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Abstract: This manuscript aims to resolve the Hamilton-Jacobi equations in an 
electromagnetic field by two methods. The first uses the separation of variables technique 
with Staeckel boundary conditions, whereas the second uses the Newtonian formalism to 
solve the same example. Our results demonstrate that the Hamilton-Jacobi variables can be 
completely detached by using separation of variables technique with Staeckel boundary 
conditions that correspond to other results using Newtonian formalism. 
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Introduction 

The Hamilton's classic Jacobi theory played a 
huge role in the development of theoretical and 
mathematical physics. On the one hand, it builds 
a bridge between classical mechanics and other 
branches of physics, in particular optics. On the 
other hand, it generates a link between classical 
theory and quantum theory [1].  

Separation of variables is one of the oldest 
techniques in mathematical physics, which still 
remains one of the most effective and powerful 
tools in the theory of integrable systems. An 
important method of determining the full 
integration of the Hamilton-Jacobi equation of 
the system is the way in which the variables are 
separated. This method can be generalized to 
systems with "n" degrees of freedom that allow 
the separation of variables. It was not known 
what the most comprehensive separation system 
was with "n" degrees of freedom. However, it is 
now known how an orthogonal system with "n" 
degrees of freedom is separated. This was 
discovered by Staeckel in his habilitation thesis 

[2]. These systems are now called Staeckel 
systems. Staeckel systems theory can be found in 
many publications, such as references [3-22].  

A standard construction of the action-angle 
variables from the poles of the Baker-Akhiezer 
function has been interpreted as a variant [23]. 
The fundamental elements of the separation 
variables theory, including the Eisenhart and 
Robertson theorems, Kalnins –Miller theory and 
the intrinsic characterization of the separation of 
the Hamilton – Jacobi equation, are developed in 
a unitary and geometrical perspective [24].  

This work aims to solve the Hamilton-Jacobi 
equation using the method of separation 
variables and solve the same equation using 
Newtonian formalism. Our results demonstrate 
that the Hamilton-Jacobi variables can be 
completely detached by using separation of 
variables technique with Staeckel boundary 
conditions that correspond to other results using 
Newtonian formalism.  
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This paper is organized as follows: the 
following sections (A, B and C) present some 
basic definition of the Hamilton-Jacobi equation 
of a Staeckel system. Section two presents how 
to solve the Hamilton-Jacobi equation by the 
method of Staeckel boundary conditions. Section 
three presents how to solve the problem by 
Newtonian formalism. Finally, section four is 
dedicated to our conclusions.  

1- Basic Definitions  

In this part of the manuscript, we briefly 
introduce some of the fundamental definitions 
used in this work [25]. 

A- Staeckel Matrix 𝚽 and Staeckel Vector Ψ  

In a Staeckel system with n degrees of 
freedom, we will assume an (𝑛 × 𝑛) matrix Φ 
and a vector Ψ with n components Ψ௥. Actually, 
𝑛ଶ + 𝑛 components of Φ and Ψ solve 
completely the Staeckel system and that’s why 
we will call it the Staeckel matrix and Staeckel 
vector. The elements are all functions of the 
coordinate 𝑞௥, but in the upcoming way: 

Φ௥௟ = Φ௥௟(𝑞௥), Ψ௥ = Ψ௥(𝑞௥) .          (1) 

In short, one coordinate consists of a row 𝑟 of 
both Φ and Ψ. We will say that the rows of Φ 
are with separated variables; that is, the rows of 
Φ are separated. It indicates that this separation 
property controls the whole theory of Staeckel 
system. 

First, we will need the cofactors 𝐶௜௝ of the 
matrix elements Φ௜௝ of the matrix Φ, in addition 
to the determinant ∆ and the inverse 𝜐 of matrix 
Φ. We will set the elements of the inverse 
𝜐 = Φିଵ of the matrix Φ by (Φିଵ)௜௝ or call 
them 𝜐௜௝. 

We may need some well–known properties of 
determinants and matrices such as: 

∑ Φ௜௝𝜐௝௞ = ∑ 𝜐௜௝Φ௝௞ = 𝛿௜௞௝௝            (2) 

𝜐௜௝ =
஼೔ೕ

∆
             (3) 

∑ Φ௝௜𝐶௜௞ =௜ ∆ ∑ Φ௝௜𝜐௜௞௜ = ∆𝛿௝௞           (4) 

A direct consequence of the separation 
property (1) is that the cofactor 𝐶௜௝ will depend 
on (n-1) coordinates only: 𝐶௜௝ does not contain 
the variable 𝑞௜. This will simplify several partial 
derivatives; for instance, 
డ∆

డ௤ೖ
= ∑ 𝐶௞௜

డ஍೔ೖ

డ௤ೖ
௜             (5) 

B- The Hamiltonian of a Staeckel System  

In terms of the notations and initial 
developments (given in section A), we can now 
easily define a Staeckel system. The Staeckel 
system can be defined as: 

Η = ∑ ൤
௤̇ೖ

మ

ଶజభೖ
+ 𝜐ଵ௞Ψ௞൨ = ∑ 𝜐ଵ௞ ൤

௤̇ೖ
మ

ଶజభೖ
మ +௠

௞ୀଵ
௠
௞ୀଵ

Ψ௞൨              (6) 

where the kinetic energy is given by: 𝑇 =

∑
௤̇ೖ

మ

ଶజభೖ

௡
௞ୀଵ  and the potential energy is: 𝑉 =

∑ 𝜐ଵ௞Ψ௞
௡
௞ୀଵ  . 

We can see that all the ingredients are the 
Staeckel vector Ψ and the first row of the inverse 
of the Staeckel matrix Φ. The second form of the 
Hamiltonian shown in Eq. (6) is the product of a 
row vector, 𝜐ଵ௞ , by a column vector,  Ψ௞. The 
elements 𝑔௞௞ of the diagonal metric tensor are 
thus given by:  

𝑔௞ ௞ =
ଵ

జభೖ
=

ଵ

(஍షభ)భೖ
=

∆

஼ೖభ
 (𝑤𝑖𝑡ℎ ∑

஍ೖೞ

௚ೖೖ
=௞

𝛿ଵ௞)             (7) 

As a result of the notes of section A, we have:  

డ௚ೖೖ

డ௤ೖ
=

ଵ

஼ೖభ

డ∆

డ௤ೖ
= ∑

஼ೖ೔

஼ೖభ

డ஍ೖ೔

డ௤ೖ
௜ .           (8)  

In the following part, we simply derive the 

Hamiltonian equations of motion, 𝑃௟̇ = −
డு

డ௤೗ 

from Eq. (6), thus:  

ௗ

ௗ௧
ቂ

௤ଵ̇೗

జభ೗
ቃ = − ∑ ൤

௤̇ೖ
మ

ଶజభೖ
మ − Ψ௞൨

డజభೖ

డ௤೗
+ 𝜐ଵ௟

డஏ೗

డ௤೗

௡
௞ୀଵ  . (9) 

The Staeckel Hamiltonian does not depend 
explicitly on time; that is, we have a 
conservative system with the classical energy 
integral given as follows: 

∑ 𝜐ଵ௞
௡
௞ୀଵ ൤

௤̇ೖ
మ

ଶజభೖ
మ + Ψ௞൨ = 𝛼ଵ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.      (10) 

It will be useful to write this first integral also 
in a different form. Let us take benefit of the 
relation in Eq. (2); adding to Eq. (10) some terms 
which are zeros or ones: 

∑ 𝜐ଵ௞
௡
௞ୀଵ ൤

௤̇ೖ
మ

ଶజభೖ
మ + Ψ௞൨ = 𝛼ଵ ∑ 𝜐ଵ௞Φ௞ଵ௞ +

𝛼ଶ ∑ 𝜐ଵ௞Φ௞ଶ௞ + ⋯ + 𝛼௡ ∑ 𝜐ଵ௞Φ௞௡௞  ,      (11)  

where the 𝛼 ,𝑠 are all arbitrary constants. 
Compiling the terms differently leads to: 

∑ 𝜐ଵ௞
௡
௞ୀଵ ൤

௤̇ೖ
మ

ଶజభೖ
మ + Ψ௞ − ∑ Φ௞௥𝛼௥

௡
௥ୀଵ ൨ = 0,    (12) 
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where the constants 𝛼 ,𝑠 are sometimes called 
separation constants. The interest of the above 
form of energy integral is actually that the two 
last terms in the brackets are now with separated 
variables. The second and third terms are 
function of 𝑘; i.e., n separable equations. 

The most important property of Staeckel 
systems exists in the following theorem:  

"Not only the expression given in Eq. (12) is 
zero, but also each bracket separately", Pars [8]: 

௤̇ೖ
మ

ଶజభೖ
మ + Ψ௞ = ∑ Φ௞௥𝛼௥

௡
௥ୀଵ  .        (13) 

C- Completion of the Solution of the Staeckel 
System 

The first integral in Eq. (12) can be written in 
another form as:  

௤̇ೖ
మ

జభೖ
మ = 2(∑ Φ௞௥𝛼௥

௡
௥ୀଵ − Ψ௞) = 𝑓௞(𝑞௞).        (14) 

We have also: 

௤̇ೖ

ඥ௙ೖ(௤ೖ)
= 𝜐ଵ௞ .          (15) 

Multiplying by Φ௞௥ and summing over 𝑘 
prouduce: 

∑
௤̇ೖ஍ೖೝ

ඥ௙ೖ(௤ೖ)
= ∑ 𝜐ଵ௞Φ௞௥

௡
௞ୀଵ = 𝛿ଵ௥

௡
௞ୀଵ  .       (16) 

We see that each term in the sum on the left-
hand side is a function of one variable 𝑞௞ only: 

∑ ∫
ఝೖೝௗ௤ೖ

ඥ௙ೖ(௤ೖ)
= 𝛽௥ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡௡

௞ୀଵ  𝑟 =

2,3,4, … , 𝑛        (17.A) 

∑ ∫
஍ೖభௗ௤ೖ

ඥ௙ೖ(௤ೖ)
= 𝑡 − 𝑡଴

௡
௞ୀଵ  𝑟 = 1.                  (17.B) 

This inserts 𝑛 new constants of integration; 
altogether 2 𝑛 constants of integration are 
inserted. Finally, 𝑛 equations can be solved and 
give the n coordinates 𝑞௞  as a function of time t 
and the constants, 𝛽௥. The velocities are then 
given by Eq. (13). We have to use Eqs. (17.A) 
and (17.B) to calculate the values of the 
constants of integrations with the initial 
conditions. 

2- Separation of Variables of 
Hamilton-Jacobi by Using Staeckel 
Boundary Conditions 

The separation of Hamilton-Jacobi equations 
is a characteristic of the dynamic system as well 
as the coordinates that are described. A simple 

criterion cannot be given to refer to a coordinate 
system that results in a separate Hamilton-Jacobi 
equation for a particular system [26]. However, 
if: 

 the Hamiltonian is conserved and takes the 
form: 

𝐻 =
ଵ

ଶ
(𝑷 − 𝒂)𝑻ି𝟏(𝑷 − 𝒂) + 𝑽(𝒒) .         (A) 

Here, 𝒂 is 𝑎 column matrix, 𝑻 is a square n x 
n matrix and 𝒑 is a row matrix. 

 The set of generalized coordinates 𝑞௜ forms 
an orthogonal system of coordinates, so that 
the matrix T is diagonal. It follows that the 
inverse matrix 𝑇ିଵ is also diagonal with non-
vanishing elements:  

(𝑇ିଵ)௜௜ =
ଵ

்೔೔
 .           (B) 

 For problems and coordinates satisfying this 
description, the Staeckel conditions state that 
the Hamilton-Jacobi equation will be 
completely separable if the vector 𝒂 has 
elements 𝒂௜ that are functions only of the 
corresponding coordinate; that is, 𝒂௜ =
𝒂௜(𝑞௜) and the potential function V(q) can be 
written as a sum of the form: 

𝑉(𝑞) =
௏೔(௤೔)

்೔೔
 .           (C) 

 There exists an n x n matrix Φ with elements 
 Φ௜௝ =  Φ௜௝(𝑞௜) such that: 

(Φିଵ)ଵ௝ =
ଵ

்ೕೕ
 .           (D) 

Consider the motion of a particle of mass 𝑚 
and charge e that moves in uniform crossed 
electric and magnetic fields, E is in the x- 
direction and B is in the z-direction. The 
Hamilton–Jacobi is given as: 

H =
ଵ

ଶ௠
൤𝑃௫

ଶ + ቀ𝑃௬ −
௘஻

௖
𝑥ቁ

ଶ
+ 𝑃௭

ଶ൨ − 𝑒𝐸𝑥.    (18)  

Comparing Eq. (18) with the equation: 

𝐻 =
ଵ

ଶ
(𝑷 − 𝒂)𝑻ି𝟏(𝑷 − 𝒂) + 𝑽(𝒒), we get: 

𝑇ିଵ =

⎝

⎜
⎛

ଵ

௠
0 0

0
ଵ

௠
0

0 0
ଵ

௠⎠

⎟
⎞

.          (19)  

Appling Staeckel boundary conditions, we 
satisfy: 
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(𝑇ିଵ)௜௜ =
ଵ

்೔೔
=

⎝

⎜
⎛

ଵ

௠
0 0

0
ଵ

௠
0

0 0
ଵ

௠⎠

⎟
⎞

.        (20) 

In addition to the following two conditions:  

(Φିଵ)ଵ௝ =
ଵ

்ೕೕ
=

⎝

⎜
⎛

ଵ

௠

ଵ

௠

ଵ

௠

0
ଵ

௠
0

0
ଵ

௠

ଵ

௠⎠

⎟
⎞

.        (21)  

And we get:  

𝑉(𝑞) =
௏೔(௤೔)

்೔೔
= ቀ

టభ(௫)

௠
ቁ.         (22) 

If the Staeckel conditions are satisfied, then 
Hamilton's characteristic function is completely 
separable: 

𝑊(𝑞) = ∑ 𝑊௜(𝑞௜) 
௜ .          (23) 

Inserting H from Eq. (18) into equation 

𝐻 ቀ𝑞,
డௐ

డ௤
ቁ +

డௌబ

డ௧
= 0 and using the definition of 

momentum 𝑝 =
డௐ

డ௤
, we obtain:  

ଵ

ଶ௠
൤ቂ

డௐೣ

డ௫
ቃ

ଶ
+ ቂ

డௐ೤

డ௬
−

௘஻

௖
𝑥ቃ

ଶ

+ ቂ
డௐ೥

డ௭
ቃ

ଶ
൨ − 𝑒𝐸𝑥 =

𝛼.            (24)  

Here, 𝑧 is a cyclic coordinate and y is a cyclic 
coordinate; we get: 

ቂ
డௐ೤

డ௬
ቃ

ଶ

= 𝛼௬ᇲ
ଶ         (25) 

ቂ
డௐ೥

డ௭
ቃ

ଶ
= 𝛼௭ᇲ

ଶ  .       (26) 

Integrating Eq. (25) and Eq. (26), we find:  

𝑊௬ᇲ = ∫ 𝛼௬ᇲ𝑑𝑦
௬ᇲ

଴
= 𝛼௬ᇲ𝑦ᇱ        (27) 

𝑊௭ᇲ = ∫ 𝛼௭ᇲ𝑑𝑧
௭ᇲ

଴
= 𝛼௭ᇲ𝑧ᇱ .       (28) 

Substituting Eqs. (27) and (28) in Eq. (24), 
we get: 

ଵ

ଶ௠
൤ቂ

డௐೣ

డ௫
ቃ

ଶ
+ ቂ𝛼௬ᇲ −

௘஻

௖
𝑥ቃ

ଶ
+ 𝛼௭ᇲ

ଶ ൨ − 𝑒𝐸𝑥 = 𝛼.  

        (29) 

Rewriting Eq. (29), we obtain:  

ቂ
డௐೣ

డ௫
ቃ

ଶ
= 2𝑚𝛼 + 2𝑚𝑒𝐸𝑥 − ቀ𝛼௬ᇲ −

௘஻௫

௖
ቁ

ଶ
− 𝛼௭ᇲ

ଶ .  

        (30) 

Integrating Eq. (30), we get:  

𝑊௫ = න ඨቆ2𝑚𝛼 + 2𝑚𝑒𝐸𝑥 − ൬𝛼௬ᇲ −
𝑒𝐵𝑥

𝑐
൰

ଶ

− 𝛼௭ᇲ
ଶ ቇ 𝑑𝑥

 

 

.  

        (31) 

The Hamilton's characteristic function 
becomes: 

𝑊 = 𝑊௫ᇲ + 𝑊௬ᇲ + 𝑊௭ᇲ 

𝑊 =

∫ ට൬2𝑚𝛼 + 2𝑚𝑒𝐸𝑥 − ቀ𝛼௬ᇲ −
௘஻௫

௖
ቁ

ଶ

− 𝛼௭ᇲ
ଶ ൰ 𝑑𝑥

௫ᇲ

଴
+

𝛼௬ᇲ𝑦ᇱ + 𝛼௭ᇲ𝑧ᇱ.                             (32) 

Substituting Eq. (32) in equation (𝑆(𝑞, 𝛼, 𝑡) =
𝑊(𝑞, 𝛼) − 𝛼𝑡), we obtain: 

𝑆(𝑞, 𝛼, 𝑡) =

∫ ට൬2𝑚𝛼 + 2𝑚𝑒𝐸𝑥 − ቀ𝛼௬ᇲ −
௘஻௫

௖
ቁ

ଶ

− 𝛼௭ᇲ
ଶ ൰ 𝑑𝑥

௫ᇲ

଴
+

𝛼௬ᇲ𝑦ᇱ + 𝛼௭ᇲ𝑧ᇱ − 𝛼𝑡 .       (33) 

Differentiating Eq. (33) with respect to 𝛼௜, we 
obtain: 

𝛽௫ᇲ + 𝑡 = ∫
௠

ටଶ௠ఈାଶ௠௘ா௫ିቀఈ೤ᇲି
೐ಳೣ

೎
ቁ

మ
ିఈ

೥ᇲ
మ

௫ᇲ

଴
𝑑𝑥   (34) 

𝑦ᇱ − 𝛽௬ᇲ = ∫
ቀఈ

೤ᇲି
೐ಳೣ

೎
ቁ

ඨ൬ଶ௠ఈାଶ௠௘ா௫ିቀఈ೤ᇲି
೐ಳೣ

೎
ቁ

మ
ିఈ

೥ᇲ
మ ൰

௫ᇲ

଴
𝑑𝑥  (35) 

𝑧ᇱ − 𝛽௭ᇲ = ∫
ఈ

೥ᇲ

ඨ൬ଶ௠ఈାଶ௠௘ா௫ିቀఈ೤ᇲି
೐ಳೣ

೎
ቁ

మ
ିఈ

೥ᇲ
మ ൰

௫ᇲ

଴
𝑑𝑥.  (36) 

Substituting 𝜔 =
௘஻

௠௖
, (𝑚𝜔𝑎)ଶ = 2𝑚𝛼 +

2𝑚𝑒𝐸𝑥 −
ଶ௘ா

ఠ
𝛼௬ᇲ + ቀ

௘ா

ఠ
ቁ

ଶ
− 𝛼௭ᇲ

ଶ  and replacing 

2𝑚𝛼 + 2𝑚𝑒𝐸𝑥 − ൫𝛼௬ᇲ − 𝑚𝜔𝑥൯
ଶ

− 𝛼௭ᇲ
ଶ =

 (𝑚𝜔𝑎)ଶ − (𝑚𝜔)ଶ ൬𝑥 −
ଵ

௠ఠ
ቀ𝛼௬ᇲ +

௘ா

ఠ
ቁ൰

ଶ

, Eq. 

(35) becomes:  

𝑦ᇱ − 𝛽௬ᇲ = ∫
ି൬௫ି

ഀ
೤ᇲ

೘ഘ
൰

ඨቆ௔మି൬௫ି
భ

೘ഘ
ቀఈ೤ᇲା

೐ಶ

ഘ
ቁ൰

మ

ቇ

௫ᇲ

଴
𝑑𝑥.    (37) 

Let 𝑥 =
ଵ

௠ఠ
ቀ𝛼௬ᇲ +

௘ா

ఠ
ቁ − 𝑎𝑐𝑜𝑠 Ω, where Ω is 

a function of 𝑡; substituting in Eq. (37) after 
integration, Eq. (37) becomes: 

𝑦ᇱ − 𝛽௬ᇲ =
ି௘ா

௠ఠమ Ω + 𝑎𝑠𝑖𝑛 Ω.         (38)  

Multiplying Eq. (34) by 𝜔, substituting 

𝜔 =
௘஻

௠௖
, (𝑚𝜔𝑎)ଶ = 2𝑚𝛼 + 2𝑚𝑒𝐸𝑥 −

ଶ௘ா

ఠ
𝛼௬ᇲ +

ቀ
௘ா

ఠ
ቁ

ଶ
− 𝛼௭ᇲ

ଶ  and replacing 2𝑚𝛼 + 2𝑚𝑒𝐸𝑥 −
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൫𝛼௬ᇲ − 𝑚𝜔𝑥൯
ଶ

− 𝛼௭ᇲ
ଶ =  (𝑚𝜔𝑎)ଶ −

(𝑚𝜔)ଶ ൬𝑥 −
ଵ

௠ఠ
ቀ𝛼௬ᇲ +

௘ா

ఠ
ቁ൰

ଶ

 R.H.S., Eq. (34) 

becomes: 

𝜔(𝛽௫ᇲ + 𝑡) = ∫
ௗ௫

ඨቆ௔మି൬௫ି
భ

೘ഘ
ቀఈ೤ᇲା

೐ಶ

ഘ
ቁ൰

మ

ቇ

௫ᇲ

଴
 .    (39) 

Let 𝑥 =
ଵ

௠ఠ
ቀ𝛼௬ᇲ +

௘ா

ఠ
ቁ − 𝑎𝑐𝑜𝑠 Ω; 

substituting in Eq. (39) after integration, Eq. (39) 
becomes: 

𝜔(𝛽௫ᇲ + 𝑡) = Ω .         (40) 

Multiplying Eq. (36) by 𝑚, the equation 
becomes: 

𝑧ᇱ − 𝛽௭ᇲ =
ఈ

೥ᇲ

௠
∫

௠

ඨ൬ଶ௠ఈାଶ௠௘ா௫ିቀఈ೤ᇲି
೐ಳೣ

೎
ቁ

మ
ିఈ

೥ᇲ
మ ൰

௫ᇲ

଴
𝑑𝑥  (41) 

In Eq. (41), similar to Eq. (34), we can 

replace ∫
௠

ඨ൬ଶ௠ఈାଶ௠௘ா௫ିቀఈ೤ᇲି
೐ಳೣ

೎
ቁ

మ
ିఈ

೥ᇲ
మ ൰

௫ᇲ

଴
𝑑𝑥 =

(𝛽௫ᇲ + 𝑡). Eq. (41) becomes: 

𝑧ᇱ − 𝛽௭ᇲ =
ఈ೥

௠
 (𝛽௫ᇲ + 𝑡).         (42) 

Rewriting Eqs. (40), (38) and (42) and 
substituting the value of Ω, the equations 
become:  

𝑥ᇱ(𝑡) =
ଵ

௠ఠ
ቀ𝛼௬ᇲ +

௘ா

ఠ
ቁ − 𝑎 𝑐𝑜𝑠𝜔(𝛽௫ᇲ + 𝑡)   (43) 

𝑦ᇱ(𝑡) = 𝛽௬ᇲ −
௘ா

௠ఠ
(𝛽௫ᇲ + 𝑡) + 𝑎𝑠𝑖𝑛𝜔(𝛽௫ᇲ + 𝑡)  

      (44) 

𝑧ᇱ(𝑡) = 𝛽௭ᇲ +
ఈ೥

௠
 (𝛽௫ᇲ + 𝑡) .        (45) 

The above equations, (43) and (44), express x 
and y in terms of the parameter Ω = 𝜔(𝛽௫ᇲ + 𝑡), 
giving the projection of the trajectory onto the 
xy-plane. We recognize the curve as a cycloid. 
The particle moves along the trajectory in the z-
direction at constant velocity  

ఈ೥

௠
. 

3- Solving the Problem within 
Newtonian Formalism 

Consider the motion of a particle of mass 𝑚 
and charge e moving in uniform crossed electric 
and magnetic fields, where E is in the x- 
direction and B is in the z-direction. 

Initially, the particle is at rest; thus, the 
magnetic force is zero, while the electric field 
accelerates the charge in the x-direction. In the 
absence of force in the z-direction, the position 
of this particle at any time 𝑡 can be described by 
the vector (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)). Therefore, the 
velocity is calculated as follows:  

𝒗 = (𝑥̇, 𝑦̇, 𝑧̇) .          (46) 

Hence, applying Newton's second law dots 
indicates time derivatives. Thus, 

𝒗 × 𝑩 = อ
𝒙ෝ 𝒚ෝ 𝒛ො
𝑥̇ 𝑦̇ 𝑧̇
0 0 𝐵

อ = 𝐵𝑦̇𝒙ෝ − 𝐵𝑥̇𝒚ෝ .       (47) 

And therefore, applying Newton's second 
law, 

𝑭 = 𝑒(𝑬 + 𝒗 × 𝑩) = 𝑚𝒂 .        (48) 

Substituting Eq. (47) and 𝒂 = 𝑥̈𝒙ෝ + 𝑦̈𝒚ෝ + 𝑧̈𝒛ො 
in Eq. (48), we get: 

𝑒(𝐸𝒙ෝ + 𝐵𝑦̇𝒙ෝ − 𝐵𝑥̇𝒚ෝ) = 𝑚(𝑥̈𝒙ෝ + 𝑦̈𝒚ෝ + 𝑧̈𝒛ො).  (49) 

Or, treating the 𝒙ෝ, 𝒚ෝ and 𝒛ො components 
separately, 

𝑚𝑥̈ = 𝑒(𝐸 + 𝐵𝑦̇)          (50) 

𝑚𝑦̈ = −𝑒𝐵𝑥̇           (51) 

𝑚𝑧̈ = 0 .                  (52) 

For the sake of convenience, let: 

𝜔 =
௘஻

௠
  .          (53) 

(This is referred to as the cyclotron 
frequency; at this frequency, the particle would 
revolve in the absence of any electric field). 
Thereafter, the equations of motion take the 
forms: 

𝑥̈ = 𝜔 ቀ
ா

஻
+ 𝑦̇ቁ           (54) 

𝑦̈ = −𝜔𝑥̇           (55) 

𝑚𝑧̈ = 0 .          (56) 

Derivation of Eqs. (54) and (55) and 
substitution of Eqs. (54) and (55) in Eqs. (54) 
and (55) after derivation, we get: 

𝑦 = −𝜔𝑥̈ = −𝜔ଶ ቀ
ா

஻
+ 𝑦̇ቁ         (57)  

𝑥 = 𝜔𝑦̈ = −𝜔ଶ𝑥̇ .         (58) 

Substituting 𝑦̇(𝑡) = 𝑞(𝑡) in Eq. (57), we get: 

𝑞̈ + 𝜔ଶ𝑞 =
ିఠమா

஻
 .         (59) 
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The general solution of the second-order 
nonhomogeneous linear Eq. (59) can be 
expressed as follows: 

𝑞 = 𝑞௖ + 𝑄 ,          (60) 

where 𝑄 denotes any specific function that 
satisfies the nonhomogeneous equation and 𝑞௖ is 
the complementary solution; 𝑞௖ = 𝑐ଵ𝑞ଵ + 𝑐ଶ𝑞ଶ 
refers to a general solution of the corresponding 
homogeneous equation 𝑞̈ + 𝜔ଶ𝑞 = 0. (In other 
words, 𝑞ଵ and 𝑞ଶ are a pair of fundamental 
solutions of the corresponding homogeneous 
equation; 𝑐ଵ and 𝑐ଶ are arbitrary constants). 

The complementary solution in Eq. (59) is: 

𝑞௖ = 𝐵𝑐𝑜𝑠𝜔𝑡 − 𝐴𝑠𝑖𝑛𝜔𝑡.         (61) 

Let 𝑄 = 𝑓 for some unknown coefficient 𝑓; 
thereafter, substitute them back into the original 
differential Eq. (59). 

Hence, = −
ா

஻
 . 

Therefore, 𝑞 = 𝑞௖ + 𝑄 = 𝐵𝑐𝑜𝑠𝜔𝑡 −

𝐴𝑠𝑖𝑛𝜔𝑡 −
ா

஻
 . 

The solution of Eq. (57) is: 

𝑦̇(𝑡) = 𝑞(𝑡) = 𝐵𝑐𝑜𝑠𝜔𝑡 − 𝐴𝑠𝑖𝑛𝜔𝑡 −
ா

஻
 .       (62) 

Integrating Eq. (62), we get: 

𝑦(𝑡) =  𝑐ଵ𝑠𝑖𝑛𝜔𝑡 + 𝑐ଶ𝑐𝑜𝑠𝜔𝑡 −
ா

஻
𝑡 + 𝑐ଷ .       (63) 

Let 𝑥̇ = 𝑞 and substitute in Eq. (58); 
thereafter, we get: 

𝑞̈ + 𝜔ଶ𝑞 = 0 .          (64) 

The general solution in Eq. (64) is: 

𝑞(𝑡) = 𝐴𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡 .        (65) 

The general solution in Eq. (58) is: 

𝑥̇ = 𝑞 = 𝐴𝑐𝑜𝑠𝜔𝑡 + 𝐵𝑠𝑖𝑛𝜔𝑡 .        (66) 

Upon integrating Eq. (66), we obtain: 

𝑥(𝑡) = 𝑐ଶ𝑠𝑖𝑛𝜔𝑡 − 𝑐ଵ𝑐𝑜𝑠𝜔𝑡 + 𝑐ସ .       (67) 

The solution in Eq. (56) is:  

𝑧(𝑡) = 𝑐ହ𝑡 + 𝑐଺ .         (68) 

However, the particle started from the origin 
(𝑥(0) = 𝑦(0) = 𝑧(0) = 0) and (𝑥̇(0) =

0, 𝑦̇(0) =
ఈ೤

௠
, 𝑧̇(0) =

ఈ೥

௠
),  where  𝛼௬, 𝛼௭  are 

constants; these six conditions determine the 
constants 𝑐ଵ, 𝑐ଶ, 𝑐ଷ, 𝑐ସ, 𝑐ହ and 𝑐଺: 

𝑐ଵ = 𝑐ସ =
ଵ

ఠ
ቀ

ఈ೤

௠
+

ா

஻
ቁ  

𝑐ଶ = 𝑐ଷ = 𝑐଺ = 0  

𝑐ହ =
ఈ೥

௠
 . 

After applying six boundary conditions, the 
equations of motion are: 

𝑥(𝑡) =
ଵ

ఠ
ቀ

ఈ೤

௠
+

ா

஻
ቁ (1 − 𝑐𝑜𝑠𝜔𝑡)         (69) 

𝑦(𝑡) =
ଵ

ఠ
ቀ

ఈ೤

௠
+

ா

஻
ቁ 𝑠𝑖𝑛𝜔𝑡 −

ா

஻
𝑡         (70) 

𝑧(𝑡) =
ఈ೥

௠
𝑡 .          (71) 

Let 𝑅 =
ଵ

ఠ
ቀ

ఈ೤

௠
+

ா

஻
ቁ and then rewrite Eq. (69) 

and Eq. (70) in such a way to exploit  

(𝑐𝑜𝑠𝜔𝑡)ଶ + (𝑠𝑖𝑛𝜔𝑡)ଶ = 1. Here is what you 
get: 

(𝑥 − 𝑅)ଶ + ቀ𝑦 +
ா

஻
𝑡ቁ

ଶ
= 𝑅ଶ .       (72) 

This is the equation of a circle of radius R in 
the xy plane; it gives the projection of the 
trajectory onto the xy-plane. Here again, the 
trajectory is a cycloid. The particle moves along 
the trajectory in the z-direction at constant 
velocity  

ఈ೥

௠
. 

In the second and third sections of the 
manuscript, we found the equations of motion 
(Hamilton – Jacobi equations) in an 
electromagnetic field in two ways; Staeckel 
boundary conditions and Newton's laws, where 

when substituting 𝜔 =
௘஻

௠
, 𝛽௫ᇲ = 𝛽௬ᇲ = 𝛽௭ᇲ = 0 

and 𝑎 =
ଵ

௠ఠ
ቀ𝛼௬ +

௘ா

ఠ
ቁ, Equations (43), (44) and 

(45) will be the same Equations as (69), (70) and 
(71). 

4- Conclusion 

We considered the appropriate Hamilton-
Jacobi equation in the electromagnetic field 
example and separated the variables using 
Staeckel boundary conditions. This method 
applies to some Hamiltonians in which certain 
conditions are satisfied, such as: conservative 
Hamiltonian and orthogonal coordinates. When 
applying this method on the Hamilton –Jacobi in 
the electromagnetic field, we found Hamilton's 
characteristic function and Hamilton's principal 
function, then we separated completely the 
variables of the Hamilton – Jacobi equation in 
the electromagnetic field and solved the same 



Solution of the Hamilton – Jacobi Equations in an Electromagnetic Field Using Separation of Variables Method – … 

 65

example using Newtonian formalism to find 
equations of motion. Our results are in 
agreement with those of Newtonian formalism 
[27]. 

There are two very important reasons for 
working with Lagrange equations instead of 
Newton's equations: 

(i) the Lagrange equations adhere to any 
coordinate system, while Newton is confined 
to an inertial frame. 

(ii) the second reason is the ease with which we 
can deal with constraints in the Lagrange 
system. 
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