperatures, T. 

By focusing on the results obtained in the 
figure, we observe that at low temperatures 
(T=5mK, 5K and 10 K), magnetization M has 
the following behavior: magnetization increases 
as the magnetic field B increases, reaching a 
peak value, then it starts decreasing. As the 
temperature increases, the peak value in the 
magnetization curve decreases and the curve 
becomes flat. For example, at high temperatures 
of T=20K and 30K, the thermal energy (𝐸௧௛ =
𝑘஻𝑇) becomes very significant and in this case, 
it affects greatly the average energy behavior of 
the system, as shown in Fig. 3. This leads to a 
linear decrease in the magnetization curve 
against the magnetic field. 

 
FIG. 5. Magnetization, per effective Bohr magneton 

୑

µా
∗ , gainst the strength of the magnetic field B at V0 = 36.7 

meV, R = 10 nm and T = 0.005, 5,10, 20 and 30K. 
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Fig. 6 shows the effect of the confining 
potential depth V0 on the variation of the 
magnetization curve. As the potential depth V0 
increases, magnetization increases. This 
behavior of magnetization is due to the negative 
energy contribution of the Gaussian potential     

(-V଴eି஡మ ଶୖమ⁄ ) to the statistical energy 〈𝐸〉 of the 
QD. The reduction in the statistical energy leads 
to an enhancement in magnetization, 

where  M ቀ𝑇, 𝐵, 𝑅, V ቁ =
ି ப〈୉(୘,୆,ୖ,୚బ )〉

ப୆
. 

 
FIG. 6. Magnetization, per effective Bohr magneton 

୑

µా
∗ , versus the strength of the magnetic field B at V0=36.7, 

100 and 150 meV, R=10 nm and T= 5K. 

 
Magnetic Susceptibility 

This section is devoted for the variation of 
magnetic susceptibility χ as a function of 
magnetic field B, temperature T, quantum dot 
radius R and confining potential depth V0, of a 
single electron QD confined by a Gaussian 
potential. The magnetic susceptibility of the 
GQD system is evaluated as the second magnetic 
field derivative of the mean energy of the GQD, 

as given in Eq. (13); 𝜒 ቀ𝑇, 𝐵, 𝑅, V ቁ =

−
డమழா(୘,୆,ୖ,୚బ )வ

డమ஻
. 

In Fig. 7, we present the dependence of 
magnetic susceptibility on magnetic field B for 
fixed values of confining potential depth V0 = 
36.7meV and quantum dot radius R = 10nm, at 

different temperatures T = 5mK, 5, 10 and 20K. 
The figure shows clearly a great change in the 
behavior of the magnetic susceptibility curves, at 
each temperature, as we increase the magnetic 
field strength B. At low temperatures (T =
5 mK and 5 K), it is found that at particular 
values of magnetic field strength, magnetic 
susceptibility (χ) flips its sign from positive 
(χ > 0) to negative (χ < 0); equivalent to a 
phase change in the QD-media from 
paramagnetic to diamagnetic. However, at higher 
temperatures (T = 10K, 20K), it is observed that 
the sign of the magnetic susceptibility of the 
system is negative (χ < 0) for the entire 
magnetic field range. 
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FIG. 7. Magnetic susceptibility, per effective Bohr magneton 

ఞ

µా
∗ , versus the strength of the magnetic field B at V0 

= 36.7meV, R = 10 nm and T = 0.005, 5, 10 and 20K. 

 
Conclusion 

The exact diagonalization method has been 
used to solve the QD Hamiltonian and calculate 
eigenenergies' spectra, magnetization (M) and 
magnetic susceptibility (χ) of a single GaAs 
quantum dot with Gaussian confinement, as a 
function of the magnetic field strength (B), QD 
radius (R), confining potential (V0) and 
temperature (T). In this work, we have shown 
the dependence of the energy on the QD radius 
(R). Next, we have calculated the statistical 
energy 〈𝐸〉, taking into account the presence of 

the spin (S). The QD-energy results are 
displayed against the physical parameters of the 
QD: magnetic field strength (B), QD radius (R), 
temperature (T) and confining potential (V0). In 
addition, we have studied the dependence of 
magnetization and magnetic susceptibility of the 
system on the external magnetic field, 
temperature and confining potential of the GQD. 
It is found that at certain values of 𝑇 and V0, the 
QD-system has a magnetic phase change from 
diamagnetic to paramagnetic. 
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