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Abstract: In this work, we have obtained analytically the bound state solution for both the 
relativistic modified Klein-Gordon equation MKG and non-relativistic modified 
Schrödinger equation for the modified unequal mixture of scalar and time-like vector 
Cornell (MUSVC) potentials in the relativistic noncommutative three-dimensional real 
space (RNC: 3D-RS) symmetries. The unequal mixture of scalar and time-like vector 
Cornell potentials is extended by including new radial terms. Also, MUSVC potentials are 
proposed as a quark-antiquark interaction potential for studying the masses of heavy and 
heavy-light mesons in (RNC: 3D-RSP) symmetries. The ordinary Bopp’s shift method and 
perturbation theory are surveyed to get generalized excited states’ energy as a function of 
shift energy and the energy of USVC potentials in the relativistic quantum mechanics RQM 
and NRQM. Furthermore, the obtained preservative solutions of discrete spectrum 
depended on the parabolic cylinder function, the gamma function, the ordinary discrete 
atomic quantum numbers, as well as the potential parameters and the two infinitesimal 
parameters (ߠ and ߪ) which are generated with the effect of (space-space) 
noncommutativity properties. We have also applied our obtained results for bosonic 
particles, like the charmonium ܿܿ̄ and bottomonium ܾܾ̄ mesons (that have quark and 
antiquark flavour) and ܿ̄ݏ mesons with spin-(0 and 1) and shown that MKG equation under 
MUSVC potentials becomes similar to the Duffin–Kemmer equation. We have shown that 
the degeneracy of the initial spectral under USVC potentials in RQM is changed radically 
and replaced by the newly triplet degeneracy of energy levels under the MUSVC 
potentials; this gives more precision in measurement and better results compared to the 
results of ordinary RQM under USVC potentials. 
Keywords: Klein-Gordon equation, Schrödinger equation, Unequal mixture of scalar and 

time-like vector Cornell potentials, Noncommutative quantum mechanics, Star product, 
Bopp’s shift method, Heavy–light mesons. 
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1. Introduction  
It is well recognized that the Cornell 

potential, which is combined of Coulomb 
potential (known from perturbative quantum 
chromodynamics) and linear potential (known 
from lattice quantum chromodynamics), plays a 
vital role in quark-antiquark interactions, such as 
the charmonium ܿܿ̄ and bottomonium ܾܾ̄ mesons 
(that have quark and antiquark flavour) and ܿ̄ݏ 
mesons with spin-(0 and 1). The Coulomb 
potential is responsible for the interaction at 
short distances, while the linear potential leads to 
confinement [1-7]. Hall, R. L. and Saad, N. 
studied the Schrödinger spectrum generated by 
the Cornell potential [8]. Ghalenovi, Z. et al. 
studied the strange, charmed, and beauty 
baryons’ masses in the Cornell potential by using 
the variational approach [9]. Hamzavi, M. et al. 
studied the Cornell potential for a spin-1/2 
particle in the relativistic one-dimensional space 
[10]. Trevisan, L. A. et al. studied the Cornell 
potential for a spin-1/2 particle in the relativistic 
three-dimensional space [11]. Akbar R. A. et al. 
studied the relativistic effect of external 
magnetic and Aharonov-Bohm fields on the 
unequal scalar and vector Cornell model [12]. 
Very recently, Tajik, F. et al. studied the Klein–
Gordon equation in the field of an unequal 
mixture of scalar and time-like vector Cornell 
potentials [13]. In this article, motivated by 
many various recent studies, for example, the 
non-renormalizable of the electroweak 
interaction, quantum gravity and string theory, 
noncommutative relativistic quantum mechanics 
NCRQM has attracted much attention of 
physical researchers [14-20]. Furthermore, 
research findings show that the development of 
matrix theory and D branes is achieved in the 
framework of symmetries of noncommutative 
quantum mechanics [21-22]. The 
noncommutativity idea of space-phase was 
firstly introduced by Heisenberg, W. and then 
developed by Snyder, H., in 1930 and 1947, 
respectively [23-24]. For example, the Klein–
Gordon equation KGE has been solved in a non-
commutative space for the modified Coulomb 
plus inverse-square potential [25], the modified 
Coulomb potential plus Inverse-Square–Root 
Potential [26], the Coulomb potential [27], and 
the Kratzer potential [26]. Also, we have solved 
the Schrödinger and Dirac equations for the 
modified pseudoharmonic potential in refs. [29-
30] in the symmetries of NRNCQM and 
RNCQM, respectively. The main objective of 

this work is to develop the work done by Tajik, 
F. et al. and expand the symmetries of NCRQM 
to get more investigation in the microscopic 
scales and achieve more scientific knowledge of 
elementary particles in the field of 
nanotechnology. It should be noted that we have 
studied the modified Cornell potential in the case 
of the noncommutative Schrödinger equations in 
Refs. [31-32]. The relativistic energy levels 
under a modified unequal mixture of scalar and 
time-like vector Cornell potentials have not been 
obtained yet in the context of the NCQM. 
Furthermore, we hope to find new applications 
and profound physical interpretations using a 
new, updated model of the modified unequal 
mixture of scalar and time-like vector Cornell 
(MUSVC) potentials, which has the following 
form:  
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where va , vb , sa and sb  are non-negative 
constants and r  is the inter-quark distance, 
while the first part in the above equation is just 
the ordinary mixture of Cornell potentials in 
literature. The new structure of RNCQM based 
on new covariant noncommutative canonical 
commutation relations NCCRs in Schrödinger, 
Heisenberg, and Interaction pictures (SP, HP, 
and IP), respectively, is as follows [33-42]: 
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We generalized the CNCCRs to include HP 
and IP. It should be noted that in our 
calculations, we have used the natural units
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1 c . Here, eff  is the effective Planck 

constant and     (  is the non-
commutative parameter), representing 
infinitesimal parameter if compared to the 
energy values and elements of antisymmetric 3 × 
3 real matrix.   is the identity matrix, while 

   denotes the Weyl Moyal star product, which 
is generalized between two ordinary functions 
   xgxf  to the new modified form 

       xgxfxgxf ˆˆˆˆ  in the symmetries of 
(RNC: 3D-RS) as follows [43-52]: 
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        (3)  
The indices  3,1,  , while  2O stands 

for the second and higher-order terms of the non-
commutative parameter. Physically, the second 
term in Eq. (3) represents the effects of space-
space noncommutativity properties. 
Furthermore, the new unified two operators 
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HP and IP are depending on the corresponding 
new operators  pxH ˆor ˆˆ   in SP from the 
following projection relations, respectively:  
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with 0ttT  . It is useful to remind the reader 
that Eq. (4.1) was within the framework of 
ordinary quantum mechanics known as follows: 
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The unified coordinates S
 ,  tH

  and 
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or , respectively, while the dynamics 

of the new system 
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ˆd tH  can be described 

from the following motion equation in the 
modified HP as follows: 
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It is useful to remind the reader that the 
motion equation in Eq. (5.1) was within the 
framework of ordinary quantum mechanics 
known as follows: 
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The cp
orĤ  and cp

rĤ  are the free and global 
Hamiltonian for an unequal mixture of scalar and 
time-like vector Cornell potentials, while cp

orncH 
ˆ  

and cp
rncH 

ˆ  are the corresponding Hamiltonians 
for MUSVC potentials. The rest of this paper is 
organized as follows: In the next section, we 
briefly review the Klein-Gordon equation with 
an unequal mixture of scalar and time-like vector 
Cornell based on refs. [12-13]. Section 3 is 
devoted to studying the modified Klein-Gordon 
equation MKGE by applying the ordinary Bopp's 
shift method, where the effective MUSVC 
potential is obtained. Section four will be 
dedicated to the theoretical obtained bound state 
solutions, where we find the energy shift of the 
generalized thn excited state, which is produced 
by the effects of perturbed spin-orbital and 
modified Zeeman interactions in the RNCQM. 
Then, we find the expectation values of the 
radial terms ( r/1 , 3/1 r  and 4/1 r ) determine the 
energy spectra of the quarkonium systems, such 
as the charmonium cc , bottomonium bb
mesons, and sc  mesons under MUSVC 
potentials in the RNCQM, in addition to the new 
formula of mass spectra of the quarkonium 
systems in (RNC: 3D-RSP) symmetries. After 
that, we discuss the nonrelativistic limits. The 
final section will be devoted to the results and 
conclusions. 

2. Revised Eigenfunctions and Energy 
Eigenvalues for the USVC Potentials 
in Relativistic Quantum Mechanics 

We have already mentioned in the 
introduction section that our objective is to 
obtain the spectrum of MKGE with a modified 
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mixture of scalar  rScp ˆ  and vector  rVcp ˆ  
Cornell in (RNC: 3D-RSP) symmetries. So, we 
need to revise the corresponding mixture of 
scalar  rScp  and vector  rVcp  Cornell in 
symmetries of ordinary relativistic quantum 
mechanics RQM [12-13]: 
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cp              

                        (6)  

To achieve the goal of our current research, it 
is useful to make a summary for the Klein–
Gordon equation KGE with an unequal mixture 
of scalar and time-like vector Cornell potentials 
for a system of reduced mass M  in three-
dimensional relativistic quantum mechanics [13, 
53]: 
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Since the unequal mixture of scalar and time-
like vector Cornell potentials has spherical 
symmetry, allowing the solutions of the time-
independent KGE of the known form
      ,,, m

lnl YrRr  , where   ,m
lY , 

denotes the spherical harmonic function. To 
eliminate the first-order derivative, we introduce 
a new radial wave function to the form

   rrRrU nlnl  , thus Eq. (7) becomes:  
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If we introduce the short-hand notation 
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Ref. [13] gives the complete wave function 
by applying the Laplace transform method as a 
function of the exponent function and the 
spherical harmonic functions in the symmetries 
of RQM as follows: 
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normalization constant. Therefore, Ref. [13] 
gives the discrete energy eigenvalues of the 
unequal mixture of scalar and time-like vector 
Cornell potentials as a function of the principal 
quantum number  ...1,0n  and angular 

momentum quantum number 1,0  nl  in 
RQM symmetries as follows:  

 

 
0

2/3
2

1
2

2
22

2

2

2
2








































M
bbnk

baba
M

b
b

E
b
Mb

E

vs

ssvv

s

v

s

v
nl

           (11) 

3. Solution of MKGE under MUSVC 
Potentials in (RNC: 3D-RS) 
Symmetries 

At the beginning of this section, we shall give 
and define a formula of the modified unequal 
mixture of scalar and time-like vector Cornell 
potentials in the symmetries of relativistic 
noncommutative three-dimensional real space 
(RNC: 3D-RS). To achieve this goal, it is useful 
to write the MKGE by applying the notion of 
Weyl Moyal star product previously seen in Eq. 
(3) on the differential equation that is satisfied 
by the radial wave function  rU l  in Eq. (8); 
thus, we can write the NEW radial wave function 

 rU l  in the symmetries of (RNC: 3D-RS) as 
follows [24-28]:  
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It is well known that Bopp’s shift method has 
been effectively applied and succeeded in 
simplifying the three basic equations: modified 
Schrödinger equation MSE، MKGE equation, 
and modified Dirac equation MDE with the 
notion of star product to the Schrödinger 
equation SE, Klein-Gordon equation, and Dirac 
equation DE and with the notion of ordinary 
product [57-60], respectively. The results of the 
application of this method were very useful and 
yielded promising results in many physical and 
chemical fields, for example. The method 
reduced MSE, MKGE, and MDE to the SE, 
KGE, and DE, respectively, under simultaneous 
translation in space. The NCCRs with star 
product in Eq. (2) become new NCCRs without 
the notion of star product, as follows [27-35]: 

             


itxtxtxtxxx IIHHSS  ˆ,ˆˆ,ˆˆ,ˆ   
      (13)  

The generalized positions and momentum 
coordinates  SS px


ˆ,ˆ ,   tpx HH


ˆ,ˆ  and 

  tpx II


ˆ,ˆ in the symmetries (RNC: 3D-RS) are 
defined in terms of the corresponding 
coordinates  SS px


, ,   tpx HH


,  and 

  tpx II


,  in RQM via, respectively, [27-35]: 

   

           

           














































tptptxtpxtpx

tptptxtpxtpx

ppxpxpx

HIIIIII

HHHHHHH

SSSSSSS































,
2

ˆ,ˆ,

,
2

ˆ,ˆ,

,
2

ˆ,ˆ,

  

      (14)  

This allows finding the operator 
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antiquark distance in NCRQM. It is convenient 
to introduce a shorthand notation which will save 

us a lot of writing rr qq
nc ˆ  and 22 rr

qq
 . In 

this notation, the previous relationship is reduced 

to     ˆ 22


 Lrr . The coupling 


L  equals 

132312  zyx LLL ; here, xL ,  yL and zL  
present the usual components of angular 

momentum operator 


L  in RQM, while the new 
noncommutativity parameter   equals 

2/ . According to the Bopp shift method, 
Eq. (12) becomes similar to the Schrödinger 
equation (without the notion of star product): 
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           (15)  

With  12  llL , the new operators of 
 rV nc

cp ˆ  and  rS nc
cp ˆ can be expressed as [27-30]: 
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      (16)  

Now, after straightforward simple 
calculations, we can find the square of an 
unequal mixture of scalar  rScp ˆ  and vector 

 rVcp ˆ  Cornell potentials (  rV nc
cp ˆ2

and  rS nc
cp ˆ2

), 
which will be used to obtain the MUSVC 
potentials in (RNC: 3D-RS) symmetries as 
follows: 
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      (17)  

Now, it is easy to obtain the following results: 



Article  Abdelmadjid Maireche 

 64
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So, we can rewrite the new modified radial 
part (new differential equation) of the MKGE 
equation in the symmetries of (RNC: 3D-RS) as 
follows: 
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      (19)  

Moreover, to illustrate the above equation in 
a simple mathematical way and attractive form, 
it is useful to enter the following symbol  rV cp

pert
; 

thus, the radial Eq. (19) becomes: 
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with: 
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      (21.1)  

and  rV cp
pert

 is given by the following relation: 
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   (21.2)  

By making the substitution of Eqs. (6), (17) 
and (18) into Eq. (21), we find  rV yp

pert
 in the 

symmetries of (RNC: 3D-RSP) as follows: 
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      (22) 

This is simplified to the form: 
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      (23)  

with MaEaA snlvn  , MbEbB snlvn  , 
222
vs aaF   and 222

vs bb  . The USVC 
potentials are extended by including new terms 
proportional with the radial terms ( r/1 , 3/1 r  
and 4/1 r ) to become MUSVC potentials in 
(RNC-3D: RSP) symmetries. The additive part 

 rV cp
pert

 of the new effective potential  rV cp
effnc

 is 
proportional to the infinitesimal vector

zyx eee 131211 


. This allows to 
physically consider the additive effective 
potential  rV cp

pert
 as a perturbation potential 

compared with the main potential (parent 
potential operator  rV cp

eff
) in the symmetries of 

(RNC: 3D-RS); that is, the inequality 
   rVrV cpcp

effpert
<<  has become achieved. That 

is all the physical justifications for applying the 
time-independent perturbation theory to become 
satisfied. This allows giving a complete 
prescription for determining the energy level of 
the generalized thn  excited state. Now, find the 
expectation values of the radial terms r/1 , 3/1 r  
and 4/1 r , taking into account the wave function 
which we have seen previously in Eq. (10). 
Thus, after straightforward calculations, we 
obtain the following results: 
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with  
22

2,
vs

svnl

bb

MaaE
ln




  and 22

vs bb  . In 

Eq. (24), we have applied the property of the 
spherical harmonics, which has the form

       ddYY m
l

m
l sin,, '

'  '' mmll  . 
Comparing Eq. (24) with the integral of the form 
[61]: 
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where 







 


 2

D  and    denote the 

parabolic cylinder and Gamma functions, 
respectively, while   0Rel   and  0Rel  . 
Following that, it is useful to introduce the short-
hand notation mlnAmln ,,,,  mlnA ,, . We 

have the 3 expectation values as: 
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Our current research is divided into two main 
physical parts, where the first part is to 
correspond to replace the coupling of angular 
momentum operator with non-commutativity 

properties 


L  by the new equivalent coupling 


 SL  (with   2/12
13

22
12 23

 ); we have 

chosen the vector


 parallel to the spin 


S  of 
quark-antiquark systems and then we replace 



 SL  by 









  222

2
SLJ . Furthermore, in 

quantum mechanics, the operators ( cp
rncH 

ˆ , 2J , 
2L , 2S and )zJ  form a complete set of 

conserved physics quantities CCPQ and the 

eigenvalues of the operator 
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

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


 222

SLJ  are 

equal to the values )1()1()1(  sslljj , 
with sljsl  . Consequently, the energy 

shift  sljnEcp ,,,  due to the perturbed spin-
orbit coupling produced by the effect of the 
perturbed effective potential  rV cp

pert
 for the 

generalized thn  excited states in the symmetries 
(RNC: 3D-RS) can be expressed as follows: 
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           (27) 

with )1()1()1()(2  sslljjlk . The 
second part is corresponding to replace both        

(


L  and 12 ) by ( zL12  and 12 , 
respectively); we also need to apply 

',',',, mlnLmln z  '''' mmllnnm   (with

     ',',', llmmll  ). All of this data 
allows for the discovery of the new energy shift 

 mnEcp ,  due to the modified perturbed 
Zeeman effect generated by the influence of the 
perturbed effective potential  rV cp

pert
 for the 

generalized thn  excited state in the symmetries 
of (RNC: 3D-RS) as follows: 
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           (28) 
where   and   are the excited magnetic field 
and new infinitesimal noncommutativity 
parameter. 

4. Theoretical Bound State Solutions 
Relativistic Results 

Now, it is useful to apply the superposition 
principle; this allows to express the induced 
energy shift  msljnEcp ,,,,  due to the 
physical phenomena with the effect of the 
perturbed effective potential  rV cp

pert
 for the 

generalized thn  excited state in the symmetries 
of (RNC: 3D-RS) as follows: 
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           (29) 

The above results present the energy shift 
which is generated with the effect of 
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noncommutativity properties of space-space; it 
depends explicitly on the noncommutativity 
parameters  , . It should be noted that the 
obtained effective energy  msljnEcp ,,,,  
under MUSVC potentials has a carry unit of 
energy because it resulted from the perturbed 
effective energy ( 22

nl
EM  ) combined with the 

same energy value square and the mass square, 
where we have the principle of equivalence 
between mass and energy at higher energy. This 
allows us to conclude the energy

 msljnbabaE ssvv
cp

ncr
,,,,,,,,


, in the 

symmetries of (RNC: 3D-RS), corresponding to 
the generalized thn  excited state, as a function of 
the shift energy  msljnEcp ,,,,  and nlE  due 
to the effect of USVC potentials in RQM, as 
follows: 
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   (30.1)  

where nlE  is the energy in RQM, which is 

obtained from Eq. (11), while cp
ncr

E


  is the effect 
of noncommutativity of space on the energy 
spectra:  
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        (30.2)  

5. The Modified Mass of the 
Charmonium cc , Bottomonium bb , 
and sc  Mesons 

Now, we want to apply Eq. (30) on the 
bosonic particles like the charmonium cc and 
bottomonium bb , and sc  mesons with non-null 
spin. It is well known that the spin of 
charmonium and bottomonium equals two values 
(0 or1) because it consists of quark and anti-
quark. For spin-1, we have 11  ljl ; thus, 
we have three values of llj ,1 , allowing for 
the corresponding three values 
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with  
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Thus, the modified mass of the charmonium
cc , bottomonium bb mesons, and sc  mesons 

becomes as follows:  

 nlq EmM 2  
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           (32) 

Here, nlq EmM  2  is the mass of the 

charmonium cc , bottomonium bb  , and sc  
mesons in RQM under USVC potentials, while 
the second term is the non-polarized energies 
which indicate the energy independent of spin; 
this term presents the effect of noncommutativity 
of space on the mass of heavy-light mesons. For 
spin-0, j  equals only one value lj  , which 
allows obtaining   0,, sljk . Thus, the 
modified mass of the quarkonium system cp

ncM  
can be determined according to the following 
new generalized formula: 

  MMSMEmM cp
ncnlq  02


 

           (33) 

where M  denotes the effect of 
noncommutativity of space on the masses. In this 
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case, it is determined with the following 
formula: 
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      (34) 

On the other hand, it is evident to consider 
that the quantum number m  takes ( 12 l ) 
values and we have also two values for 

llj ,1 ; thus any state in the ordinary 3-
dimensional space of the energy for the 
charmonium cc and bottomonium bb  and sc  
mesons with spin-1 under the MUSVC potentials 
will become a double  123 l  sub-state. To 
obtain the total complete degeneracy of energy 
level of the MUSVC potentials in the 
symmetries of (RNC: 3D-RS), we will have to 
sum for all allowed values of angular momentum 
quantum numbers 1,0  nl . Total degeneracy 
is thus: 
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        (35)  

The degeneracy of the initial spectral is 
broken and replaced by a more precise and clear 
one. The doubled total complete degeneracy of 
energy level for the charmonium cc and 
bottomonium bb  and sc  mesons with spin-1, in 
RNCQM symmetries under the MUSVC 
potentials, gives a very clear physical indicator 
which shows that physical treatments with 
RNCQM appear more detailed and of clarity if 
compared with similar energy levels obtained in 
ordinary relativistic quantum mechanics.  

Non-relativistic Limits 

To consider further the interpretation of the 
positive and negative energy solutions of the 
MKGE equation, one can consider the 
nonrelativistic limit. For this purpose, we make 
the replacements:  
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Here, 
Zee

Zee

mm
mm

  is a reduced mass of 

atoms ( em  and Zem  are the rest masses of the 

electron e and the ionized atom ( He , Be or 
2Li ), respectively) and 
 mljnbabaE ssvv

cp
ncnr

,,,,,,,


 is the non-
relativistic energy. Inserting the above 
transformation into Eq. (36) yields: 
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      (37) 

In the non-relativistic Schrödinger equation, 
Eq. (37) applies to hydrogen-like atoms, such as

He , Be  and 2Li . We have
2/12/1  ljl , which allows obtaining 

two values ( 2/1 lj ) which give 

      1,
2
1, 21  lllklk  and thus, we obtain 

two values of the energy shift  msljnE nr
cp

,,,,  
as follows: 
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           (38)  

The above results show the degenerate energy 
shift and Eq. (38) gives the nonrelativistic 
energy  mslljnbabaE ssvv

cp
ncnr

,2/1,,2/1,,,,, 


 
of a Fermionic particle with spin-1/2 under the 
MUSVC potentials [31, 62]: 
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           (39) 
where 1

0
 r  and 0r  is the characteristic 

radius. Let us now look at some important 
special cases. When 0 svs bba  and 

2Zeav  , we conclude the effective 
Colombian potential in the symmetries of 
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relativistic noncommutative three-dimensional 
real space  0,,0, 2  ssvv

col
pert baZebarV  

and the corresponding radial Schrödinger 
equation which is exactly compatible with the 
results obtained in Ref. [27]: 
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and 
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Regarding the obtained results in Eqs. (38) 
and (39), the energy shift is dependent on the 
non-zero spin (spin-1) and we can conclude that 
the MKGE treated in our paper under MUSVC 
potentials can be prolonged to describe not only 
spin-zero particles, but particles with spin-1; for 
example, the charmonium cc and bottomonium 

bb  and sc mesons. Thus, one can conclude that 
the MKGE becomes similar to the Duffin–
Kemmer equation, which describes bosonic 
particles with non-null spin. It should be noted 
that our current results show excellent agreement 
with our previously published work, particularly 
for example the new modified potential 
containing Cornell, Gaussian, and inverse square 
terms [55] and modified quark-antiquark 
interaction potential [63]. Furthermore, and in a 
general way, the comparisons show that our 
results are in very good agreement with reported 
works [28-34]. Worthwhile, it is to mention that 
for the two simultaneous limits    0,0,   , 
we recover the results of the commutative space 
obtained in Ref.[13] for the USVC potentials, 
which means that our present calculations are 
correct. 

Conclusions 
We have investigated the MKGE for the 

MUSVC potentials in relativistic 
noncommutative three-dimensional spaces. The 

energy  mljnbabaE ssvv
cp

ncr
,,,,,,,


 due to the 

noncommutativity property corresponding to the 
generalized thn  excited state as a function of 
shift energy  msljnbabaE ssvvcp ,,,,,,,,  and 

nlE  due to USVC potentials are obtained via 
first-order perturbation theory and expressed by 

the parabolic cylinder function 







 


 2

D , the 

gamma function   , the discreet atomic 
quantum numbers  mslj ,,,  , and the potential 
parameters ( ssvv baba ,,, ), in addition to the two 
noncommutativity parameters ( and ). This 
behavior is similar to both the perturbed 
modified Zeeman effect and modified perturbed 
spin-orbit coupling in which an external 
magnetic field is applied to the system and the 
spin-orbit couplings which are generated with 
the effect of the perturbed effective potential 

 rV cp
pert

 in the symmetries of relativistic 
noncommutative three-dimensional real space 
(RNC: 3D-RS). Therefore, we can conclude that 
the MKGE becomes similar to the Duffin–
Kemmer equation under MUSVC potentials, 
where it can describe a dynamic state of a 
particle with spin-one in the symmetries of 
RNCQM. We have seen that the physical 
treatment of MKGE under the MUSVC 
potentials for bosonic particles, like the 
charmonium cc , bottomonium bb  , and sc  
mesons with spin-1, gives a very clear physical 
indicator showing that physical treatments with 
RNCQM appear more detailed and of clarity if 
compared with similar energy levels obtained in 
ordinary relativistic quantum mechanics. The 
nonrelativistic limits were treated and the results 
related to RQM under the unequal mixture of 
scalar and time-like vector Cornell potentials 
become a particular case when we make the two 
simultaneous limits    0,0,   . The 
comparisons show that our theoretical results are 
in very good agreement with reported works. 
Finally, the important result concluded from this 
article is the ability of the MKGE of playing a 
vital role in more profound interpretations in 
describing elementary particles, such as the 
charmonium cc and bottomonium bb  and sc  
mesons at high-energy physics under the 
MUSVC potentials. 
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