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Abstract: We investigate the spectra of high-frequency electrostatic surface electron 
plasmon oscillations propagating normal to a dc-magnetic field. These oscillations are 
supported by two identical magnetoplasma slabs separated by a vacuum slab. Propagation 
characteristics of surface magnetoplasma oscillations and their coupling are studied by 
simultaneously solving the homogeneous system of equations obtained by matching the 
electrostatic fields at the interfaces together with the warm plasma dielectric function of 
upper hybrid waves. We demonstrate the existence of two propagating magnetoplasma 
electrostatic surface modes (backward and forward modes). The backward mode emerges 
at frequency ߱ = ߱୳௛ = ඥ߱୮௘

ଶ + ୡ߱௘
ଶ , where ߱୮௘  and ୡ߱௘  are the electron plasma 

frequency and the electron cyclotron frequency, respectivily, and the forward propagating 
mode emerges at a lower frequency ߱ = ߱୳௛ − ߱୮௘ . The forward and backward surface 
modes become coupled and form a single mode at upper hybrid resonance quasi-static 
value ߱ = ߱୳௛/√2. 
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1. Introduction 

The study of electron plasma wave 
interaction in the presence of magnetic fields is 
of importance for plasma heating and plasma 
diagnostics [1-6]. In the presence of a dc-
magnetic field, the bulk electron plasma 
frequency ߱୮௘ transforms into the upper hybrid 
(UH) frequency ߱୳௛. Understanding the 
mechanisms of excitation of UH waves is crucial 
for explaining certain features of the stimulated 
emission of electromagnetic waves observed in 
ionospheric heating experiments. In planetary 
magnetospheres and in the Earth’s ionosphere, a 
large amplitude upper hybrid wave can 
nonlinearly excite a slow electromagnetic wave 
of ܺ or ܼ type [7, 8]. In space plasmas, UH 
waves can be generated either by mode coupling 
or by electron beams, which then can decay into 
electromagnetic and lower hybrid waves [9]. 

Electrostatic UH waves can be induced when 
an obliquely incident electromagnetic wave is 
converted into an electrostatic wave of UH type 
due to density irregularities. Effects of mass 
motion on the evolution of electrostatic waves 
and instabilities have been studied analytically 
by Mohanty and Naik [10]. It was found that 
streaming motion enhances the wave frequency 
and diminishes the terms related to growth or 
damping of electrostatic instabilities. 

Due to the fact that plasma can have a 
negative dielectric constant in certain frequency 
domains, propagation of true surface waves 
along a plasma-dielectric interface is possible 
[11]. There is a great interest in studying the 
propagation of waves on the plasma boundary, 
as most plasmas in laboratory and space 



Article  Fuad Rawwagah 

 156

applications involve boundaries. It is well known 
that the propagation of a pure surface wave (i.e., 
a wave whose field decreases exponentially 
away from the interface) between two media is 
possible only when the permittivities of the two 
media have opposite signs [12-20].  

This article studies high-frequency electron 
surface plasma modes of oscillation propagating 
perpendicular to an undisturbed magnetic field. 
These oscillations are supported by two 
identical, parallel and homogeneous plasma 
slabs separated by a vacuum slab. In Sec. 2, we 
present the model equations of the high-
frequency electrostatic modes of magnetoplasma 
slabs. In Sec. 3, numerical examples of vacuum-
plasma-vacuum-plasma-vacuum geometry are 
presented. Finally, we discuss the results and 
present the main conclusions of the paper in Sec. 
4. 

2. Model Equations 
We consider a dielectric slab of thickness 

݀ and permittivity ߳ௗ  extending infinitely in the 
 plane between two infinite parallel plasma-ݖݕ
slabs of equal thicknesses ℓ and dielectric 
permittivities ߳୮ = ߳଴ߝ୮, where ߝ୮ is the plasma 
dielectric function. The rest of the space is taken 
to be vacuum, as shown in Fig. 1. For high-
frequency waves, the dynamics of the ions can 
be neglected, which allows for treating the ions 
as a fixed uniform background of positive 
charges. The motion of the electrons is governed 
by the following closed system of equations [21, 
22],  
డ௡౛
డ௧

+ ∇ሬሬ⃗ ⋅ (ୣݒ⃗ୣ݊) = 0,            (1) 

݉ୣ݊ୣ
ௗ௩ሬ⃗ ౛
ௗ௧

= ሬ⃗ܧୣ݊݁− − ୣݒ⃗ୣ݊݁ × ሬ⃗ܤ − ୣݒ⃗ߥୣ݊ୣ݉ −
ߛୣ ݇஻ܶ ∇ሬሬ⃗ ݊ୣ,             (2) 

∇ሬሬ⃗ ⋅ ሬ⃗ܧ = − ௘
ఢబ

(ܼ݊଴௜ − ݊ୣ),           (3) 

where ݉ୣ is the electron mass, ݁ is the 
magnitude of electronic charge, ߳଴ is the 
permittivity of free-space, ୣߛ  is the ratio of 
specific heats, ݇୆ is Boltzmann constant, ܶୣ  is 
the temperature of electrons, ݊ୣ is the electron 
density, ߥ is the electron collision frequency with 
neutrals, ݊଴௜ is the equilibrium ion density and ܼ 

is the charge state. The coupled equations (1–3) 
can be linearized with:  

݊௘ = ݊଴௘ + ݊ଵ௘ , ௘ݒ⃗ = ଴௘ݒ⃗ + ଵ௘ݒ⃗ , ሬ⃗ܧ = ሬ⃗ܧ ଴ +
ሬ⃗ܧ ଵ, ሬ⃗ܤ =  (4)                                               ,ݖ̂ ଴ܤ

where the quantities with subscript 0 express the 
state of the magnetoplasma in the absence of 
oscillations.  Perturbation terms of 
corresponding quantities are denoted by 
subscript 1. In the absence of an initial electron 
drift (⃗ݒ଴௘ = 0), this procedure results in the 
following dielectric permittivity of the 
electrostatic electron plasma waves in a 
homogeneous magnetoplasma [22-24]: 

୮ߝ = 1 − ఠ౦೐
మ

ఠ(ఠା௜ఔ)ିఠౙ೐
మ ିଷ జ౪೓,೐

మ ௞మ ,                      (5) 

where ߱୮௘ is the electron plasma frequency, ߱ୡ௘ 
is the electron cyclotron frequency, ߥ is an 
effective collision frequency of electrons with 
neutrals, and ߭୲௛,௘ = ඥ݇஻ܶୣ /݉ୣ is the electron 
thermal speed. The natural modes of Eq. (5) are 
the electrostatic upper hybrid waves across the 
dc-magnetic field in warm, collisional, and 
magnetized plasma. 

In the electrostatic limit ߱ඥߤ଴߳ ≪ 1, the 
magnetic field component of the electromagnetic 
wave can be neglected. Accordingly, in a source-
free nonconducting medium, the electric field 
obeys Laplace’s equation. Without loss of 
generality, we will consider the surface wave 
modes that propagate along the interface in the 
 :direction such that-ݕ

,ݔ)୷ܧ (ݕ = ௜௞௬݁ (ݔ)ݑ , a݊݀ ܧ୶(ݔ, (ݕ =

− ௜
௞

 
ௗா౯(௫,௬)

ௗ௫
,                                                 (6) 

where (ݔ)ݑ is a function that accounts for the 
electric field variations with ݔ. Consequently, 
the function (ݔ)ݑ obeys the equation (ݔ)′′ݑ −
݇ଶ (ݔ)ݑ = 0. For the waves guided by any 
planar structure, the propagation constant ݇ must 
be the same in all regions of the guiding 
structure. This is a necessary condition for the 
existence of guided mode. Thus, in the 
electrostatic limit under consideration, the wave 
vector k is the same over all the regions of the 
structure. 
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FIG. 1. Geometry of the problem. 

 

Then, the electric field ܧ୷(ݔ,  in each slab (ݕ
of the waveguide geometry of Fig. 1 can be 
written as:  

୷ܧ
(ଵ) = ଵ ݁௞(௜௬ା௫)ܣ              − ∞ < ݔ ≤ −ℓ       (7) 

୷ܧ
(ଶ) = ଶ ݁௞(௜௬ା௫)ܣ +  ଷ ݁௞(௜௬ି௫)ܣ

−ℓ ≤ ݔ ≤ 0       (8) 

୷ܧ
(ଷ) = ସ ݁௞(௜௬ା௫)ܣ +   ହ ݁௞(௜௬ି௫)ܣ

 0 ≤ ݔ ≤ ݀         (9) 

୷ܧ
(ସ) = ଺ ݁௞(௜௬ା௫)ܣ +   ଻ ݁௞(௜௬ି௫)ܣ

݀ ≤ ݔ ≤ ݀ + ℓ   (10) 

୷ܧ
(ହ) = ݀              ௞(௜௬ି௫)݁ ଼ܣ + ℓ ≤ ݔ < ∞    (11) 

In the electrostatic limit, applying the 
boundary conditions returns the continuity of the 
tangential component of the electric field and the 
normal component of the electric displacement 
vector ܦሬሬ⃗ = ሬ⃗ܧߝ . Accordingly, matching the 
tangential electric field ܧ୷ and the normal 
electric displacement ܦ୶ components at all 
interfaces leads to the following 8 × 8 
homogeneous system of equations:  

ଵ݁ି௞ℓܣ − ଶ݁ି௞ℓܣ − ଷ݁௞ℓܣ = 0         (12) 
஺భ
ఌ೛

݁ି௞ℓ − ଶ݁ି௞ℓܣ + ଷ݁௞ℓܣ = 0         (13) 

ଶܣ + ଷܣ − ସܣ − ହܣ = 0         (14) 
ఌ೛

ఌ೏
ଶܣ − ఌ೛

ఌ೏
ଷܣ − ସܣ + ହܣ = 0         (15) 

ସ݁௞ௗܣ + ହ݁ି௞ௗܣ − ଺݁௞ௗܣ − ଻݁ି௞ௗܣ = 0    (16) 

ସ݁௞ௗܣ − ହ݁௞ௗܣ − ఌ೛

ఌ೏
଺ܣ + ఌ೛

ఌ೏
଻ܣ = 0             (17) 

଺݁௞(ௗାℓ)ܣ + ଻݁ି௞(ௗାℓ)ܣ − ௞(ௗାℓ)ି଼݁ܣ = 0  (18) 

଺݁௞(ௗାℓ)ܣ − ଻݁ି௞(ௗାℓ)ܣ + ஺ఴ
ఌ೛

݁ି௞(ௗାℓ) = 0  (19) 

3. Numerical Analysis and Example 
In Figs. 2 and 3, we use Eqs. (12-19) together 

with Eq. (5) to plot the normalized mode 
frequency ߱/߱୮௘ versus ݇ߣୈ for the case of 
vacuum as a central region between the plasma 
slabs with ߝௗ = 1. Here, ߣୈ = ߭୲௛,௘/߱୮௘ is the 
electron Debye wavelength. The values of 
ୈߣ݇ ≪ 1 are within the validity of the warm 
plasma approximation (long wavelength limit) 
[21-25]. 

The curves in Fig. 2 show the normalized 
mode frequencies for different values of 
cyclotron frequency ߱ୡ௘/߱୮௘. For ߱ୡ௘ = 0, we 
observe two well known electrostatic modes, 
which emerge from ߱ = 0 and ߱ = ߱୮௘. Both 
modes become coupled as ݇ߣୈ increases and 
eventually degenerate into a single mode at the 
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quasi-static frequency ߱ = ఠ౦೐

√ଶ
 of the plasma-

vacuum interface [13, 15, 25]. By increasing the 
magnetic field, the mode frequencies shift up 
and become coupled at higher quasi-static 
surface wave frequency ߱ = ߱୳௛/√2. The shift 
is of the order of Δ߱ = ߱୳௛ − ߱୮௘ . The bulk 
plasma mode at ߱ = ߱୮௘ for ߱ୡ௘ = 0 shifts 
upward toward the upper hybrid frequency 

߱୳௛ = ට߱୮௘
ଶ + ߱ୡ௘

ଶ . For ߱ୡ௘ = ߱୮௘, for 

example, the upper hybrid frequency is 1.4߱୮௘ 
with an upward shift of Δ߱ = 0.4߱୮௘.  

Curves of Fig. 3 show the normalized mode 
frequencies for different values of vacuum slab 
width to plasma slab width ݀/ℓ. To find out the 
effect of the width of the central vacuum slab on 

the coupling of the electrostatic surface modes in 
a magnetoplasma, we consider the fixed value 
߱ୡ௘ = ߱୮௘ as a representative case. In the 
absence of the central slab (i.e., ݀ = 0), the 
magnetoplasma slab has a width of 2ℓ and is 
surrounded by semi-infinite vacuum regions. In 
this case, we observe two uncoupled modes; 
namely, ߱ = ߱୳௛ = 1.4߱୮௘  and a second mode, 
which emerges from the bulk plasma mode and 
approaches the quasi-static value ߱ ≈
߱୳௛/√2 = 1.22߱୮௘. For ݀ ≠ 0, the bulk upper 
hybrid mode at ߱ = ߱୳௛ = 1.4߱୮௘  and the bulk 
plasma mode at ߱ = ߱୮௘ become coupled and 
the coupled mode frequency approaches the 
upper hybrid quasi-static value ߱ = ߱୳௛/√2 =
1.22߱୮௘. 

 

 
FIG. 2. Coupled plasma modes for different magnetic fields. 
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FIG. 3. Coupled plasma modes for different central slab thicknesses. 

 
The existence of these upper hybrid 

frequencies has been verified experimentally by 
studying the microwave transmission across a 
magnetic field. As the plasma density is varied, 
the transmission through the plasma exhibits a 
dip at the density value that makes ߱୳௛ equal to 
the applied frequency: upper hybrid oscillations 
are excited, and energy is absorbed from the 
beam. 

4. Discussion and Conclusions 
This work has been devoted to the 

investigation of the coupling of electrostatic 
surface magnetoplasma modes supported by two 
identical parallel plasma slabs separated by a 
vacuum slab. The general characteristics for the 
surface magnetoplasma modes are obtained by 
simultaneously solving the homogeneous system 
of Eqs. (12-19) together with Eq. (5). The 
normalized mode frequencies ߱/߱୮௘ have been 
plotted versus ݇ߣୈ in the range of the validity of 
the warm plasma approximation ݇ߣୈ ≪ 1. A 
numerical value of the collision frequency with 
neutral ߥ = 0.01 keeps the magnetoplasma slabs 
non-collisional. It is well known in literature that 
the effect of collisions is to down shift the 

surface wave spectra and the corresponding 
quasi-static resonance frequency [15, 25]. 

The curves in Figs. 2 show the existence of 
backward and forward propagating electrostatic 
modes for ߱ୡ௘ = 0 or ߱ୡ௘ ≠ 0. The backward 

mode emerges at ߱ = ߱୳௛ = ට߱୮௘
ଶ + ߱ୡ௘

ଶ , 

which reduces to ߱ = ߱୮௘ for unmagnetized 
plasma. The second mode is a forward 
propagating mode, which emerges at a lower 
value ߱ = ߱୳௛ − ߱୮௘ and becomes ߱ = 0 in the 
absence of the dc-magnetic field [13, 15]. 

Backward and forward electrostatic 
magnetoplasma surface modes for different 
values of ݀/ℓ at fixed value ߱ୡ௘ = ߱୮௘ are 
shown in Fig.3. When the central vacuum slab is 
absent (݀ = 0), the magnetoplasma slab supports 
two uncoupled modes at ߱ = ߱୳௛ = 1.4߱୮௘ and 
߱ = ߱୮௘. For ݀ ≠ 0, the bulk upper hybrid 
mode at ߱ = ߱୳௛ = 1.4߱୮௘  and the bulk plasma 
mode at ߱ = ߱୮௘ become coupled and approach 
the upper hybrid quasi-static resonance value 
߱ = ߱୳௛/√2 = 1.22߱୮௘. 
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