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1. Introduction 

It is a well-known fact by many researchers 
that quarkonium systems provide deep insight 
into the essential description of quantum 
chromodynamics (QCD) theory, particle physics 
and standard model [1-3]. Quarkonia with heavy 
quark and antiquark and their interaction are well 
described by the Schrödinger equation (SE). The 
solution of this SE with potential is one of the 
most fundamental problems in quarkonium 
systems. It is noted that the potentials considered 
should take into account two important features 
of the strong interaction; namely, asymptotic 
freedom and quark confinement [4-8]. The most 
fundamental potential used in studying 
quarkonium system is the Cornell potential, also 
known as Killingbeck potential. Most 
researchers have carried out works with Cornell 
potential [9, 10]. For instance, Vega and Flores 

[11] solved the Schrödinger equation with the 
Cornell potential using the variational method 
and supersymmetric quantum mechanics 
(SUSYQM). Ciftci and Kisoglu [12] addressed 
non-relativistic arbitrary ݈-states of quark-
antiquark through the Asymptotic Iteration 
Method (AIM). The energy eigenvalues with any 
݈ ≠ 0 states and mass of the massive quark-
antiquark system (quarkonium) were gotten. An 
analytic solution of the N-dimensional radial 
Schrödinger equation with the mixture of vector 
and scalar potentials via the Laplace 
transformation method (LTM) was studied by 
[13]. Their results were employed to analyze the 
different properties of the heavy-light mesons. 
Al-Jamel and Widyan [14] studied heavy 
quarkonium mass spectra in a Coulomb field 
plus quadratic potential using the Nikiforov-
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Uvarov method. In their work, the spin- 
averaged mass spectra of heavy quarkonia in a 
Coulomb plus quadratic potential is analyzed 
within the non-relativistic Schrödinger equation. 
Al-Oun et al. [15] examined heavy quarkonia 
characteristics in the general framework of a 
non-relativistic potential model consisting of a 
Coulomb plus quadratic potential. Kumar and 
Chand [16] carried out an asymptotic study to 
the N-dimensional radial Schrödinger equation 
for the quark-antiquark interaction potential 
employing asymptotic iteration method (AIM). 
Ibekwe et al. [17] solved the radial SE with an 
exponential, generalized, anharmonic Cornell 
potential using the series expansion method. 
They applied the bound state eigenvalues to 
study the energy spectra for CO, NO, CH and N2 
diatomic molecules and the mass spectra of 
heavy quarkonium systems. Furthermore, 
Omugbe et al. [18] solved the SE with 
Killingbeck potential plus an inversely quadratic 
potential model. They obtained the energy 
eigenvalues and the mass spectra of the heavy 
and heavy-light meson systems. In addition, Ali 
et al. [19] studied the energy spectra of mesons 
and hadronic interactions using Numerov’s 
method. Their solutions were used to describe 
the phenomenological interactions between the 
charm-anticharm quarks via the model. The 
model accurately predicts the mass spectra of 
charmed quarkonium as an example of mesonic 

systems. Inyang et al. [20] obtained the Klein-
Gordon equation solutions for the Yukawa 
potential using the Nikiforov-Uvarov method. 
The energy eigenvalues were obtained both in 
relativistic and non-relativistic regime. They 
applied the results to calculate heavy-meson 
masses of charmonium and bottomonium.  

The Varshni potential is greatly important 
with applications, cutting across nuclear physics, 
particle physics and molecular physics [21]. The 
Varshni potential takes the form: 

(ݎ)ܸ = ܽ − ௔௕௘షഀೝ

௥
            (1)  

where a and b  are potential strengths for 
Varshni potential,   is the screening parameter 
which controls the shape of the potential energy 
curve as shown in Fig. 1 and r  is the inter-
nuclear separation. The Varshni potential is a 
short-range repulsive potential energy that plays 
an important role in chemical, particle and 
molecular physics [22]. This potential is used 
generally to describe bound states of the 
interaction of systems and has been applied in 
both classical and molecular physics. The 
Varshni potential was studied by Lim using the 
2-body Kaxiras-Pandey parameters. He observed 
that Kaxiras and Pandey used this potential to 
describe the 2-body energy portion of multi-
body condensed matter [23]. 

 
FIG.1. Plots of Varshni potential with r in (fm-1). 
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Many researchers have studied heavy mesons 
with non-exponential type potential like the 
Cornell without considering the exponential type 
[11-16]. Therefore, we intend to investigate the 
SE with the exponential type potential (Varshni 
potential) in the framework of NU method to 
obtain the mass spectra of quark- antiquark 
systems.To the best of our knowledge, this is the 
first time Varshni potential is being studied with 
the aim of determining the mass spectra of heavy 
quarkonia systems using the NU method.  

The paper is organized as follows: In Section 
2, the Nikiforov-Uvarov (NU) method is 
reviewed. In Section 3, the bound state energy 
eigenvalues and the corresponding eigenfunction 
are calculated. In Section 4, the results are 
discussed. In Section 5, the conclusion is 
presented. 

2. A Brief Review of Nikiforov-Uvarov 
(NU) Method 

The NU method is used to transform 
Schrödinger -like equations into a second-order 
differential equation through a coordinate 
transformation  y y r , of the form [24]: 

߰ᇳ(ݕ) + ఛ̃(௬)
ఙ(௬) ߰ᇱ(ݏ) + ఙ̃(௬)

ఙమ(௬) (ݕ)߰ = 0         (2) 

where ̃(ݕ)ߪ and (ݕ)ߪ are polynomials, at most 
second-degree and ߬̃(ݕ) is a first-degree 
polynomial. From Eq. (2), we obtain exact 
solution by using the transformation: 

(ݕ)߰ =  (3)           .(ݕ)߯(ݕ)߶

This transformation reduces Eq. (2) into a 
hypergeometric-type equation of the form:  

(ݕ)ᇳ߯(ݕ)ߪ + (ݕ)ᇱ߯(ݕ)߬ + (ݕ)߯ߣ = 0.         (4)  
The function ߶(ݕ) can be defined as the 

logarithm derivative:  
థᇲ(௬)
థ(௬) = గ(௬)

ఙ(௬)            (5) 

where (ݕ)ߨ is at most a first-degree polynomial. 
The second part of the wave functions in Eq. (4) 
is a hypergeometric-type function obtained by 
Rodriguez relation:   

߯௡(ݕ) = ஻೙
ఘ(௬)

ௗ೙

ௗ௬೙  (6)          [(ݕ)ߩ(ݕ)௡ߪ]

where ܤ௡ is the normalization constant and (ݕ)ߩ 
the weight function which satisfies the condition 
below:  

ௗ
ௗ௬

൫(ݕ)ߩ(ݕ)ߪ൯ =  (7)          (ݕ)ߩ(ݕ)߬

where also:  

(ݕ)߬ = (ݕ)̃߬ +  (8)           .(ݕ)ߨ2

For bound solutions, it is required that: 
ௗఛ(௬)

ௗ௬
< 0.            (9) 

With (ݕ)ߨ and parameter λ, the 
eigenfunctions and eigenvalues can be obtained 
using the definition of the following function: 

(ݕ)ߨ =
ఙᇲ(௬)ିఛ̃(௬)

ଶ
± ටቀఙᇲ(௬)ିఛ̃(௬)

ଶ
ቁ

ଶ
− (ݕ)ߪ̃ +   (ݕ)ߪ݇

      (10) 

and 

ߣ = ݇ +  (11)          .(ݕ)ᇱߨ

The value of k  can be obtained by setting the 
discriminant in the square root in Eq. (10) equal 
to zero. As such, the new eigenvalues equation 
can be given as:  

ߣ + ݊߬ᇱ(ݕ) + ௡(௡ିଵ)
ଶ

(ݕ)ᇱᇱߪ = 0, (݊ = 0,1,2, . . . ).  
          (12)   

3. Approximate Solutions of the 
Schrödinger Equation with Varshni 
Potential     

The Schrödinger equation (SE) for two 
particles interacting via potential ܸ(ݎ) in three-
dimensional space is given by [25]:  

   2

2 2 2

1( ) 2 ( ) ( ) 0nl

l ld R r E V r R r
dr r

  
    
 

 (13)
 
 

where , ,l r  and   are the angular momentum 
quantum number, the reduced mass for the 
quarkonium particle, inter-particle distance and 
reduced plank constant, respectively. 

We carry out Taylor series expansion of the 
exponential term in Eq. (1) up to order three, in 
order to make the potential interact in the quark-
antiquark system and this yields: 
௘షഀೝ

௥
= ଵ

௥
− ߙ + ఈమ௥

ଶ
− ఈయ௥మ

଺
+. ..         (14) 

We substitute Eq. (14) into Eq. (1) and 
obtain: 

(ݎ)ܸ = − ஻
௥

− ݎܥ + ଶݎܦ +  (15)         ܣ



Article  Inyang et al. 

 342

where 
ܣ = ܽ + ,ߙܾܽ ܤ = ܾܽ
ܥ = ௔௕ఈమ

ଶ
, ܦ = ௔௕ఈయ

଺
ቋ  .        (16) 

Upon substituting Eq. (15) into Eq. (13), we 
obtain: 
ௗమோ(௥)

ௗ௥మ + ቂଶఓா೙೗
ℏమ + ଶఓ஻

ℏమ௥
+ ଶఓ஼௥

ℏమ − ଶఓ஽௥మ

ℏమ −
ଶఓ஺
ℏమ − ௟(௟ାଵ)

௥మ ቃ (ݎ)ܴ = 0 .        (17)
 
 

In order to transform the coordinate from r  
to y  in Eq. (17), we set: 

ݕ = ଵ
௥
 .           (18) 

This implies that the 2nd derivative in Eq. (18) 
becomes: 

2 2
3 4

2 2

(r) (y) (y)2d R dR d Ry y
dydr dy

   .
        

(19)
 
 

Substituting Eqs. (18) and (19) into Eq. (17), 
we obtain: 
ௗమோ(௬)

ௗ௬మ + ଶ௬
௬మ

ௗோ(௬)
ௗ௬

+ ଵ
௬ర ቂଶఓா೙೗

ℏమ + ଶఓ஻௬
ℏమ + ଶఓ஼

ℏమ௬
−

ଶఓ஽
ℏమ௬మ − ଶఓ஺

ℏమ − ݈(݈ + ଶቃݕ(1 (ݕ)ܴ = 0.         (20)  

Next, we propose the following 
approximation scheme on the term ஼

௬
 and ஽

௬మ.  

Let us assume that there is a characteristic 
radius ݎ଴ of the meson. Then, the scheme is 
based on the expansion of ஼

௬
 and ஽

௬మ in a power 

series around 0r ; i.e., around ߜ ≡ ଵ
௥బ

, up to the 
second order. This is similar to Pekeris 
approximation, which helps deform the 
centrifugal term such that the modified potential 
can be solved by the NU method [26]. 

Setting x y   and around 0x  , it can 
be expanded into a series of powers as: 

1

1
1

C C C C x
xy x   



          

        

(21)  

which yields: 
2

2 3

3 3C y yC
y   

 
   

     
.
        

(22)
 
 

Similarly, 

2

2 2 3 4

6 8 3D y yD
y   

 
   

   
.
        

(23) 

Substituting Eqs. (22) and (23) into Eq.(20) 
yields: 

2
2

2 2 4
(y) 2 (y) 1 (y) 0d R y dR y y R

dydy y y
            

           (24) 
 

where 

ߝ− = ቀଶఓா೙೗
ℏమ − ଶఓ஺

ℏమ + ଺ఓ஼
ℏమఋ

− ଵଶఓ஽
ℏమఋమ ቁ ,

ߙ = ቀଶఓ஻
ℏమ − ଶఓ஼

ℏమఋమ + ଵ଺ఓ஽
ℏమఋయ ቁ

ߚ = ቀߛ − ଶఓ஼
ℏమఋయ + ଺ఓ஽

ℏమఋరቁ , ߛ = ݈(݈ + 1)⎭
⎪
⎬

⎪
⎫

.    (25) 

Comparing Eq. (24) and Eq.(2), we obtain: 

(ݕ)̃߬ = ,ݕ2 (ݕ)ߪ = ,ଶݕ
(ݕ)ߪ̃ = ߝ− + ݕߙ − ଶݕߚ

(ݕ)ᇱߪ = ,ݕ2 (ݕ)ᇳߪ = 2
ቑ .         (26) 

Substituting Eq. (26) into Eq. (10) yields: 

  2(y) y k y        .
        

(27)
 
 

To determine ݇, we take the discriminant of 
the function under the square root, which yields: 

݇ = ఈమିସఉఌ
ସఌ

 .           (28) 

We substitute Eq. (28) into Eq. (27) and have: 

(y)
2

y 
 

 
   

 
.
         

(29)  

We take the negative part of Eq. (29) and 
differentiate, which yields: 

(y)
2



  
 
.
         

(30)
 
 

By substituting Eqs. (26) and (29) into Eq.(8), 
we have: 

2(y) 2 yy  
 

  
 
.
        

(31)
  
 

Differentiating Eq. (31), we have: 

(y) 2 


  
 
.
         

(32)
  
 

By using Eq. (11), we obtain: 
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2 4
4 2

  


 


 
 
.
        

(33)  

And using Eq. (12), we obtain:  
2

n
n n n


   .          (34) 

Equating Eqs. (33) and (34), the energy 
eigenvalue of Eq. (17) is given:  

௡௟ܧ = ܽ(1 + (ߙܾ − ଷ௔௕ఈయ

ଶఋ
+ ௔௕ఈయ

ఋయ −

ℏమ

଼ఓ
቎

మഋೌ್
ℏమ ିయഋೌ್ഀమ

ℏమഃమ ାభలഋೌ್ഀయ

లℏమഃమ

௡ାభ
మାටቀ௟ାభ

మቁ
మ

ିೌ್ഋഀయ

ഃయℏమ ାభలഋೌ್ഀయ

లℏమഃర

቏

ଶ

.              (35)  

To determine the wavefunction, we substitute 
Eqs. (26) and (29) into Eq.(5) and obtain: 

2 2
d dy

y y
  
  

 
  
   

.
        

(36)  

Integrating Eq. (36) gives: 

2(y) yy e




  .         (37)   

By substituting Eqs. (26) and (29) into Eq. 
(7), integrating and thereafter simplifying, we 
obtain: 

2

(y) yy e




  .         (38)   

Substituting Eqs. (26) and (38) into Eq.(6), 
we have: 

2 2
2

(y)
n n

y y
n n n

dB e y e y
dy

  
  

  
  

  
.
    

(39)
  

 

The Rodrigues’ formula of the associated 
Laguerre polynomials is: 

2 2
22 1

!

n n
y y

n n

dL e y e y
n dyy

   
   



   
           

      (40) 
where 

1
! nB

n


 
.
          

(41)
 
 

Hence, 

2(y)n nL
y


 



 
  

 
.
          

(42)  

Substituting Eqs. (37) and (42) into Eq. (3), 
we obtain the wavefunction of Eq.(17) in terms 
of Laguerre polynomials as: 

2 2(y) y
nl nN y e L

y

 
  




  
  

          
(43)

 
 

where nlN is normalization constant, which can 
be obtained from: 

2

0

| ( ) | 1nlN r dr



 
.
         

(44) 

4. Results and Discussion 
4.1 Results 

The mass spectra of the heavy quarkonium 
system such as charmonium and bottomonium 
that have the quark and antiquark flavor are 
calculated and we apply the following relation: 
[27, 28] 

2 nlM m E  ,          (45) 

where m is quarkonium bare mass and nlE  is 
energy eigenvalue. By substituting Eq. (35) into 
Eq. (45), we obtain the mass spectra for Varshni 
potential as: 

ܯ = 2݉ + ܽ(1 + (ߙܾ − ଷ௔௕ఈయ

ଶఋ
+ ௔௕ఈయ

ఋయ −

ℏమ

଼ఓ
቎

మഋೌ್
ℏమ ିయഋೌ್ഀమ

ℏమഃమ ାభలഋೌ್ഀయ

లℏమഃమ

௡ାభ
మାටቀ௟ାభ

మቁ
మ

ିೌ್ഋഀయ

ഃయℏమ ାభలഋೌ್ഀయ

లℏమഃర

቏

ଶ

  .            (46) 

In order to test for the accuracy of the 
predicted results determined numerically, we 
used a Chi square function defined by [29]: 

 Exp. .
2

1

1
Theon

i i

i i

M M
n







          (47) 

where n runs over selected samples of heavy 
mesons, ܯ௜

ா௫௣. is the experimental mass of 
heavy-mesons, while ܯ௜

்௛  is the corresponding 
theoretical prediction. The ߂௜ quantity is 
experimental uncertainty of the masses. 
Intuitively, ߂௜should be one. The tendency of 
overestimating Chi square value is that it reflects 
some mean error per heavy meson state. 
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4.2 Discussion of Results 
We calculate mass spectra of charmonium 

and bottomonium for states from 1S to 1F by 
using Eq. (46). We adopt the numerical values of 
bottomonium ( )bb  and charmonium ( )cc  
masses as 4.68 GeV  and 1.488  GeV , 
respectively, Ref. [30]. Then, the corresponding 
reduced masses are b   2.340 GeV  and 

c  0.744GeV . The free parameters of 
Eq.(46) were then obtained by solving two 
algebraic equations by inserting experimental 
data of mass spectra for 2 , 2S P  in the case of 
charmonium. In the case of bottomonium, the 
values of the free parameters in Eq. (46) are 
calculated by solving two algebraic equations, 
which were obtained by inserting experimental 
data of mass spectra for1 , 2S S . Experimental 
data is taken from Ref. [31]. 

We note that calculations of mass spectra of 
charmonium and bottomonium are in good 
agreement with the experimental data, given that 
the maximum error in comparison with the 

experimental data is 0.0055 ܸ݁ܩ. The values 
obtained are in good agreement with the works 
of other researchers, like Ref.[24] and Ref.[18], 
as shown in Tables 1 and 2. In Ref. [24], the 
authors investigated the N-radial SE analytically 
by employing Cornell potential, which was 
extended to finite temperature. In Ref.[18], the 
Klein-Gordon equation is solved for the Yukawa 
potential using the Nikiforov-Uvarov method. 
The energy eigenvalues were obtained both in 
relativistic and non-relativistic regime. The 
results were used to calculate heavy-meson 
masses of charmonium ܿܿ̄ and bottomonium 
ܾܾ̄. We also plotted mass spectra energy against 
potential strength (ܽ), reduced mass (ߤ) and 
screening parameter (ߙ), respectively. In Fig. 2, 
the mass spectra energy converge at the 
beginning but spread out and there is a 
monotonic increase in potential strength (ܽ). 
Figs. 3 and 4 show the convergence of the mass 
spectra energy as the screening parameter (ߙ) 
and reduced mass (ߤ) increase for various 
angular momentum quantum numbers. This 
indicates the energy peak as observable to 
determine the top quark mass. 

TABLE 1. Mass spectra of charmonium in (ܸ݁ܩ) (݉௖ = ߤ ,ܸ݁ܩ 1.488 = ,ܸ݁ܩ 0.744 ߙ =
−0.976, ߜ = ,ܸ݁ܩ 1.700 ℏ = 1, ܽ = ܾ and ܸ݁ܩ 48.049− =  .(ܸ݁ܩ 3.020

State Present work [26] [20] Experiment[31] 
1S 3.096 3.096 3.096 3.096 
2S 3.686 3.686 3.672 3.686 
1P 3.295 3.255 3.521 3.525 
2P 3.802 3.779 3.951 3.773 
3S 4.040 4.040 4.085 4.040 
4S 4.269 4.269 4.433 4.263 
1D 3.583 3.504 3.800 3.770 
2D 3.976 - - 4.159 
1F 3.862 - - - 

 

TABLE 2. Mass spectra of bottomonium in (ܸ݁ܩ) (݉௕ = ߤ ,ܸ݁ܩ 4.680 = ߙ ,ܸ݁ܩ 2.340 = −0.952,
ߜ = ,ܸ݁ܩ 1.70 ℏ = 1, ܽ = ܾ and ܸ݁ܩ 14.352− =  .(ܸ݁ܩ 3.084

State Present work [26] [20] Experiment[31] 
1S 9.460 9.460 9.462 9.460 
2S 10.569 10.023 10.027 10.023 
1P 9.661 9.619 9.963 9.899 
2P 10.138 10.114 10.299 10.260 
3S 10.355 10.355 10.361 10.355 
4S 10.567 10.567 10.624 10.580 
1D 9.943 9.864 10.209 10.164 
2D 10.306 - - - 
1F 10.209 - - - 
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FIG. 2. Variation of mass spectra with potential strength  a  for different quantum numbers. 

 

 
FIG. 3. Variation of mass spectra with reduced mass for different quantum numbers. 



Article  Inyang et al. 

 346

 
FIG. 4. Variation of mass spectra with screening parameter ( ) for different quantum numbers. 

 
5. Conclusion 

In this work, the bound-state solutions of the 
Schrödinger equation for the Varshni potential 
using the Nikiforov-Uvarov method were 
obtained. The corresponding eigenfunction was 
achieved in terms of Laguerre polynomials. We 
applied the present results to calculate heavy-
meson masses such as charmonium and 
bottomonium. The energy eigenvalues of 
charmonium (ܿܿ̄) and bottomonium ൫ܾܾ̄൯ for 

states 1S to 1F were obtained and compared with 
experimental data and other theoretical works, 
which are in good agreement with the maximum 
error of 0.0055 ܸ݁ܩ. The exponential type 
potential has been successfully applied in 
predicting the mass spectra of heavy mesons. 
The analytical solutions can also be used to 
describe other characteristics of the quarkonium 
systems like thermodynamic properties. 
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