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Abstract: The second virial coefficient B for low-dense 7Lithium (7Li) gas is calculated 
over a wide temperature range 1 K40000 K. In the ‘high’-T limit (600 K45000 K), the 
classical coefficient, Bcl, and the contribution of the first quantum-mechanical correction, 
Bqc, are computed from standard expressions, using a suitable binary potential. The 
classical coefficient, Bcl, together with the Boyle temperature, TB, are determined and their 
values are in good agreement with previous results. In addition, the interface between the 
classical and quantum regimes is systematically investigated. Furthermore, the calculation 
of the quantum-mechanical second virial coefficient, Bq, is evaluated using the Beth-
Uhlenbeck formula in the temperature range 1 K500 K. A positive value of Bq indicates 
that the net interaction energy is repulsive, implying that the short-range repulsive forces 
dominate the long-range attractive forces. However, quite the opposite occurs for negative 
values of Bq, which are indicative of net attractive interaction. The general behavior of Bq 
is similar to the potential energy itself, such that the long-range attractive and the short-
range repulsive potentials can be deduced from the measurements of Bq. 
Keywords: Second virial coefficient, Low-density Lithium-7 Gas, Short-range repulsive 

forces, Long-range attractive forces. 
PACS: 51.30.+i. 
 

 
1. Introduction 

This paper is a theoretical study of the second 
virial coefficient B over a wide temperature 
range (1 K40000 K). In the high temperature 
limit (600 K40000 K and beyond), B is most 
likely to behave classically. Therefore, we focus 
on the classical second virial coefficient (Bcl) and 
the contribution of the first quantum correction 
(Bqc). In the low temperature limit (1 K100 K), 
we focus on the quantum second virial 
coefficient (Bq). To investigate the boundary line 
between the classical and quantum regimes, we 
focus on the intermediate temperature range 
from (100 K500 K). 

The temperature-dependent second virial 
coefficient B(T) is a basic thermodynamic 
parameter and is important for representing the 
equation of state of the system P-V-T (pressure–
volume–temperature), describing the behavior of 

real, low-density gases. In general, it is 
characteristic of the interaction potential between 
the particles. It represents the non-ideality of gas 
behavior arising due to the two-body interactions 
between atoms. Also, the sign of the second 
virial coefficient reflects how much the 
contribution of the attractive and repulsive parts 
of the potentials [1-4]. The intermolecular 
potential can be developed from experimental 
measurements of B [5], as there are many 
methods like static light scattering (SLS) [6]. B 
acts as an indicator of the classical-quantum 
borderline in a nonideal gas [4]. Moreover, it 
provides the connection between the microscopic 
and macroscopic properties, such as how the 
binary interactions affect the thermodynamic 
properties of a physical system. Most 
interestingly, Bq can provide information about 
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the possibility of the formation of small clusters 
[7]. 

Quite a number of studies calculated the 
second virial coefficients of all the alkali vapors 
over a wide range of temperatures using different 
potentials. For example, Sannigrahi et al. [8] 
used the Morse and Rydberg potentials for the 
ground singlet state and their anti-Morse 
potential for the triplet state. Nieto de Castro et 
al. [9] used the two-body interaction potential 
energy functions for the ground singlet state and 
excited triplet states of the alkali atoms proposed 
by Varandas et al. [10]. Mies and Julienne [11] 
used an electronic-rotational potential and 
Moncef [12] used the Rydberg-Klein-Rees 
interatomic singlet and triplet potentials. 

The main input in calculating B is the 
interaction potential. In this work, we have used 
the singlet X 1Σ+g and triplet a 3Σ+u interatomic 
potentials as constructed for different three 
potentials; namely, Morse, Rydberg and the 
modified Morse potentials. A brief description of 
them is presented in Section 2 which is specified 
for the theoretical framework. In Section 3, the 
results are presented and discussed thoroughly 
with suitable comparisons. In Section 4, the 
paper ends with a short conclusion. 

2. Theoretical Formalism 
2.1 Classical Virial Coefficient 

The simple classical expressions of the 
second virial coefficient and its quantum 
correction as functions of temperature T, are 
given by [13, 14]: 

Bୡ୪(T) = 2π ∫ ൣ1 − eିஒ(୰)൧rଶdrஶ
 ;           (1) 

B୯ୡ(T) = ℏమஒయ

୫ ∫ ൣeିஒ(୰)൧(Vᇱ(r))ଶrଶdrஶ
        (2)  

where ℏ, β, m denote the reduced Planck's 
constant, the inverse temperature parameter 
(kT)ିଵ, k Boltzmann's constant, and the mass 
of the 7Li atom, respectively. T is the 
temperature in Kelvin, V(r) is the pair 
interatomic potential and Vᇱ(r) is its first 
derivative with respect to the argument r.  

The total second virial coefficient for a gas of 
atoms which interact via singlet and triplet 
potentials was given by Sinanoglu and Pitzer 
[15] and reads:  

B = ଵ
ସ

Bଶ
(ୱ) + ଷ

ସ
Bଶ

(୲),           (3) 

Bଶ
(ୱ) and Bଶ

(୲) being the the virial coefficients 
obtained from the interaction potential energy 
function for the different singlet and triplet-spin 
energy states, respectively. The first two 
potentials used are the Morse U

ୱ(r) and 
Rydberg Uୖ

ୱ(r) potentials for singlet states, 
which are given by: 

U
ୱ(r) = Uୣ[eିଶୟ୶ − 2eିୟ୶]                    (4ܽ) 

Uୖ
ୱ(r) = Uୣ[eିୠ୶](1 + bx)        (4ܾ) 

where a = rୣ(κୣ/2Uୣ)ଵ/ଶ, x = ୰
୰

− 1, b = √2a 
and κୣ is the vibrational force constant of the 
diatomic alkali metal molecules. Here, the 
Uୣ, rୣ, kୣ are constants and are listed in Table 1. 
The anti-Morse potential U୲(r) was proposed by 
[8] for the triplet state and is given by: 

U୲(r) = 0.4427 Uୣ[eିଶୟ୶ + 0.092 eିୟ୶].       (5) 

The anti-Morse function is a repulsive 
potential and goes to zero at infinite distance. 
Eq. (5) expresses the triplet-state potential in 
terms of ground-state potential parameters. 

TABLE 1. Parameters of the Morse and anti-
Morse potentials. 

Parameter Value 
Uୣ 1.06 eV 
rୣ 2.65 
κୣ 0.254 

The third potential used is the modified 
Morse potential (HH-potential) [16]. It depends 
on the two-body Li atom interactions and is 
taken in the present work as the HH-hybrid 
potential for the singlet and triplet states [16-18]. 
The HH-potential is given by [16]: 

V∗(r∗) =

εᇱ

⎩
⎪⎪
⎨

⎪⎪
⎧exp ቂ−2a ቀ୰∗

ୢ
− 1ቁ ; ቃ

−2 exp ቂ−a ቀ୰∗

ୢ
− 1ቁቃ

+β ቀ୰∗

ୢ
− 1ቁ

ଷ
×

ቂ1 + γ ቀ୰∗

ୢ
− 1ቁቃ exp ቂ−2a ቀ୰∗

ୢ
− 1ቁቃ⎭

⎪⎪
⎬

⎪⎪
⎫

;     (6) 

where V∗ = ୴
க
; r∗ = ୰


; d = ୰


ߪ ; = 3.24Å; 

a = ன

ଶඥஒகᇲ; ߚ = caଷ;ߛ = ba; c = 1 + aଵටகᇲ

ୟ∘
; 

ܾ = 2-
ళ

భమିఌᇲೌమ
ೌ∘


;  a = ன

మ

ସஒ
;  aଵ = −1 − ன

ஒ
మ ; 

aଶ = ହ
ସ

aଵ
ଶ − ଶன

ଷஒ
, ' being the well depth in   

cm-1. 
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This potential depends on the spectroscopic 
constants, the well depth ' , the fundamental 
vibration frequency ωe, the anharmonicity 
constant ωe χe, the rotational constant βe, the 
vibration-rotation coupling constant αe and the 
equilibrium internuclear separation re of the 
atoms in the dimer. The latter are listed for the 
singlet and triplet states of Li in Table 2 [16-18]. 
The Li-Li potentials for the singlet g

1x  and 

triplet  u
3x  states are plotted as shown in 

Fig.1. 

TABLE 2. HH parameters for the states  g
1x  

and  u
3a  of Li, as obtained from the 

spectroscopic constants. 
Parameter  g

1x [16]  u
3a [17, 18] 

  8614 (cm-1) 338.71(cm-1) 
e  351.43 (cm-1) 64.88 (cm-1) 

ee  2.61 (cm-1) 3.41 (cm-1) 

e  0.67264 (cm-1) 0.279 (cm-1) 

e  0.00704 (cm-1) 0.0187 (cm-1) 

er  2.6729 Å 4.154 Å 

0 5 10 15

-10

-5

0

5

10
 HH- Vs

 HH- Vt

 Morse- Vs

 Rydberg- Vs

 Anti-Morse Vt

V
(r

) (
cm

-1
) 

 ́1
03

r (Å)   
FIG. 1. Li-Li potentials for the singlet g

1x  and triplet  u
3x  states, the HH-potential and Morse and 

Rydberg potentials.  
 

2.2 Quantum Second Virial Coefficient, Bq  

The Uhlenbeck and Beth formula for the 
quantum second virial coefficient at low 
temperatures is given by [19, 20]: 

B୯(T) = − య

ଶఱ మ⁄ − 2ଷ ଶ⁄ λଷ ∑ ൫eିஒా − 1൯ా −
ଶయ మ⁄ ఱ

మ ∫ dk k ∑ ′(2l + 1)δ୪(k)eିஒ(୩)
୪

ஶ
       (7) 

Eq. (7) contains three terms: Bideal, Bbound and 
Bphase. Bideal is the quantum ideal-gas term. This 
is dominant in the low-temperature region; it 
goes to zero at large T. Bbound is the term 
consisting of the discrete energy spectrum made 
possible by the two-body interaction, where EB 
are the bound-state energies. The latter is 
ignored for the Lithium system, since it is 
unbounded in the T-range of this study. Finally, 
Bphase denotes the contribution of the scattering-

state continuum, where  k  stands for the 
scattering phase of the ݈௧ partial wave of 
wavenumber k that arises because of the pair 
interaction V(r). The factor (2݈ + 1) for the 
degenerate state comes from the magnetic 
quantum number m and the primed summation 
∑ ′  goes over even    values in the case of 
bosons. The bound state term (discrete-state 
contribution) can be neglected, because it is 
quite small. Therefore, the two contributions to 
the overall value of Bq are the quantum ideal-gas 
term and the scattering term (continuum-state 
contribution).  

The phase-shifts  k  can be obtained 
numerically from the solution of the Lippmann-
Schwinger (LS) integral equation which 
describes momentum space scattering in terms of 
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the T-matrix, using a matrix-inversion technique. 
The LS formalism is well-described elsewhere 
[21-23]. The basic input in computing is the 
interatomic potential.  

Throughout our work, we used natural units 
such that ℏ, ݉, ݇  are exactly equal to 1 and 

applied the conversion factor 
2

..96 K
m

19 
 Å2. 

In this system, all physical quantities can be 
expressed in terms of [length, L]. One can easily 
go back to SI units through the conversion factor 
quoted. 

3. Results and Discussion 
3.1  Classical Second Virial Coefficient with 

First Quantum Correction, Bqc 
Our results for the classical second virial 

coefficient Bcl and the first quantum correction 

Bqc are shown in Tables 3-7 and Fig. 2. Table 3 
shows Bcl, Bqc and Btotal in the T-range 600 K to 
45000 K for the singlet (Morse and Rydberg 
potentials) and anti-Morse potential for the 
triplet state. Btotal is calculated by adding Bqc to 
Bcl. It is found that Btotal is negative, but it 
increases (i.e., its absolute value decreases) as T 
rises. The negative sign means that the 
interaction is attractive. At a certain T ≡ TB 
(Boyle’s temperature), Btotal = zero. This occurs 
when the attractive forces balance exactly the 
repulsive forces. In Table 4, the present results 
for the Boyle temperature TB are compared to 
previous results [8] displaying good agreement. 
By increasing T (T >TB), Btotal becomes positive 
because of the repulsive forces. For the HH 
potential, Btotal equals zero at T = 126852 K. It is 
very high compared to the previous calculated 
value from the Morse and Rydberg potentials. 

TABLE 3. The classical second virial coefficient Bcl (cm3/mole) and first quantum correction Bqc 
(cm3/mole), at different temperatures T [K] for singlet (Morse and Rydberg potentials) and triplet 
state (using anti-Morse potential). 

T[K] 
Morse Rydberg Anti-Morse Btotal [cm3/mole] 

Bs
cl 

[cm3/mole] 
Bs

qc 
[cm3/mole] 

Bs
cl 

[m3/mole] 
Bs

qc 
[cm3/mole] 

Bt
cl 

[cm3/mole] 
Bt

qc 
[cm3/mole] Morse Rydberg 

600 -1.02×1010 2.78×108 -1.02×1010 2.78×108 134.7 0.0825 -2.50×109 -2.49×109 
700 -6.02×108 1.18×107 -5.98×108 1.18×107 125.7 0.06768 -1.47×108 -1.47×108 
800 -7.24×107 1.07×106 -7.20×107 1.07×106 118.4 0.05694 -1.78×107 -1.77×107 
900 -1.41×107 1.6×105 -1.40×107 1.61×105 112.2 0.04885 -3.48×106 -3.46×106 

1000 -3.84×106 3.50 ×105 -3.81×106 3.50×105 106.9 0.04255 -9.51×105 -9.43×105 
1200 -5.58×105 3401 -5.52×105 3.40×103 98.19 0.03346 -1.39×105 -1.37×105 
1400 -1.44×105 619.1 -1.42×105 618.43 91.31 0.02726 -3.58×104 -3.53×104 
1600 -8.44×104 167.5 -5.23×104 167.30 85.68 0.02279 -2.10×103 -1.29×104 
1800 -2.49×104 59.22 -2.43×104 59.12 80.95 0.01945 -6.14×103 -6.01×103 
2000 -1.37×104 25.29 -1.34×104 25.24 76.9029 0.0168544 -3.37×103 -3.28×103 
2400 -5.77×103 6.76 -5.57×103 6.744 70.29 0.013132 -1.39×103 -1.34×103 
2800 -3.17×103 2.527 -3.03×103 2.516 65.06 0.01061 -743 -709 
3000 -2.51×103 1.681 -2.39×103 1.673 62.82 0.009640 -579 -549 
3500 -1.57×103 0.7223 -1.48×103 0.7177 58.04 0.007767 -349 -327 
4000 -1.12×103 0.3706 -1.04×103 0.3675 54.14 0.006430 -237 -219 
5000 -674.5 0.1359 -624.4 0.1343 48.08 0.004671 -133 -120 
6000 -476.1 0.06533 -437.2 0.06427 43.54 0.003583 -86.4 -76.6 

10000 -212.1 0.01149 -191.6 --- 32.57 0.00167 -28.6 -23.5 
15000 -123.1 0.003676 -110.2 --- 25.50 0.000888 -11.7 -8.43 
20000 -86.01 0.001789 -76.65 --- 21.25 0.000558 -5.56 -3.22 
25000 -65.76 0.001062 -58.44 --- 18.35 0.000385 -2.68 -0.845 
28000 -57.52 0.001022 -51.05 --- 17.00 0.000324 -1.63 -0.00089 
29000 -55.19 0.000932 -48.97 --- 16.60 0.000301 -1.35 0.210 
30000 -53.0 0.000707 -47.05 --- 16.22 0.000282 -1.09 0.405 
35000 -44.34 0.000506 -39.27 --- 14.58 0.000215 -0.152 1.11 
36000 -42.92 0.000476 -38.00 --- 14.29 0.0002047 -0.0114 1.22 
37000 -41.58 0.000449 -36.81 --- 14.02 0.000195 0.117 1.31 
40000 -38.01 0.00038 -33.63 --- 13.26 0.000169 0.442 1.54 
45000 -33.21 0.000297 -29.36 --- 12.18 0.000137 0.831 1.79 
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TABLE 4. Boyle temperatures TB [K] compared to previous results [8]. 
TB [K] 

Present results [8] 
Morse Rydberg Morse Rydberg 
36086 28039 31244 23799 

 

Fig. 2 displays Btotal in the T-range 500 K–
30000 K. Btotal continues to increase with 
increasing T, but it changes relatively slowly at 
the higher T values. It is expected that Btotal 
flattens out while dropping slowly toward zero at 
significantly higher temperatures. It is noted that 
the second virial coefficient is positive or 
negative depending on the temperature. The 
explanation for this T-behavior of Bcl is as 
follows: the negative values of B are indicative 
of a net attractive interaction between the 
particles; conversely, a positive value is an 
indication that the net interaction energy is 
repulsive. If B equals zero, then no interactions 
are present and the virial equation reduces to the 

equation of state for the ideal gas. The figure 
shows that at low temperatures, B is largely 
negative, but above a certain temperature, it 
becomes positive and less dependent on 
temperature. At low T, the weak attractive part 
of the potential dominates the low kinetic energy 
of Li atoms, leading to a negative Bcl. As 
temperature increases, atoms become more 
energetic, increasing the contribution of short-
range repulsive forces and causing B to become 
less negative. In contrast, at high T, the large 
kinetic energy of the Li atoms leads to a net 
repulsive interaction among them, yielding 
thereby a positive B. At high T, B increases 
slowly with temperature. 

0 10 20 30
-20

-15

-10

-5

0

5

 Morse
 Redberg

B c
l×

10
2  [c

m
3 /m

ol
e]

T×103  [K]  
FIG. 2. The total classical second virial coefficient Bcl [cm3/mole] as a function of temperature T [K] using 

Morse and Rydberg potentials. 
 

In order to test the reliability of the present 
calculation, we have used a third potential; 
namely the modified Morse potential (HH-
potential). In Tables 5 and 6, the present results 
for Btotal are compared to previous results in [8, 
9, 11, 16, 24]. It is noted that the present results 
are of the same order of magnitude as the 
previous results. The values of the first quantum 
correction Bqc from 600 K to 45000 K are 

positive and decrease to zero at T= 6000 K, as 
shown in Table 6. In Table 7, Bcl, Bqc (for singlet 
and triplet states) and Btotal are calculated in the 
T-range (100 K500 K). It is noted that Bs

qc 
plays a significant role in this T-range and the 
quantum effects cannot be ignored in this range. 
It is clear that it becomes greater than clB  at T 
≤ 100 K, Therefore, the classical expression 
fails; so that Bq must be used instead. 
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TABLE 5. The total classical second virial coefficient Btotal [cm3/mole] at different temperatures T. 
Previous results [8] are included for comparison purposes. 

Btotal [cm3/mol] 

T [K] Present results [8] 
Morse Rydberg Morse Rydberg 

2460.253 -1244 -1201.9 -1225.3 -1201.5 
4100.422 -220.8 -204.2 -218.6 -276.6 
6150.632 -81.6 -72.3 -80.7 -203.4 
8200.843 -43.6 -37.1 -42.9 -71.4 
12301.26 -18.3 -14.3 -17.6 -36.2 
16401.69 -9.4 -6.5 -8.9 -13.3 
24602.53 -2.8 -0.98 -2.5 -5.2 

TABLE 6. Comparison between the present results for Bcl and Bqc and previous results. 

T[K] 
Btotal 

[m3/mol] 
Present result 

Btotal 
[m3/mol] 

[9] 

Btotal 
[m3/mol] 

[11] 

Btotal 
[m3/mol] 

[16]* 

Btotal 
[m3/mol] 

[24] 
500 -1.624 x 105 --- -1.073 x 105 -1.167 x 106 --- 
600 -2923 --- -2060 -6551 --- 
700 -167.9 --- -124.2 -575.1 --- 
800 -19.93 -14.93 -15.28 -69.83 --- 
900 -3.831 -2.963 -3.023 -10.85 -9.647 

1000 -1.032 -0.8191 -0.8335 -2.059 -2.370 
1200 -0.1472 -0.1213 -0.1229 -0.1155 -0.2941 
1400 -0.0374 -0.03164 -0.03197 -0.03996 -0.06746 
1600 -0.01361 -0.01174 -0.01184 -0.01681 -0.02265 
1800 -0.00629 -0.005509 -0.005538 -0.007809 -0.00977 
2000 -0.00344 -0.003039 -0.003048 -0.003962 -0.00502 
2200 -0.00212 ---- -0.001885 -0.002130 -0.00289 
2400 -0.00143 ---- -0.00127 -0.001219 -0.00182 
2500 -0.0012 -0.001071 -0.001069 -0.001037 -0.00146 
3000 -0.00061 -0.000544 -0.000541 -0.000557 ---- 
3500 -0.00031 ---- -0.000333 -0.000329 ---- 
4000 -0.00026 ---- -0.00023 -0.000228 ---- 
4500 -0.00019 ---- -0.000172 -0.000172 ---- 
5000 -0.00017 ---- -0.000135 -0.000133 ---- 
5500 -0.00013 ---- -0.00011 -0.000109 ---- 
6000 -0.00011 ---- -0.0000915 -0.000092 ---- 

*The result of Holand et al. [16] is published in their work as a ratio from Mise and Julienne [11]. 

TABLE 7. Bcl, Bqc (for singlet and triplet states) and Btotal in the T-range (100500 K). 

T[K] Bs
cl 

[m3/mol] 
Bs

qc 
[m3/mol] 

Bt
cl 

[m3/mol] 
Bt

qc 
[m3/mol] 

Btotal 
[m3/mol] 

100 -3.359×1054 3.538×1054 -11587.1 289.7 4.475×1052 
200 -5.582×1027 1.526×1027 -1520.5 8.315 -1.014×1027 
300 -7.739×1018 8.857×1017 -709.1 1.910 -1.713×1018 
400 -2.948×1014 1.876×1013 -447.2 0.8020 -6.901×1013 
500 -6.770×1011 2.725×1010 -320.7 0.4419 -1.624×1011 
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3.2 Quantum Second Virial Coefficient, Bq  

Our results for Bq are given in Table 8 and 
Fig. 3 for the T-range (1–500 K) in the zero-
density limit. In this regime, the system is 
considered to be in the vapor phase. At very low 
T, Bq is positive indicating that the repulsive part 
of the potential is dominant. As T is increased, 
the attractive part becomes more dominant. The 
negativity of Bq rises with increasing T until it 
approaches a minimum at Tmin. For T > Tmin, Bq 
becomes less negative with increasing T, going 
to zero in the high limit of T. This behavior is an 
evidence of quantum effects. The overall 
behavior of Bq is the same as that of the potential 
itself. In the Morse and Rydberg potentials, Bq 
changes sign at T = 80 K and T= 90 K, 
respectively, from positive to negative, but for 
the HH-potential, Bq changes sign at T=7 K from 
positive to negative. This means the HH 
potential is more attractive than the two other 

potentials, since the triplet part in the Morse and 
Rydberg potentials is completely repulsive. 

The general behavior of Bq (Fig. 3) is the 
same as that of the Li-Li potential V(r) itself 
(Fig. 1). This behavior reflects that the short-
range repulsive component and the long-range 
attractive component with the minimum in 
between represent equilibrium [1]. Moreover, it 
is concluded that the HH-potential is the most 
attractive potential. The behavior of Bq must be 
quantum-mechanical in origin. The classical 
calculation of B yields a large and negative value 
at low temperatures in the presence of an 
attractive well. This behavior occurs because of 
the uncertainty principle. At these low 
temperatures, the thermal de Broglie wavelength 
of Li is several tens of Ångstroms, which is 
probably enough to “wash out” the potential 
energy bottom, thereby resulting in an overall 
repulsive interaction.  

 

TABLE 8. The quantum second virial coefficient Bq [m3/mole] as a function of temperature T [K] 
using Morse, Rydberg and HH potentials.  

Bq[m3/mol] 

T [K] Morse 
potential Rydberg potential HH potential 

1 992.5 531.1 1418.4 
2 531.2 235.4 495.3 
4 274.8 164.6 78.53 
6 180.7 133.6 7.331 
7 151.1 118.8 -3.392 
8 127.7 105.0 -8.781 
10 93.40 81.52 -12.89 
30 10.38 10.91 -8.948 
50 2.251 2.679 -6.532 
70 0.3642 0.5211 -5.463 
90 -0.2945 -0.3277 -4.790 

100 -0.4742 -0.5728 -4.520 
200 -1.160 -1.399 -2.756 
300 -1.347 -1.515 -1.777 
400 -1.345 -1.458 -1.226 
500 -1.267 -1.345 -0.9168 
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FIG. 3. The quantum second virial coefficient Bq [cm3/mole] as a function of temperature T [K] using Morse, 

Rydberg and HH potentials. 

4. Conclusion 
This work has addressed the second virial 

coefficient B of low-density 7Li vapor, using the 
Morse, Redberg and HH-potentials, in the 
temperature-range 1 K45000 K and beyond. 
This range spans the quantum as well as classical 
regimes. Accordingly, the centerpiece of this 
work includes the calculation of the classical 
coefficient Bcl together with the first quantum 
correction Bqc and the quantum coefficient Bq. 
Also, the interface between the classical and 
quantum regimes is systematically investigated. 

The main objectives of this work were to 
calculate the classical second virial coefficient 
Bcl, the first quantum correction Bqc to this 
coefficient in the T-range 100 K40000 K and 
beyond and to determine the quantum 
counterpart Bq in the T-range 1 K500 K. A 
positive value of Bq indicates that the net 
interaction energy is repulsive implying an 
overall repulsive effective interaction; whereas 
the negative values of Bq are indicative of a net 
attractive interaction.  

It has been found that the general behavior of 
Bq is the same as that of the potential itself, such 
that the short-range repulsive and long-range 
attractive potentials could be deduced from the 
result of Bq. There seems to be an almost one-to-
one correspondence between the respective 
repulsive, attractive and ‘minimum’ regions. 
Thus, information about diatomic interactions is 
contained in B.  

In conclusion, the results show that B is a 
sharp indicator of the demarcation between the 
classical and quantum regimes. In the high-T 
limit, B is expected to behave classically; 
whereas it should behave quantum-mechanically 
at ‘low’ T. There are some problems that one can 
pursue starting with the present work. One 
problem is using the present formalism for 
exploring the gas of Lithium isotope (6Li) which 
is a Fermi system. It would be interesting to 
observe the similarities and differences. Another 
problem is the calculation of the second virial 
coefficient for other atomic gases, such as Na 
and K.  
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