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Abstract: We reformulated the Degasperis-Procesi equation using functional derivatives. 
More specifically, we used a semi-inverse method to derive the Lagrangian of the 
Degasperis-Procesi equation. After introducing the Hamiltonian formulation using 
functional derivatives, we applied this new formulation to the Degasperis-Procesi Equation. 
In addition, we found that both Euler-Lagrange equation and Hamiltonian equation yield 
the same result. Finally, we studied an example to elucidate the results.   
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Introduction 

The Degasperis-Procesi equation was 
discovered by Degasperis and Procesi [1] in a 
search for integrable equations similar in form to 
that of Camassa-Holm equation. Notably, this 
equation is widely used in the field of fluid 
dynamics, as well as in biology, aerodynamics, 
continuum mechanics, image processing, 
physics, control theory, oceanology and 
geometry. Additionally, Degasperis-Procesi 
equation has been used to describe a wide range 
of physical phenomena as a model for the 
evolution as well as interaction of nonlinear 
waves [1]. It was first derived as an evolution 
equation that governs one-dimensional, small 
amplitude, long surface gravity waves 
propagating in a shallow channel of water [2, 3]. 
Fuchssteiner and Fokas [4], Lenells [5] and 
Camassa and Holm [6] proposed the derivation 
of solution forward as a model for dispersive 
shallow water waves, subsequently discovering 
that it is a formally integrable dimensional 
Hamiltonian system. 

It is well known that the use of the Euler-
Lagrange equation in setting up equations of 
motion for certain physical systems is more 
convenient and useful as compared to that of 
Newtonian mechanics. The important benefit 
imparted is that when Lagrangian and momenta 
for a certain system are known, the Hamiltonian 
function can be written. Once the Hamiltonian is 
known, the system then becomes amenable to 
the techniques of quantum mechanics which 
cannot be implemented using Newtonian 
mechanics. However, although the formalism 
developed by Newton is applicable for both 
conservative and non-conservative systems, it is 
not possible to use traditional Lagrangian and 
Hamiltonian mechanics with non-conservative 
systems. Several methods have been proposed 
and implemented to introduce dissipative effects, 
such as friction, into classical Hamiltonian and 
Lagrangian mechanics. One such method is the 
Rayleigh dissipation function, which can be used 
when the frictional forces are found to be 
proportional to the velocity [7, 8]. However, 
another scalar function is needed in addition to 
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the Lagrangian in this method to specify the 
equations of motion. This function cannot appear 
in the Hamiltonian function, which is why it is of 
no use when attempting to quantize friction. 
Another method [9, 10] introduces an auxiliary 
coordinate system in the Lagrangian that 
describes a reverse-time system with negative 
friction. Notably, this method leads to the 
desired equations of motion, but the Hamiltonian 
yields extraneous solutions that must be rejected, 
whereas the physical meaning of the momenta 
remains unclear. Against this backdrop, a good 
and realistic method is to include the 
microscopic details of the dissipation directly in 
the Lagrangian or the Hamiltonian [11]. This 
method constitutes a valuable tool in the study of 
quantum dissipation, but it is not intended to be a 
general method for introducing the friction force 
into Lagrangian mechanics. Thus, we see that 
none of the above techniques exhibit the same 
directness and simplicity that are found in the 
mechanics of conservative systems. El-Wakil et 
al. recently studied the interaction between the 
structure and propagation of the resulting 
solitary waves obtained from TFKdV using 
fractional order derivatives [12]. The authors 
obtained fractional Euler-Lagrange equations 
resulting from the Lagrangian densities and then 
solved the derived time-fractional KdV equation 
using the variational-iteration method. 

In another study, Riewe [13, 14] formulated a 
version of the Euler-Lagrange equation for 
problems in calculus of variation with fractional 
derivatives. Furthermore, a new development of 
systems with higher-order fractional derivatives 
was discussed in [15, 16]. Over the past decades, 
additional studies relating to the fractional Euler-
Lagrange equations can be found in Muslih and 
Baleanu [17] and Dreisigmeyer and Young [18]. 
They were also able to obtain the fractional 
variational principle and the differential 
equations of motion for a fractional mechanical 
system. 

This present paper is a generalization of the 
aforementioned work on Hamilton's equation for 
Degasperis-Procesi field using functional 
derivatives. It is organized as follows: In Sec.1, 
the form of Euler-Lagrangian equation is 
presented in terms of functional derivative of the 
Lagrangian. In Sec.2, the Euler-Lagrange 
Equation in terms of Momentum Density is 
succinctly discussed. This is followed by Sec. 3, 
which deals with equations of motion in terms of 

Hamiltonian density in functional derivative 
form. Sec. 4 encompasses the semi-inverse 
method, whereas in Sec. 5, we study one 
example of classical fields that leads to 
Degasperis-Procesi equation in functional 
derivatives form. The work ends with some 
concluding remarks (Sec. 6).  

1. Euler-Lagrange Equation in Terms 
of Functional Derivatives of the 
Lagrangian 

The Lagrangian of the classical field that 
contains partial derivatives is a function of the 
form: 
ℒ = ℒ (𝜓, 𝜓௧ , 𝜓௫ , 𝜓௫௫, 𝜓௫௫௧ , 𝜓௫௫௫, t).              (1) 

The Lagrangian L can be written as: 

L =  ∫ ℒ (𝜓, 𝜓௧, 𝜓௫, 𝜓௫௫ , 𝜓௫௫௧, 𝜓௫௫௫ , t)  dଷr .   (2) 

Using the variational principle, the following 
can be written: 

𝛿 ∫ 𝐿 𝑑𝑡 =  𝛿 ∬ ℒ  dଷr dt = ∫(δℒ) dଷr dt.    (3) 

Using Eq. (3), the variation of ℒ is: 

𝛿ℒ =  
డℒ

డట
𝛿𝜓 +

డℒ

డట೟
𝛿𝜓௧ +

డℒ

డటೣ
𝛿𝜓௫ +

 
డℒ

డటೣೣ
𝛿𝜓௫௫ +

డℒ

డటೣೣ೟
𝛿𝜓௫௫௧ +

డℒ

డటೣೣೣ
𝛿𝜓௫௫௫ =

 0  .              (4) 

Substituting Eq. (4) into Eq. (3) yields: 

 ∬ ቂ
డℒ

డట
𝛿𝜓 +

డℒ

డట೟
𝛿𝜓௧ +

డℒ

డటೣ
𝛿𝜓௫ +  

డℒ

డటೣೣ
𝛿𝜓௫௫ +

డℒ

డటೣೣ೟
𝛿𝜓௫௫௧ +

డℒ

డటೣೣೣ
𝛿𝜓௫௫௫ቃ  dଷr dt = 0    (5) 

and using the following commutation relation, 

𝛿𝜓௧ = 𝛿
డట

డ௧
=

డ

డ௧
𝛿𝜓

𝛿𝜓௫ = 𝛿
డట

డ௫
=

డ

డ௫
𝛿𝜓

𝛿𝜓௫௫ = 𝛿
డమట

డ௫మ =
డమ

డ௫మ 𝛿𝜓

𝛿𝜓௫௫௧ = 𝛿
డయట

డ௫మడ௧
=

డయ

డ௫మడ௧
𝛿𝜓

𝛿𝜓௫௫௫ = 𝛿
డయట

డ௫య =
డయ

డ௫య 𝛿𝜓
 
 ⎭

⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

            (6) 

We obtain the following equation: 
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∬ ൦ 
డℒ

డట
𝛿𝜓 +

డℒ

డట೟

డ

డ௧
𝛿𝜓

ᇣᇧᇧᇤᇧᇧᇥ
௙௜௥௦௧ 

+
డℒ

డటೣ

డ

డ௫
𝛿𝜓

ᇣᇧᇧᇤᇧᇧᇥ
௦௘௖௢௡ௗ 

+

 
డℒ

డటೣೣ

డమ

డ௫మ 𝛿𝜓
ᇣᇧᇧᇤᇧᇧᇥ

௧௛௜௥ௗ

 +
డℒ

డటೣೣ೟

డయ

డ௫మడ௧
𝛿𝜓

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௙௢௨௥௧௛

+

డℒ

డటೣೣೣ

డయ

డ௫య 𝛿𝜓
ᇣᇧᇧᇧᇤᇧᇧᇧᇥ

௙௜௙௧௛ 

൪  dଷrdt = 0  .           (7)  

Integrating by parts the indicated terms in Eq. 
(7) with respect to space and time yields the 
following expression: 

∬ ቂ
డℒ

డట
𝛿𝜓 −

డ

డ௧
ቀ

డℒ

డట೟
ቁ 𝛿𝜓 −

డ

డ௫
ቀ

డℒ

డటೣ
ቁ 𝛿𝜓 +

డమ

డ௫మ ቀ
డℒ

డటೣೣ
ቁ 𝛿𝜓 −

డయ

డ௫మడ௧
ቀ

డℒ

డటೣೣ೟
ቁ 𝛿𝜓 −

డయ

డ௫య ቀ
డℒ

డటೣೣೣ
ቁ 𝛿𝜓ቃ  dଷrdt = 0 .           (8)  

This, in turn, results in the Euler-Lagrange 
equations of motion: 

డℒ

డట
−

డ

డ௧
ቀ

డℒ

డట೟
ቁ −

డ

డ௫
ቀ

డℒ

డటೣ
ቁ +

డమ

డ௫మ ቀ
డℒ

డటೣೣ
ቁ −

డయ

డ௫మడ௧
ቀ

డℒ

డటೣೣ೟
ቁ −

డయ

డ௫య ቀ
డℒ

డటೣೣೣ
ቁ = 0 .          (9)  

Using Eq. (7) and integrating by parts the 
indicated terms with respect to space only results 
in:  

0 = ∫ 𝑑𝑡 ∫ ቂ
డℒ

డట
𝛿𝜓 −

డ

డ௫
ቀ

డℒ

డటೣ
ቁ 𝛿𝜓 +

డమ

డ௫మ ቀ
డℒ

డటೣೣ
ቁ 𝛿𝜓 −

డయ

డ௫మడ௧
ቀ

డℒ

డటೣೣ೟
ቁ 𝛿𝜓 −

డయ

డ௫య ቀ
డℒ

డటೣೣೣ
ቁ 𝛿𝜓ቃ 𝑑𝜏𝛿𝜓 +

∫ 𝑑𝑡 ∫ ቂቀ
డℒ

డట೟
ቁ 𝛿

డ

డ௧
𝜓ቃ 𝑑𝜏   .        (10)  

Now, Eq. (10) can also be integrated with 
respect to space before converting it into 
summation, resulting in: 

∑ ቂ
డℒ

డట
−

డ

డ௫
ቀ

డℒ

డటೣ
ቁ +

డమ

డ௫మ ቀ
డℒ

డటೣೣ
ቁ −௜

డయ

డ௫మడ௧
ቀ

డℒ

డటೣೣ೟
ቁ −

డయ

డ௫య ቀ
డℒ

డటೣೣೣ
ቁቃ 𝛿𝜓௜𝛿𝜏௜ +

∑ ቂ
డℒ

డట೟
ቃ௜ 𝛿(𝜓௧)௜𝛿𝜏௜  = 0   .              (11) 

Eq. (11) can be expressed in terms of 
Lagrangian density as follows: 

∑ [𝛿ℒ]௜௜ 𝛿𝜏௜ = 0  ,         (12) 

where the left-hand side in Eqs. (11 and 12) 
represents the variation of L (i.e. 𝛿𝐿) which is 
now produced by independent variations 
in𝛿𝜓௜ , 𝛿(𝜓௧)௜. Suppose now that all 𝛿𝜓௜, 𝛿(𝜓௧)௜ 

are zeros except for a particular 𝛿𝜓௝. It is natural 
to define the functional derivative of the 

Lagrangian (   𝐿) with respect to 𝛿𝜓௜, 𝛿(𝜓௧)௜ 
for a point in the jth cell to the ratio of 𝛿𝐿 
to 𝛿𝜓௝[20]. 

 ௅

 ట೟

= limఋఛೕ→଴
ఋℒ

ఋట೟ೕఋഓೕ
 .         (13) 

Using Eq. (12) and noting that the left-hand 
side represents δL yields: 

 ௅

 ట
=

డℒ

డట
 –

డ

డ௫
ቀ

డℒ

డటೣ
ቁ +

డమ

డ௫మ ቀ
డℒ

డటೣೣ
ቁ −

డయ

డ௫మడ௧
ቀ

డℒ

డటೣೣ೟
ቁ  −

డయ

డ௫య ቀ
డℒ

డటೣೣೣ
ቁ         (14)  

 ௅

 ట೟

= limఋఛೕ→଴
ఋℒ

ఋట೟ೕఋഓೕ
=

డℒ

డట೟
  .        (15) 

Now, using Eq. (14) and Eq. (15), we can 
rewrite Eq. (9), Euler- Lagrange equation, in 
terms of the Lagrangian L in terms of functional 
derivatives in the form: 

 ௅

 ట
−

డ

డ௧
ቆ

 ௅

 ట೟

ቇ = 0  .         (16) 

And we can write the variation of Lagrangian 
in terms of functional derivatives and variations 
of 𝜓, 𝜓̇ as: 

𝛿𝐿 = ∫ ቈ 
 ௅

 ట
𝛿𝜓 +

 ௅

  ట̇
𝛿𝜓௧቉  dଷr  .       (17) 

2. Euler-Lagrange Equation in Terms 
of Momentum Density 

The form of momentum can be written as 
[19]: 

𝑃௝
௔ =

ఋ௅

ఋటണ
̇   .          (18) 

Using Eq. (13) and Eq. (14), we get: 

𝑃௝
௔ =

డ௅

డట̇
𝛿𝜏௝ =  

 ℒ

 ట̇
𝛿𝜏௝           (19) 

From Eq. (19), the momentum density π can 
be defined as: 

𝜋 =
డ௅

డట̇
=  

 ℒ

 ట̇
 .          (20) 

Now, substituting Eq. (20) into Eq. (16), we 
get: 
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𝜋̇ =
డ௅

డట
  .          (21) 

The above equation represents the form of 
Euler- Lagrange equation in terms of momentum 
density and the functional derivative of 
Lagrangian. 

3. Equations of Motion in Terms of 
Hamiltonian Density in Functional 
Derivative Form 

The Hamiltonian density is defined as: 

ℎ = 𝜋 𝜓̇ − ℒ(𝜓௫ , 𝜓௫௫ , 𝜓௧, 𝜓௫௫௧ , 𝜓௫௫௫)  .       (22) 

Hamiltonian H can also be written in terms of 
the Hamiltonian density ℎ as follows: 

𝐻 = ∑ ℎ௜𝛿𝜏௜௜   .          (23) 

Substituting Eq. (22) into Eq. (23), the 
following is obtained: 

𝐻 = ∑ ൫𝜋 𝜓̇൯𝛿𝜏௜௜ − ∑ ℒ௜𝛿𝜏௜௜   .        (24) 

Eq. (24) can be presented in continuous form 
as follows: 

ℋ = ∫ൣ𝜋 𝜓̇൧  dଷr − ∫ ℒ  dଷr          (25) 

As explained in Appendix A, taking the 
variation of H and using Eq. (17) and Eq. (21), 
we get: 

𝛿ℋ = ∫ൣ−𝜋̇𝛿𝜓 + 𝜓̇𝛿𝜋൧  dଷr  .        (26) 

By analogy with the variation in L; i.e., Eq. 
(17), the variation of Hamiltonian produced by 
variations of independent variables in terms of 
functional derivative can be expressed as follows 
(Case 1 and 2). 

Case 1: All variables are independent 𝛙, 𝛑 

𝛿𝐻 = ∫ ቈ 
 ு

 ట
𝛿𝜓 +  

 ு

 ஠
𝛿π቉  dଷr  .        (27) 

Comparing Eq. (27) with Eq. (26), we get the 
separate equations of motion in terms of 
Hamiltonian:  

 ு

 ట
 = −𝜋̇

 ு

 ஠
 = 𝜓̇

⎭
⎪
⎬

⎪
⎫

             (28) 

 

By analogy with Eq. (14) for functional 
derivative of Lagranian in terms of derivative of 
Lagrangian density, we can simply define the 
functional derivative of H in terms of a 
Hamiltonian-density derivative with respect to 
the general variable field φ as [20]: 

 ு

 థ
=  

డ௛

డథ
 −

డ

డ௫
ቀ

డ௛

డథೣ
ቁ  +

డమ

డ௫మ ቀ
డ௛

డథೣೣ
ቁ −

డయ

డ௫మడ௧
ቀ

డ௛

డథೣೣ೟
ቁ −

డయ

డ௫య ቀ
డ௛

డథೣೣೣ
ቁ  .        (29) 

Using the definition given in Eq. (29), we can 
rewrite the equations of motion given in Eq. (28) 
in terms of Hamiltonian density such that: 

డ௛

డట
 –

డ

డ௫
ቀ

డ௛

డటೣ
ቁ +

డమ

డ௫మ ቀ
డ௛

డటೣೣ
ቁ −

డయ

డ௫మడ௧
ቀ

డ௛

డటೣೣ೟
ቁ –

డయ

డ௫య ቀ
డ௛

డటೣೣೣ
ቁ = −𝜋 ̇         (30) 

డ௛

డట
 –

డ

డ௫
ቀ

డ௛

డగೣ
ቁ +

డమ

డ௫మ ቀ
డ௛

డగೣೣ
ቁ −

డయ

డ௫మడ௧
ቀ

డ௛

డగೣೣ೟
ቁ –

డయ

డ௫య ቀ
డ௛

డగೣೣೣ
ቁ = 𝜓̇        (31) 

 

Case 2: 𝛑 depends on 𝛙 

So that we take the variation just only for 
independent variable ψ, we have:  

δH = ∫ ቈ
 ୌ

 ந
δψ቉  rd 3 .           (32) 

To state the equations of motion from Eq. 
(27), let us define 𝜋 = 𝑔(ψ), so that we can write 
the variation as: 

𝛿𝜋 =
డ௚

డట
δψ  .          (33)  

Now, substituting Eq. (33) into Eq. (27) and 
comparing with Eq. (32), we obtain the general 
equations of the Hamiltonian density for this 
case: 

 ு

 ట
=

డ௛

డట
 –

డ

డ௫
ቀ

డ௛

డటೣ
ቁ +

డమ

డ௫మ ቀ
డ௛

డటೣೣ
ቁ −

డయ

డ௫మడ௧
ቀ

డ௛

డటೣೣ೟
ቁ –

డయ

డ௫య ቀ
డ௛

డటೣೣೣ
ቁ = −𝜋̇  +

డ௚

డట
  𝜓̇ .  

            (34) 

Eq. (34) represents the Hamilton's Equation 
in a form of functional derivatives, by replacing 
𝜙 → 𝜓 in Eq. (29).  
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4- Semi-Inverse Method 

Degasperis – Procesi Equation 

The Degasperis-Procesi equation in (1+1) 
dimensions is given as [1]: 

𝜙௧(𝑥, 𝑡) − 𝜙௫௫௧(𝑥, 𝑡) +  4𝜙ଶ(𝑥, 𝑡)𝜙௫(𝑥, 𝑡) −
3𝜙௫(𝑥, 𝑡)𝜙௫௫(𝑥, 𝑡) − 𝜙௫(𝑥, 𝑡)𝜙௫௫(𝑥, 𝑡) = 0,   

 (35)  
where 𝜙 (𝑥, 𝑡) is a field variable, x ∈ R is a space 
coordinate in the propagation direction of the 
field and t ∈ T ([(=  [0, 𝑇଴])]) is the time. Using 
a potential function 𝜙( 𝑥, 𝑡),where 𝜙(𝑥, 𝑡) = 
𝜓௫(𝑥, 𝑡) provides the potential equation of the 
Degasperis-Procesi equation (35) in the form: 

𝜓௫௧( 𝑥, 𝑡) − 𝜓௫௫௫௧( 𝑥, 𝑡) +
 4𝜓௫

ଶ( 𝑥, 𝑡)𝜓௫௫( 𝑥, 𝑡) +
3𝜓௫௫( 𝑥, 𝑡)𝜓௫௫௫( 𝑥, 𝑡) +
ଷ

ଶ
 𝜓௫( 𝑥, 𝑡)𝜓௫௫௫௫( 𝑥, 𝑡) = 0 .        (36)  

The Lagrangian of this Degasperis-Procesi 
equation (35) can be defined using the semi-
inverse method [20, 21] as follows. The 
functional of the potential equation (36) can be 
represented as the Lagrangian density in the 
following form: 

𝑗(𝜓) = ∫ 𝑑𝑥 ∫ 𝜓(𝑥, 𝑡)(𝐴ଵ𝜓௫௧(𝑥, 𝑡) −
்ோ

𝐴ଶ𝜓௫௫௫௧(𝑥, 𝑡) +  4𝐴ଷ𝜓௫
ଶ𝜓௫௫(𝑥, 𝑡) −

3𝐴ସ𝜓௫௫𝜓௫௫௫(𝑥, 𝑡) −
 𝐴ହ𝜓௫(𝑥, 𝑡)𝜓௫௫௫௫(𝑥, 𝑡)) 𝑑𝑡 ,         (37)  

where 𝐴ଵ, 𝐴ଶ, 𝐴ଷ, 𝐴ସ and 𝐴ହ are constants to be 
determined later. Integrating (37) by parts and 
taking 𝜓௧|డୖ = 𝜓௫|డୖ = 𝜓௫|డ୘ = 𝜓௫௫|డୖ =
𝜓௫௫௧|డୖ = 0 lead to: 

𝑗(𝜓) =

∫ 𝑑𝑥 ∫ ൬−𝐴ଵ𝜓௧( 𝑥, 𝑡) +
்ோ

𝐴ଶ𝜓௫( 𝑥, 𝑡)𝜓௫௫௧( 𝑥, 𝑡) −  
ସ

ଷ
𝐴ଷ𝜓௫

ସ( 𝑥, 𝑡) +
ଷ

ଶ
(𝐴ସ −  𝐴ହ)𝜓௫( 𝑥, 𝑡)𝜓௫௫

ଶ ( 𝑥, 𝑡) +

ଵ

ଶ
𝐴ହ𝜓௫

ଶ( 𝑥, 𝑡)𝜓௫௫௫( 𝑥, 𝑡)൰ 𝑑𝑡 .        (38)  

The constants 𝐴௜ (i = 1, 2,..., 6) can be 
determined by taking the variation of the 
functional (38) to make it optimal. Applying the 
variation of this functional and integrating each 
term by parts using the variation optimum 
condition yield the following expression: 

−2𝐴ଵ𝜓௫௧( 𝑥, 𝑡) − 2𝐴ଶ𝜓௫௫௫௧( 𝑥, 𝑡) +

16𝐴ଷ𝜓௫
ଶ( 𝑥, 𝑡)𝜓௫௫( 𝑥, 𝑡) + ቀ−

ଵହ

ଶ
𝐴ସ +

 
ଵଷ

ଶ
𝐴ହቁ 𝜓௫௫( 𝑥, 𝑡)𝜓௫௫௫( 𝑥, 𝑡)(𝐴ହ −

3𝐴ସ)𝜓௫(𝑥, 𝑡)𝜓௫௫௫௫ = 0  .         (39)  

Notice that the above equation (39) is 
equivalent to (36), so the constants 𝐴௜ (i = 1, 
2,..., 5) are obtained: 

𝑨𝟏 = 𝑨𝟐 =
𝟏

𝟐
.,  𝑨𝟑 =

𝟏

𝟒
, 𝑨𝟒 =

𝟕

𝟐𝟒
, 𝑨𝟓 = −

𝟏

𝟖
,   

In addition, the functional expression given 
by (38) obtains directly the Lagrangian form of 
the Degasperis-Procesi equation: 

𝐿(𝜓௫ , 𝜓௫௫, 𝜓௧, 𝜓௫௫௧, 𝜓௫௫௫) = −
ଵ

ଶ
 𝜓௫𝜓௧ +

ଵ

ଶ
 𝜓௫𝜓௫௫௧ −  

ଵ

ଷ
𝜓௫

ସ +
ହ

଼
𝜓௫𝜓

௫௫
ଶ

− 
ଵ

ଵ଺
𝜓௫

ଶ 𝜓௫௫௫  . 

 (40)  

5. Illustrative Example 

The Lagrangian density is: 

𝐿(𝜓௫ , 𝜓௫௫, 𝜓௧, 𝜓௫௫௧, 𝜓௫௫௫) 

= −
ଵ

ଶ
 𝜓௫𝜓௧ +

ଵ

ଶ
 𝜓௫𝜓௫௫௧ −  

ଵ

ଷ
𝜓௫

ସ +
ହ

଼
𝜓௫𝜓

௫௫
ଶ

−

 
ଵ

ଵ଺
𝜓௫

ଶ 𝜓௫௫௫ .          (41) 

Applying Euler-Lagrange equation (Eq. (9)), 
we get: 

𝜓௫௧( 𝑥, 𝑡) − 𝜓௫௫௫௧( 𝑥, 𝑡) +
 4𝜓௫

ଶ( 𝑥, 𝑡)𝜓௫௫( 𝑥, 𝑡) +
3𝜓௫௫( 𝑥, 𝑡)𝜓௫௫௫( 𝑥, 𝑡) +
ଷ

ଶ
 𝜓௫( 𝑥, 𝑡)𝜓௫௫௫௫( 𝑥, 𝑡) = 0  .        (42)  

First, we determine π using Eq (20):  

𝜋 =  
డℒ

డట೟
= −

ଵ

ଶ
 𝜓௫  .           (43) 

Then, using Eq. (22), the Hamiltonian density 
can be written as  

ℎ = −
ଵ

ଶ
 𝜓௫𝜓௫௫௧ +

ଵ

ଷ
𝜓௫

ସ −
ହ

଼
𝜓௫𝜓

௫௫
ଶ

+

 
ଵ

ଵ଺
𝜓௫

ଶ 𝜓௫௫௫ .           (44) 

Now, because 𝜋 is 𝜓-dependent, we have to 
use equations of motion for case 2. Applying Eq. 
(34), we get: 

𝜓௫௧( 𝑥, 𝑡) − 𝜓௫௫௫௧( 𝑥, 𝑡) +  4𝜓௫
ଶ( 𝑥, 𝑡)𝜓௫௫( 𝑥, 𝑡) 

+3𝜓௫௫( 𝑥, 𝑡)𝜓௫௫௫( 𝑥, 𝑡) +
ଷ

ଶ
 𝜓௫( 𝑥, 𝑡)𝜓௫௫௫௫( 𝑥, 𝑡) = 0  .        (45) 

The above equation is equivalent in form to 
Eq. (42) that has been derived by Euler- 
Lagrange. 

If we do not consider the dependency of 𝜋 on 
𝜓 and apply Eq. (30) in case1, then we get: 
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𝜓௫௧( 𝑥, 𝑡) − 𝜓௫௫௫௧( 𝑥, 𝑡) +
 4𝜓௫

ଶ( 𝑥, 𝑡)𝜓௫௫( 𝑥, 𝑡) +
3𝜓௫௫( 𝑥, 𝑡)𝜓௫௫௫( 𝑥, 𝑡) +
ଷ

ଶ
 𝜓௫( 𝑥, 𝑡)𝜓௫௫௫௫( 𝑥, 𝑡) = 0 .         (46) 

This is not equivalent to Degasperis-Procesi 
equation given by Eq. (42).  

6. Conclusion 

The Hamiltonian formulation of the 
Degasperis-Procesi field systems is developed 
and the Hamilton equations are presented. 
Additionally, we derived the Euler-Lagrange 
equations. The Hamilton's equations of motion 
are obtained for Degasperis-Procesi density.  

Two cases are considered here: (i) dependent 
conjugate momenta and (ii) independent 
conjugate momenta. It is noteworthy that the 
results are consistent with those derived using 
the formulation of Euler- Lagrange equations. 

Appendix A 

Variation of the Hamiltonian 

We can rewrite Eq. (36) as: 

ℋ = ∫ൣ𝜋 𝜓̇൧  dଷr − 𝐿 .         (A.1)  

Now, taking the variation of H, we get: 

𝛿ℋ = ∫ 𝛿ൣ𝜋 𝜓̇൧  dଷr − 𝛿𝐿 .        (A.2)  

Using Eqs. (27) and (28), we rewrite the 
variation of Lagrangian given by Eq. (A.2) as: 

𝛿𝐿 = ∫ൣ 𝜋̇𝛿𝜓 + 𝜋𝛿𝜓 ̇ ൧  dଷr .       (A.3)  

The above equation can be rearranged as: 

𝛿𝐿 = ∫ൣ 𝜋̇𝛿𝜓 + 𝛿ൣ𝜋𝜓 ̇ ൧ − 𝜓 ̇ 𝛿𝜋൧  dଷr .        (A.4) 

Substituting Eq. (A4) into Eq. (A2), one gets: 

𝛿ℋ = ∫ൣ−𝜋̇𝛿𝜓 + 𝜓 ̇ 𝛿𝜋൧  dଷr .        (A.5) 
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