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Abstract: In this paper, we have investigated electric quadrupole moment of ݅ܮ  and ݅ܮ  
in both shell model and cluster model. In shell model, the nuclei ݅ܮ  and ݅ܮ  can be 
modeled as one core plus nucleons. Nucleons outside the closed shell can be considered as 
a two- and three-particle system. In cluster structure, we have selected alpha clusters and 
triton or deuteron in interaction with alpha cluster ( ݅ܮ  and ݅ܮ  involving ߙ + ଷܪ  and 
ߙ + ଶ,ܪ  respectively). By solving Schrödinger equation and using suitable potential for 
interaction between particles by applying Nikiforov-Uvarov method, potential coefficients 
have been computed. Then, we have calculated the energy and wave function for nuclei ݅ܮ  
and ݅ܮ  and compared the results obtained with experimental results. By having the wave 
function, we can obtain the quadrupole moment. These values are compared with 
predictions from shell-model and cluster-model calculations. Although the difference 
between them is small, the electric quadrupole moment results in the cluster model are in 
good agreement with experimental results. 

Keywords: Electric quadrupole moment, Shell-model, Cluster-model, Li isotopes, Non-
relativistic equation. 

 

 
Introduction 

Electric quadrupole and magnetic dipole 
moments can be determined using an 
experimental method that is based on the nuclear 
magnetic resonance technique [1, 2, 3]. In 
nuclear physics, the study of isotopes and 
calculation of static properties in the different 
models are the main goals. The most important 
models in nuclear physics are shell and cluster 
models. Shell model is acceptable in nuclear 
physics and ܮ ݅ and ݅ܮ  are described in the 
shell model with p-shell wave functions. Cluster 
structure in nuclear physics means that the 
nucleus behaves as a combination of clusters and 
cluster means infrastructures with a specific 
spatial position that are composed of nucleons 
with strong correlations. From the theoretical 
point of view, the energy of Li isotopes has been 
studied in many different ways [1, 4]. C. Forssen 

et al. calculated the charge radii and 
electromagnetic moments of the A ≤ 11 chains 
of Li and Be isotopes. They compared the 
performance of two very different NN 
interactions: (1) the CD-Bonn 2000 interaction 
(CDB2k) [5], that is a charge-dependent NN 
interaction based on one-boson exchange; and 
(2) the INOY IS-M [6], that is a 
phenomenological interaction for which non-
locality was introduced in certain partial waves, 
so that the binding energies of ܪଷ  and ܪଷ ݁ are 
described correctly [1]. It is very useful to 
describe a suitable model consistent with 
experience in different trends in physics to solve 
problems. In nuclear physics, due to the 
complexity of the potentials, a model must be 
considered in order to overcome this complexity. 
Among different nuclear models, cluster model 
and shell model have considerable answers for 
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nuclei, especially light nuclei. Since the wave 
function contains a lot of necessary information 
for descriptions of quantum system, solving 
equations such as Schrödinger equation in 
nonrelativistic quantum mechanics is very 
important [7]. The lithium isotopes have 
received much attention due to their rich 
experimental results in static properties. Recent 
studies have investigated some of the static 
properties of lithium isotopes, such as charge 
radius, energy spectrum and electrical 
quadrupole moment that present a good picture 
of their nuclear structure. It is useful to calculate 
these quantities to test microscopic theory by 
future experiments [1, 8, 9, 10]. In this work, we 
calculated electric quadrupole moment of ܮ ݅ 
and ݅ܮ  in two ways: cluster model and shell 
model. By selecting a suitable potential in the 
cluster and shell models, ground-state binding 
energies, wave functions and finally quadrupole 
moments of lithium isotopes by solving the non-
relativistic equation (Schrödinger) are 
investigated. In the cluster model, which has 
recently been considered by many researchers, 
nucleons are considered as clusters that reduce 
the complexity of multiparticle systems. The 
alpha cluster consists of two protons and two 
neutrons [11]. ܮ ݅ And ݅ܮ  involving ߙ + ଷܪ  
and ߙ + ଶܪ , respectively, form a two-particle 
system. In shell model, we consider 4He  as a 
closed shell plus few nucleons outside the closed 
shell. Nucleons outside the closed shell can be 
considered as a two- and three-particle system; 
then, we calculated electric quadrupole moment. 
The results obtained from the calculations in 
these models compare with the experimental 
data and other results [1, 2, 3]. To calculate the 
electric quadrupole moment, we need the wave 
function of the system, so we use the 
Schrödinger equation and solve it for these 
models and then we obtained ground-state 
binding energies and wave functions. 

The cluster model is one of the most 
important models describing many-particle 
systems in nuclear models. Studying the 
properties of many-particle systems is complex 
and difficult due to high degrees of freedom, so 
the cluster model is one of the useful solutions to 
solve this problem. Instead of investigating 
individual particles, we consider the interaction 
between clusters. According to the cluster 
model, the nuclei are a combination of 
subsystems with a specific spatial position 

composed of strongly correlated nucleons. One 
of the most important clusters is the alpha 
cluster.  

In the shell model, the nucleus energy levels 
are considered as layers and sublayers in which 
the nucleons are defined. In the layered model, 
using the Pauli Exclusion Principle, the structure 
of the nucleus is expressed based on energy 
levels, which has been successful in predicting 
magic numbers. Evidence for the validity of the 
shell model comes from experimental 
observations, such as binding energy, spin … 
and so on. 

Schrödinger Equation in Cluster 
Model 

To investigate the nuclei, there are two 
perspectives: relativistic and non-relativistic, 
each of which is particularly important. In this 
work, we use a non-relativistic system. In non-
relativistic quantum mechanics, the Schrödinger 
equation is as follows: 

߰ܪ =   ,߰ܧ

ቄ− ℏమ

ଶఓ
ଶߘ + ቅ(ݎ)ܸ ߰.(ݎ) = ,ܧ  ߰.(ݎ)  

where H is the Hamiltonian system and E is the 
energy system. 

For a two-cluster system, the Schrödinger 
equation for the radial potential V(r) has the 
following form [12, 13]: 
ିℏమ

ଶఓ
( ௗమ

ௗమ + ଶ


ௗ
ௗ

)߰.(ݎ) + (ݎ)ܸ) +
ℏమ(ାଵ)

ଶఓమ )߰.(ݎ) = ,ܧ  ߰.(ݎ)          (1) 

The first step of studying the properties of 
nuclei in shell model and cluster model is 
choosing a suitable potential [14]. Due to this 
reason, in cluster structure, the 
phenomenological interaction potential between 
α-clusters is considered as: 

(ݎ)ܸ = ܸ
షమഀೝ

మ + 
మ ݁ିఈ            (2) 

Yukawa potential is one of the most 
important potentials having been studied by 
many researchers in physics and chemical 
physics [15, 16, 17]. In this work, we use 
inversely quadratic Yukawa (IQY) potential and 
due to nuclear force saturation at lower 
distances, we add a repulsive term potential as 
interaction between particles and clusters. ܸ is 
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the parameter describing the potential well 
depth, α represents the potential range and ܾ is 
an adjustable parameter. By substituting Eq. (2) 
in Eq. (1), the radial Schrödinger equation is 
obtained as: 
ௗమோ
ௗమ + ଶ


ௗோ
ௗ

− (ାଵ)
మ + ଶఓ

ℏమ ቂܧ − ܸ
షమഀೝ

మ −


మ ݁ିఈቃ ܴ = 0 .           (3) 

Then, with further analysis and simplification, 
Eq. (3) becomes: 
ௗమோ
ௗమ + ଶ


ௗோ
ௗ

+ ଵ
మ ଶݎଶߝ−] − ݎߚ − ܴ[ߛ = 0, 

⎩
⎪
⎨

⎪
⎧ ଶߝ− = ଶఓ

ℏమ ߝ              ܧ > 0

݈(݈ + 1) + ଶఓ
ℏమ ( ܸ + ܾ) = ߛ

ଶఓ
ℏమ ܾߙ) + 2 ܸߙ) = ߚ−

           (4) 

It is seen from Eq. (4) that the equation has 
the exponential square and inverse radial square 
terms, which cannot be solved analytically; then 
we use the NU method. At this point, we briefly 
describe the NU method. 

The General Framework of the 
Nikiforov–Uvarov (NU) Technique 

The Nikiforov–Uvarov method offers a 
powerful mathematical model to solve second-
order differential equations [18]. the differential 
equation can be written in the following form 
[19, 20]: 

߰″
(ݏ) + ఛ̃(௦)

ఙ(௦)
߰′

(ݏ) + ఙ̃(௦)
ఙమ(௦)

߰(ݏ) = 0          (5) 

Where (ݏ)ߪ and ̃(ݏ)ߪ are polynomials that can 
be at most second-degree and ߬̃(ݏ) is a first-
degree polynomial. To find a particular solution 
for Eq. (4) by separation of variables, we have 
the following transformation: 

(ݏ)߰ =  (6)            .(ݏ)ݕ(ݏ)߮

It reduces Eq. (5) to a hyper-geometric type 
function: 

(ݏ)″ݕ(ݏ)ߪ + ݕ(ݏ)߬ (ݏ)′ + (ݏ)ݕߣ = 0          (7) 

where ߬(ݏ) = (ݏ)̃߬ + (ݏ)and ߬ᇱ (ݏ)ߨ2 < 0, 
which means that ߬(ݏ) has a negative derivative. 
Additionally, ߣ is a parameter with the following 
definition: 

ቊߣ = −݊߬ᇱ(ݏ) − (ିଵ)
ଶ

݊         ,(ݏ)ᇳߪ = 0,1,2, . . .
ߣ = ݇ + (ݏ)ᇱߨ

  

        (8) 

And equality of the two parts in Eq. (8) yields 
the energy eigenvalues of the intended multi-
particle system. 

 is a polynomial with the parameter s and (ݏ)ߨ
the determination of ݇ is the essential point in 
the calculation of (ݏ)ߨ. In order to find the value 
of k, the expression under the square root must 
be square of a polynomial: 

(ݏ)ߨ =
ఙᇲ(௦)ିఛ̃(௦)

ଶ
± ටቀఙᇲ(௦)ିఛ̃(௦)

ଶ
ቁ

ଶ
− (ݏ)ߪ̃ +   (ݏ)ߪ݇

                                                                                    (9) 

The function ߮(ݏ) is defined as a logarithmic 
derivative: 
ఝᇲ(௦)
ఝ(௦)

= గ(௦)
ఙ(௦)

           (10) 

y(s) is the hypergeometric type function the 
polynomial solutions of which are given by 
Rodrigues relation: 

(ݏ)ݕ = 
ఘ

ௗ

ௗ௦  (11)         ((ݏ)ߩ(ݏ)ߪ)

  is the normalizing constant and the weightܤ
function ߩ must satisfy the following condition: 

ᇱ(ߩߪ) =  (12)           ߩ߬

Mathematical Calculation and Results 
If we apply the NU method based on the 

discussed model, by comparing (4) and (5), the 
following expressions are obtained: 

߬̃ = ߪ           ,2 = ଶߪ           ,ݎ = ߪ̃            ,ଶݎ = ଶݎଶߝ− − ݎߚ −   ߛ
      (13) 

Substituting the above expressions into (8) 
and considering the NU method condition for 
 with some analysis and simplification, the (ݏ)ߨ
following equation can be obtained: 

(ݎ)ߨ = − ଵ
ଶ

− ଵ
ଶ

ݎߝ2) ± ඥ1 +  (14)        (      ߛ4

Since we have the polynomial ߬(ݏ) = (ݏ)̃߬ +
 with a negative derivative, the suitable (ݏ)ߨ2
form has to be established for this parameter. We 
have: 

߬ = 1 − ݎߝ2) − ඥ1 +  (15)         (     ߛ4

Finally, considering the notations of (8) and 
Eq. (4), we can write the energy Eigen-values for 
such a system of α-clusters as: 
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ܧ = − ଶఓ
ℏమ

(ఈାଶబఈ)మ

ቈଶାଵାටଵାସ(ାଵ)ାమഋ
ℏమ(బା))

మ        (16) 

By using ߰(ݏ) =  the solution of ,(ݏ)ݕ(ݏ)߮
(4) can be written as the wave function of the 
Schrödinger equation as follows:  

߰ = ܤ భିݎ  
మାඥଵାସఊexp(−ݎߝ)ܮ

ඥଵାସఊ(2ݎߝ)     (17) 

where ܤ is the normalization constant. We have 
obtained the potential parameters by fitting the 
ground-state energy for the mentioned isotopes. 
In this way, the chosen parameters for ܮ ݅ in 
which both ݊ and ݈ are set to 1 are: ܸ =
݁ܯ      42.3  ܸ,   ܾ = , ܸ݁ܯ    1.7 ߙ   = 0.00125    ݂݉ିଵ 
and for ܮ ݅, ܸ = ܾ           ,ܸ݁ܯ35 = ߙ         ,   ܸ݁ܯ1.15 =
0.00158݂݉ିଵ. The values of ground-state 
binding energies are shown in Table 1. 

Schrödinger Equation in Shell Model 
Studying the nucleon-nucleon interactions is 

very useful to find the many important properties 
of multi-nucleon systems. In this section we 
select a core and consider Eq. (2) for the 
interaction between nucleons. To study the 
energy spectrum and wave function for N-body 
system, we use the time-independent 
Schrödinger equation [12-21]. That is as follows: 
ௗమோ
ௗమ + ିଵ


ௗோ
ௗ

+ ଶఓ
ℏమ ቂܧ − ܸ

షమഀೝ

మ − 
మ ݁ିఈ −

ℏమ

ଶఓ
(ାିଶ)

మ ቃ ܴ = 0          (18) 

where R(r) and V (r) are the radial parts of the N-
body wave function and the potential, 
respectively in Eq. (2), D = 3N − 3 and μ is the 
reduced mass. E represents the energy of the 
system. In order to solve the above equation, we 
have: 
ௗమோ
ௗమ + ିଵ


ௗோ
ௗ

+ ଵ
మ ቂଶఓ

ℏమ ଶݎܧ − ଶఓ
ℏమ ܸ +

ଶఓ
ℏమ ܸ(2ݎߙ) − ଶఓ

ℏమ ܾ + ଶఓ
ℏమ ݎߙܾ − ݈(݈ + ܦ −

2)ቃ ܴ = 0           (19) 

Then, with further simplification, Eq. (18) 
becomes: 
ௗమோ
ௗమ + ିଵ


ௗோ
ௗ

+ ଵ
మ ଶݎଶߝ−] − ݎߚ − ܴ[ߛ = 0,     

⎩
⎪
⎨

⎪
⎧

ଶఓ
ℏమ ( ܸ + ܾ) + ݈(݈ + ܦ − 2) = ߛ

ଶఓ
ℏమ ߙ2) ܸ + (ߙܾ = ߚ−

ଶఓ
ℏమ ܧ = ଶߝ− ߝ            > 0

        (20)  

There is no exact solution of the Schrödinger 
equation for most types of interaction. So, 
various methods, such as super symmetric 
method [22, 23] and Nikiforov-Uvarov method 
[18], have been used for the solution of this 
equation. As mentioned before: 

߬̃ = ܦ − ߪ           ,1 = ଶߪ           ,ݎ = ߪ̃            ,ଶݎ = ଶݎଶߝ− −
ݎߚ −  (21)           ߛ

Considering the NU method condition for 
 with some analysis and simplification, the (ݏ)ߨ
following equation can be obtained: 

(ݎ)ߨ = ଶି
ଶ

± ଵ
ଶ

ݎߝ2) ± ඥ(2 − ଶ(ܦ +  (22)     (ߛ4

And we have: 

߬ = 1 − ݎߝ2) − ඥ(2 − ଶ(ܦ +  (23)        (ߛ4

As mentioned before, we can use the NU 
method to acquire the equation of energy. 
Therefore, we have: 

ܧ = − ଶఓ
ℏమ

(ଶబఈାఈ)మ

ቈଶାଵାට(ଶି)మାସ(మഋ
ℏమ(బା)ା(ାିଶ)

మ  

      (24) 

Having achieved this important equation, we 
can calculate the energy for ܮ ݅ and ܮ ݅ nuclei 
in their ground state by assigning appropriate 
values to coefficients of the potential. It is worth 
mentioning that in shell model, the nucleons are 
assumed as a two- and three-particle system. 

We have obtained the potential parameters by 
fitting the ground state of energy. In shell 
structure, the potential chosen parameters for 

ܮ ݅ in which both ݊ and ݈ are set to 1 are: 
ܸ = ܾ    , ܸ݁ܯ      80 = , ܸ݁ܯ 00 1 ߙ = 1.12    ݂݉ିଵ 

and for ܮ  ݅, ܸ = ܾ    ,ܸ݁ܯ40 = ߙ  ,ܸ݁ܯ1 =
0.00158݂݉ିଵ.  

And the wave functions of the quantum 
system are given by: 

߰ =
ܤ ݎ  

భ
మ((ଶି)ାඥ(ଶି)మାସఊ ×

exp(−ݎߝ)ܮ
ඥ(ଶି)మାସఊ(2ݎߝ);  

ߛ = ଶఓ
ℏమ ( ܸ + ܾ) + ݈(݈ + ܦ − 2)        (25) 

Ground-state binding energies (E) for the 
mentioned isotopes are summarized in Table1. 
We note that the two different ways used in this 
study are shell and cluster models. The results 
obtained from the cluster model are more 
consistent with the experimental results, 
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although the difference between the two models 
is very small. 

Since the nuclei at the ground state have spin 
of ܬగ = 1ା, 3/ 2 , the effect of spin-orbit 
coupling on the L = 1 states cannot be ignored. 
Therefore, using Eq. (26), the effect of spin-orbit 
coupling on the energy levels is calculated as a 

first-order disturbing factor. The results of the 
calculation are shown in Table1. 

(1)
.

2
* 2

2 2
0

( ) .

1 ( )( ) . ( )
2

n L SE n V r L S n

dV rr L S r r dr
m c r dr

 



 




  

      (26) 

TABLE 1. Ground-state binding energies (E) for Li isotopes in shell and cluster models compared 
with experiment data and other results. 

Isotope ܬగ (ܸ݁ܯ)ܧ 
Shell model L.S. Cluster model L.S. CDB2k [2] INOY [2] Exp.[24] 

݅ܮ  1ା 31.6833 31.90 31.7296 31.8301 29.07(41) 32.33(19) 31.99 
ܮ ݅ 3 2ି⁄  39.6439 39.6857 39.1241 39.1741 35.56(23) 39.62(40) 39.24 

Calculation of Electric Quadrupole 
Moment 

The paired nucleons move in spherically 
symmetric orbits; they don’t contribute to Q. 
Therefore, we might expect that for many nuclei, 
the quadrupole moment can be estimated from 
the valence nucleons which we can assume to 
orbit near the surface. The electric quadrupole 
moment has been calculated for the qround state 
as [25]: 

݁ܳ = ݁∫ ଶݖ3)∗߰ −  (27)         ݒ݀߰(ଶݎ

From the above equation, we understand that 
we need the wave function of the system to 
calculate the electric quadrupole moment. The 
radial wave function is obtained from Eqs. (17) 
and (25), so we can easily calculate the electric 
quadrupole moment of the studied isotopes by 
calculating Q in shell model and cluster model. 
In order to calculate the electric quadrupole 
moment, it is assumed that the wave function is 
concentrated in the xy-plane. For this reason, the 
quantity of quadrupole momentum is obtained 
negatively (see Table 2). The obtained results are 
shown in Table 2. 

TABLE 2. Ground-state electric quadrupole moments (Q). 

Isotope ܳ(݁  ܾ ) 
Shell model Cluster model CDB2k [2] INOY [2] Exp.[26] value error 

݅ܮ  -0.000823 -0.000813 -0.00066(40) +0.00080(19) -0.000806 0.0007232/ 0.000007 
ܮ ݅ -0.0413 -0.0406 -0.0320(22) -0.0279(17) -0.040 0.0013/0.0006 

 

Finding the forces between the nucleons, the 
nuclei structure, the nature of the nuclear 
interactions between them and the electric 
quadrupole moment are considered as the main 
aims of studying nuclear physics. Good values 
obtained of the nuclear ground-state properties 
of the Li isotopes, such as energy and electric 
quadrupole moment, are ideal tools for testing 
the validity of these nuclear models. These 
values are compared with predictions from shell-

model and cluster-model calculations. Although 
the difference between them is very small, the 
electric quadrupole moment results in the cluster 
model are in good agreement with experimental 
results. Also, the calculated energy and electric 
quadrupole moment in cluster model are close to 
the experimental data. Consequently, the 
suggested model can also be used for 
investigating other similar isotopes. 
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