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Introduction 

The Hamilton-Jacobi equation is based not 
just on the physical problems included, but also 
on the choice of generalized coordinate system. 
Thus, the one-body central force problem is 
detachable in polar coordinates, but not in 
Cartesian coordinates. In some problems, it is 
not at all possible to completely separate the 
Hamilton-Jacobi equation, the known three-body 
problem being one illustration. Otherwise, in 
many fundamental problems of mechanics and 
atomic physics, one can carry out the separation 
in more than one set of coordinates. When the 
variables are completely separable, it is feasible 
to solve the Hamilton-Jacobi equation [1].  

One of the methods to separate variables is 
the Staeckel approach. This method applies to 
some Hamiltonians in which certain conditions 
are satisfied, such as: conservative Hamiltonian 
and orthogonal coordinates. This method also 
helps find the complete solution of the 
differential equations which are not easy to 
solve. 

It was not known what is the most 
comprehensive separation system with n degrees 
of freedom. However, it is now known what a 
detachable orthogonal system is with n degrees 
of freedom. This was discovered by Staeckel in 
his habilitation thesis [2]. These systems are now 
called Staeckel systems. The theory of Staeckel 
systems can be found in several publications, 
such as references [3-22]. 

The first major contribution by Staeckel 
[3] was to find all the separable metrics for an 
arbitrary two-dimensional Riemannian manifold. 
He proved the theorem connecting the 
integrability of a Staeckel system with the 
existence of a matrix S called a Staeckel matrix 
for the system. Staeckel [2] showed how to 
determine the quantities ࡴ (Eq. 3) in the 
Hamilton- Jacobi equation so that the variables 
are separable. 

Benent [23] presented basic defintions and 
theorems concerning the algebra of contravariant 
symmetric tensors and killing tensors.  



Article  Al-Khamiseh, Hijjawi and Khalifeh 

 302

Benenti et al. [24] showed that the three-body 
Calogero system is in fact separable in infinitely 
many ways; thus, it is super-separable. 

This work aims at solving the Hamilton-
Jacobi equation using the separation of variables 
method. We will use the Staeckel boundary 
conditions to separate variables. 

This paper is organized as follows: the 
following section presents some basic definitions 
of the Hamilton-Jacobi equation of a Staeckel 
system. The next section presents how to solve 
the Hamilton-Jacobi equation by the method of 
Staeckel boundary conditions. Finally, the last 
section is dedicated to our conclusions.  

Basic Definitions  
In this part of the manuscript, we briefly 

introduce some of the fundamental definitions 
used in this work [25].  
A- Staeckel Matrix  and Staeckel Vector Ψ  

In a Staeckel system with n degrees of 
freedom, we will assume an (݊ × ݊) matrix Φ 
and a vector Ψ with n components Ψ. Actually, 
݊ଶ + ݊ components of Φ and Ψ solve completely 
the Staeckel system and that’s why we will call 
them the Staeckel matrix and the Staeckel 
vector. The elements are all functions of the 
coordinate ݍ, but in the upcoming way: 

Φ = Φ(ݍ), Ψ = Ψ(ݍ) .          (1) 

In short, one coordinate consists of a row ݎ of 
both Φ and Ψ. We will say that the rows of Φ are 
with separated variables; that is, the rows of Φ 
are separated. This indicates that this separation 
property controls the whole theory of Staeckel 
system. 

First, we will need the cofactors ܥ  of the 
matrix elements Φ of the matrix Φ, in addition 
to the determinant ∆ and the inverse ߭ of matrix 
Φ. We will set the elements of the inverse 
߭ = Φିଵ of the matrix Φ by ൫Φିଵ൯ or call them 
߭. 

We may need some well–known properties of 
determinants and matrices, such as: 
∑ Φ ߭ = ∑ ߭Φ = ߜ            (2) 

߭ =
ೕ

∆
             (3) 

∑ Φܥ = ∆ ∑ Φ߭ =   .         (4)ߜ∆

The result of the separation property (1) is 
that the cofactor ܥ  will depend on (n-1) 
coordinates only; ܥ  is independent of the 
variable ݍ. This will simplify many partial 
derivatives; for example: 
డ∆

డೖ
= ∑ ܥ

డΦೖ
డೖ

  .           (5) 

B- The Hamiltonian of a Staeckel System  
In terms of the notations and initial 

developments (given in sub-section A), we can 
now easily define a Staeckel system. The 
Staeckel system can be defined as: 

Η = ∑  ̇ೖ
మ

ଶజభೖ
+ ߭ଵΨ൨ = ∑ ߭ଵ  ̇ೖ

మ

ଶజభೖ
మ +

ୀଵ

ୀଵ

Ψ൨ ,            (6) 

where the kinetic energy is given by: ܶ =
∑ ̇ೖ

మ

ଶజభೖ


ୀଵ  and the potential energy is: ܸ =

∑ ߭ଵΨ

ୀଵ  . 

We can see that all the ingredients are the 
Staeckel vector Ψ and the first row of the inverse 
of the Staeckel matrix Φ. The second form of the 
Hamiltonian shown in Eq. (6) is the product of a 
row vector, ߭ଵ , by a column vector, Ψ. The 
elements ݃  of the diagonal metric tensor are 
thus given by:  

݃ = ଵ
జభೖ

= ଵ
൫Φషభ൯భೖ

= ∆
ೖభ

∑ ℎݐ݅ݓ)  Φೖೞ
ೖೖ

= ଵ)ߜ .                

                                                                                   (7) 
As a result of the notes of sub-section A, we 

have:  
డೖೖ
డೖ

= ଵ
ೖభ

డ∆
డೖ

= ∑ ೖ
ೖభ

డΦೖ
డೖ

 .           (8)  

In the following, we simply derive the 
Hamiltonian equations of motion, ̇ܲ = − డு

డ 
from Eq. (6); thus:  
ௗ
ௗ௧

ቂ ̇
జభ

ቃ = − ∑  ̇ೖ
మ

ଶజభೖ
మ − Ψ൨ డజభೖ

డ
+ ߭ଵ

డΨ
డ


ୀଵ  . (9) 

The Staeckel Hamiltonian does not depend 
explicitly on time; that is, we have a 
conservative system with the classical energy 
integral given as follows: 

∑ ߭ଵ

ୀଵ  ̇ೖ

మ

ଶజభೖ
మ + Ψ൨ = ଵߙ =  (10)     .ݐ݊ܽݐݏ݊ܿ

It will be useful to write this first integral also 
in a different form. Let us take benefit of the 
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relation in Eq. (2) and add to Eq. (10) some 
terms which are zeros or ones: 

∑ ߭ଵ

ୀଵ  ̇ೖ

మ

ଶజభೖ
మ + Ψ൨ = ଵߙ ∑ ߭ଵΦଵ +

ଶߙ ∑ ߭ଵΦଶ + ⋯ + ߙ ∑ ߭ଵΦ  ,      (11)  

where the ߙ  .are all arbitrary constants ݏ,
Compiling the terms differently leads to: 

∑ ߭ଵ

ୀଵ  ̇ೖ

మ

ଶజభೖ
మ + Ψ − ∑ Φߙ


ୀଵ ൨ = 0 ,   (12) 

where the constants ߙ  are sometimes called ݏ,
separation constants. The interest of the above 
form of energy integral is actually in that the last 
two terms in the brackets are now with separated 
variables. 

The most important property of Staeckel 
systems exists in the following theorem:  

"Not only the expression given in Eq. (12) is 
zero, but also each bracket separately" [8]: 

̇ೖ
మ

ଶజభೖ
మ + Ψ = ∑ Φߙ


ୀଵ  .        (13) 

C- Completion of the Solution of the Staeckel 
System 

The first integral in Eq. (12) can be written in 
another form as:  
̇ೖ

మ

జభೖ
మ = 2(∑ Φߙ


ୀଵ − Ψ) = ݂(ݍ) .       (14) 

We have also: 
̇ೖ

ඥೖ(ೖ)
= ߭ଵ .          (15) 

Multiplying by Φ and summing over ݇ 
prouduce: 

∑ ̇ೖΦೖೝ
ඥೖ(ೖ)

= ∑ ߭ଵΦ

ୀଵ = ଵߜ


ୀଵ  .       (16) 

We see that each term in the sum on the left-
hand side is a function of one variable ݍ only: 

∑ ∫ ఝೖೝௗೖ
ඥೖ(ೖ)

= ߚ = ݐ݊ܽݐݏ݊ܿ
ୀଵ ݎ  =

2, 3, 4, … , ݊       (17.A) 

∑ ∫ Φೖభௗೖ
ඥೖ(ೖ)

= ݐ − ݐ

ୀଵ  .    (17.B) 

This inserts ݊ new constants of integration; 
altogether 2 ݊ constants of integration are 
inserted. Finally, ݊ equations can be solved and 
give the n coordinates ݍ as a function of time t 
and the constants, ߚ . The velocities are then 
given by Eq. (13). We have to use Eqs. (17.A) 
and (17.B) to calculate the values of the 

constants of integrations with the initial 
conditions. 
D- Separation of Variables of Hamilton-
Jacobi Equation Using Staeckel Boundary 
Conditions 

The separation of Hamilton-Jacobi equations 
is a characteristic of the dynamic system as well 
as the coordinates that are described. A simple 
criterion cannot be given to refer to a coordinate 
system those results in a separate Hamilton 
Jacobi equation for a particular system. 
However, if 
 The Hamiltonian is conserved and takes the 

form: 

ܪ = ଵ
ଶ

ࡼ) − ࡼ)ିࢀ(ࢇ − (ࢇ +  (A)        . ()ࢂ

Here, ࢇ is ܽ column matrix, ࢀ is a square n x 
n matrix and  is a row matrix. 
 The set of generalized coordinates ݍ forms 

an orthogonal system of coordinates, so that 
the matrix T is diagonal. It follows that the 
inverse matrix ܶିଵ is also diagonal with non-
vanishing elements:  

(ܶିଵ) = ଵ
்

 .           (B) 

 For problems and coordinates satisfying this 
description, the Staeckel conditions state that 
the Hamilton-Jacobi equation will be 
completely separable if the vector ࢇ has 
elements ࢇ that are functions only of the 
corresponding coordinate; that is, ࢇ =
 and the potential function V(q) can be (ݍ)ࢇ
written as a sum of the form: 

(ݍ)ܸ = ()
்

 .           (C) 

 There exists an n x n matrix Φ with elements 
 Φ =  Φ(ݍ), such that: 

൫Φିଵ൯ଵ = ଵ
்ೕೕ

 .           (D) 

Consider the motion of a particle of mass ݉ 
in a central force field with potential ܸ = − 


+


మ. The Hamilton – Jacobi equation is: 

H = T + V = ଵ
ଶ୫

ቂP୰
ଶ + θ

మ

୰మ +
φ

మ

୰మୱ୧୬మθ
ቃ − ୩

୰
+ ୦

୰మ .  
                                                                                 (18) 

Comparing Eq. (18) with the equation: 
ܪ = ଵ

ଶ
ࡼ) − ࡼ)ିࢀ(ࢇ − (ࢇ +   :we get ,()ࢂ
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ܶିଵ =

⎝

⎜
⎛

ଵ


0 0

0 ଵ
మ 0

0 0 ଵ
మ௦మఏ⎠

⎟
⎞

 .        (19) 

Appling Staeckel boundary conditions, we 
satisfy: 

(ܶିଵ) = ଵ
்

=

⎝

⎜
⎛

ଵ


0 0

0 ଵ
మ 0

0 0 ଵ
మ௦మఏ⎠

⎟
⎞

 ,       (20) 

in addition to the following two conditions:  

൫Φିଵ൯ଵ = ଵ
்ೕೕ

=

⎝

⎜
⎛

ଵ


ଵ
మ

ଵ
మ௦మఏ

0 ଵ


ଵ
మ௦మఏ

0 ିଵ
మ

ଵ
 ⎠

⎟
⎞

      (21)  

and we get:  

(ݍ)ܸ = ()
்

= ቀటభ()


ቁ.         (22) 

If the Staeckel conditions are satisfied, then 
Hamilton's characteristic function is completely 
separable: 

(ݍ)ܹ = ∑ ܹ(ݍ) 
 .          (23) 

Inserting H from Eq. (18) into equation 
ܪ ቀݍ, డௐ

డ
ቁ + డௌబ

డ௧
= 0 and using the definition of 

momentum  = డௐ
డ

, we obtain: 

ଵ
ଶ

ቂడௐೝ
డ

ቃ
ଶ

+ ଵ
మ ቂడௐഇ

డఏ
ቃ

ଶ
+ ଵ

మ௦మఏ
ቂడௐക

డఝ
ቃ

ଶ
൨ − 


+


మ =   (24)          . ߙ

Here, ߮ is a cyclic coordinate. We get:  

ቂడௐക

డఝ
ቃ

ଶ
= ఝߙ

ଶ  .          (25)  

Integrating Eq. (25), we find:  

ܹఝ′ = ∫ ′ఝ݀߮ఝߙ

 =  ఝ′߮′ .        (26)ߙ

Substituting Eq. (25) into Eq. (24), we get: 
 ଵ

ଶ
ݎଶ ቂడௐೝ

డ
ቃ

ଶ
+ ቂడௐഇ

డఏ
ቃ

ଶ
+ ఈക

మ

௦మఏ
൨ − ݎ݇ + ℎ =

 ଶ .          (27)ݎߙ

We replace ቂడௐഇ
డఏ

ቃ
ଶ

+ ఈക
మ

௦మఏ
= ఏߙ

ଶ             (28) 

in Eq. (27); we obtain: 

ቂడௐೝ
డ

ቃ
ଶ

= ߙ2݉ + ଶ


− ଶ
మ − ఈഇ

మ

మ  .       (29)  

Integrating Eqs. (28) and (29), we have: 

ܹఏ′ = ∫ ට൬ߙఏ
ଶ −

ఈക
మ

௦మఏ
൰  ′ఏߠ݀

          (30)  

W′ = ∫ ටቀ2mα + ଶ୫୩
୰

− ଶ୫୦
୰మ − αθ

మ

୰మቁ ′ݎ݀  
బ      (31) 

The Hamilton's characteristic function 
becomes W = W′ + Wఏ′ + Wఝ′  

W = ∫ ඨ൬2mα + ଶ୫୩
୰

− ଶ୫୦
୰మ −

ఈഇ′
మ

୰మ ൰  ′ݎ݀
 +

∫ ට൬αθ
ଶ −

αφ
మ

ୱ୧୬మθ
൰ dθఏ′ 

 + αφ′φ′        (32) 

Solving Eq. (30): 

Wఏ′ = ∫ ට൬αθ
ଶ −

αφ
మ

ୱ୧୬మθ
൰ dθఏ′ 

 =

αఏ′ ∫ ට൬1 −
αφ

మ

αθ
మୱ୧୬మθ

൰ dθఏ′ 
   .        (33) 

We replace ܿߛݏ = ఈക

ఈഇ
 and the identity 

ߠଶ݊݅ݏ = 1 −  :in Eq. (33); we find ߠଶݏܿ

ܹఏ′ = ′ఏߙ ∫ ଵ
௦ఏ

ඥ(݊݅ݏଶߛ −  ′ఏߠ݀(ߠଶݏܿ
 .    (34) 

Let ܿߠݏ = sin ߰݊݅ݏ ߛ and substituting in Eq. 
(34), we get:  

ܹఏ′ = ′ఏߙ ∫ ௦మఊ௦మట
௦మఏ

݀߰ టమ
టభ  ,        (35) 

where  ߰ଵ = sinିଵ ቂ ଵ
௦ఊ

ቃ and ߰ଶ = sinିଵ ቂ௦ఏ
௦ఊ

ቃ. 

Assume that ݑ = tan ߰ and substitute in Eq. 
(35); we obtain: 

ܹఏ′ = ′ఏߙ ∫ ௦మఊ ௦రట
ଵି௦మఊ௦మట

 ௨మݑ݀
௨భ =

ߛଶ݊݅ݏ′ఏߙ ∫  ଵ
భషೞమംೞమഗ

ೞరഗ

 ௨మݑ݀
 ௨భ

  ,       (36) 

where ݑଵ = tan ቂsinିଵ ቀ ଵ
௦ఏ

ቁቃ and ݑଶ =

tan ቂsinିଵ ቀ௦ఏ
௦ఏ

ቁቃ. 

We replace ଵି௦మఊ௦మట
௦రట

= ଵ
(ଵା௨మ)(ଵା௨మ௦మఊ) 

and ݊݅ݏଶߛ = 1 −  :in Eq. (36); we get ߛଶݏܿ

ܹఏ′ = ′ఏߙ ∫  ଵି௦మఊ
(ଵା௨మ)(ଵା௨మ௦మఊ)  ௨మݑ݀

௨భ =

′ఏߙ ∫ ቀ  ଵ
(ଵା௨మ) − ௦మఊ

(ଵା௨మ௦మఊ)ቁ  ௨మݑ݀
௨భ  .       (37) 

This last form involves only well-known 
integrals and the final result is: 

ܹఏ′ = (ݑ)ఏ′(tanିଵߙ − ߛݏܿ tanିଵ(ߛݏܿ ݑ)).   
      (38) 
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Substituting integration limits in Eq. (38), we 
obtain: 

ܹఏ′ = ߰)′ఏߙ − ߛݏܿ tanିଵ(tan ߰ ((ߛݏܿ =
′ఏߙ ቀsinିଵ ቂ ௦ఊ

௦ఏ′ቃ −

ߛݏܿ tanିଵ ቀtan ቂsinିଵ ቂ ௦ఊ
௦ఏ′ቃቃ ቁቁߛݏܿ −

ߛ)′ఏߙ − ߛݏܿ tanିଵ(ߛ݊݅ݏ)).         (39) 

Solving Eq. (31), we obtain: 

W′ = √2m ∫ ඨቆα + ୩
୰

−
ቀఈഇ′

మ ାଶ୫୦ቁ

ଶ୫୰మ ቇ′ 
బ dr.   (40)  

Using the relation ൫√ ൯మ

√ 
 to solve Eq. (40), we 

get:  

ܹ′ = √2݉ ∫
ఈା ೖ

మೝା ೖ
మೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ

ඩቌఈାೖ
ೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ ቍ

′ 
బ ݀(41) .ݎ 

Rewrite Eq. (41) as:  

ܹ′ = √2݉

⎣
⎢
⎢
⎢
⎢
⎡

∫
ఈା ೖ

మೝ

ඩቌఈାೖ
ೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ ቍ

′

బ
ݎ݀ +

∫
ೖ

మೝ

ඩቌఈାೖ
ೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ ቍ

ݎ݀ +′

బ

∫
ି

൬ഀ
ഇ′
మ శమ൰

మೝమ

ඩቌఈାೖ
ೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ ቍ

′ݎ݀

బ

⎦
⎥
⎥
⎥
⎥
⎤

 .          (42) 

The first integral in Eq. (42) can be solved as:  

∫
ఈା ೖ

మೝ

ඩቌఈାೖ
ೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ ቍ

′

బ
ݎ݀ =

∫ ݀ ቌݎඨቆߙ + 


−
ቀఈഇ′

మ ାଶቁ

ଶమ ቇቍ′

బ
=

ߙඨቆ′ݎ + 
′ −

ቀఈഇ′
మ ାଶቁ

ଶ′మ ቇ −

ߙඨቆݎ + 
బ

−
ቀఈഇ′

మ ାଶቁ

ଶబమ ቇ .        (43) 

Similarly, the second integral in Eq. (42) can 
be solved as: 

∫
ೖ

మೝ

ඩቌఈାೖ
ೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ ቍ

′ݎ݀

బ
=

√ଶ

ଶටఈഇ′
మ ାଶ

∫ ଵ

ඨ൭ మഀೝమ

ഀ
ഇ′
మ శమ

ା మೖೝ
ഀ

ഇ′
మ శమ

ିଵ൱

′

బ
= ݎ݀

√ଶ

ଶටఈഇ′
మ ାଶ

∫ ଵ

ඨ൭ మഀ
ഀ

ഇ′
మ శమ

ା మೖ
(ഀ

ഇ′
మ శమ)ೝ

ି భ
ೝమ൱

′

బ
              .ݎ݀

                                                                                  (44) 

Let ݑ = ଵ

 and substitute in Eq. (44) to get:  

√ଶ

ଶටఈഇ′
మ ାଶ

∫ ିௗ௨

ඨ൭ మഀ
ഀ

ഇ′
మ శమ

ା మೖೠ
(ഀ

ഇ′
మ శమ)

ି௨మ൱

௨
௨బ

 .       (45)  

We can replace ଶఈ
ఈഇ′

మ ାଶ
+ ଶ௨

(ఈഇ′
మ ାଶ)

− ଶݑ =

ଵ
ఈഇ′

మ ାଶ
2݉ߙ + మమ

ఈഇ′
మ ାଶ

൨ − ൬ݑ − 
ఈഇ′

మ ାଶ
൰

ଶ
 in 

Eq. (45); we obtain: 
√ଶ

ଶටఈഇ′
మ ାଶ

∫ ିௗ௨

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

⎝

⎜⎜
⎛

భ
ഀ

ഇ′
మ శమ

ଶఈା మೖమ

ഀ
ഇ′
మ శమ

൩

ି൭௨ି ೖ
ഀ

ഇ′
మ శమ

൱
మ

⎠

⎟⎟
⎞

௨
௨బ

  .      (46)  

Rewrite: 

ݑ − 
ఈഇ′

మ ାଶ
= ඨ ଵ

ఈഇ′
మ ାଶ

2݉ߙ + మమ

ఈഇ′
మ ାଶ

൨  ߠ݊݅ݏ

and substituting in Eq. (46), we get: 
√ଶ

ଶටఈഇ′
మ ାଶ

∫ ఏߠ݀ݎ−
ఏబ

,          (47) 

where ߠ = sinିଵ

⎝

⎜
⎛ ௨బି ೖ

ഀ
ഇ′
మ శమ

ඨ భ
ഀ

ഇ′
మ శమ

ଶఈା మೖమ

ഀ
ഇ′
మ శమ

൩
⎠

⎟
⎞

 and 

ߠ = sinିଵ

⎝

⎜
⎛ ௨ି ೖ

ഀ
ഇ′
మ శమ

ඨ భ
ഀ

ഇ′
మ శమ

ଶఈା మೖమ

ഀ
ഇ′
మ శమ

൩
⎠

⎟
⎞

. 

Let 


= 1 − ܽ where ,ߠݏܿ ݁ = 
ିଶఈ

 and 

eccentricity ݁ = ට1 +
ଶ(ఈഇ′

మ ାଶ)ఈ

మ    and let 
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e = 0 because the path is circular and 

substitute ටߙఏ′
ଶ + 2݉ℎ = ටି

ଶఈ
; we can rewrite 

Eq. (47): 

ߙ݇√ ∫  ఏߠ݀ܽ
ఏబ = ߙ݇−√ܽ cosିଵ ቆଵ


ቀ1 − ′


ቁቇ −

ߙ݇−√ܽ cosିଵ ൬ଵ


ቀ1 − బ


ቁ൰.         (48) 

The third integral in Eq. (42) can be solved 
as:  

∫
ି

൬ഀ
ഇ′
మ శమ൰

మೝమ

ඩቌఈାೖ
ೝି

൬ഀ
ഇ′
మ శమ൰

మೝమ ቍ

 ′ݎ݀
బ =

∫
ି

൬ഀ
ഇ′
మ శమ൰

మೝమ √ଶమ

ටఈഇ′
మ ାଶඨ൭ మഀೝమ

ഀ
ഇ′
మ శమ

ା మೖೝ
ഀ

ഇ′
మ శమ

ିଵ൱

′ݎ݀  
బ =

−ටఈഇ′
మ ାଶ

ଶ ∫ ௗ

మඩቌ మഀ
ഀ

ഇ′
మ శమ

ା మೖ

൬ഀ
ഇ′
మ శమ൰ೝ

ି భ
ೝమቍ

′ 
బ  . 

                                                                                  (49) 

Let ݑ = ଵ

 and substitute in Eq. (49); we get: 

ටఈഇ′
మ ାଶ

ଶ ∫ ௗ௨

ඩቌ మഀ
ഀ

ഇ′
మ శమ

ା మೖೠ

൬ഀ
ഇ′
మ శమ൰

ି௨మቍ

௨ 
௨బ  .       (50) 

We can replace ଶఈ
ఈഇ′

మ ାଶ
+ ଶ௨

(ఈഇ′
మ ାଶ)

− ଶݑ =

ଵ
ఈഇ′

మ ାଶ
2݉ߙ + మమ

ఈഇ′
మ ାଶ

൨ − ൬ݑ − 
ఈഇ′

మ ାଶ
൰

ଶ
 in 

Eq. (50) to find: 

ටఈഇ′
మ ାଶ

ଶ ∫ ௗ௨

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ

⎝

⎜⎜
⎛

భ
ഀ

ഇ′
మ శమ

ଶఈା మೖమ

ഀ
ഇ′
మ శమ

൩

ି൭௨ି ೖ
ഀ

ഇ′
మ శమ

൱
మ

⎠

⎟⎟
⎞

௨ 
௨బ  .       (51) 

Let: 

ݑ − 
ఈഇ′

మ ାଶ
= ඨ ଵ

ఈഇ′
మ ାଶ

2݉ߙ + మమ

ఈഇ′
మ ାଶ

൨  ߠ݊݅ݏ

and substituting in Eq. (51), we can get:  

ටఈഇ′
మ ାଶ

ଶ
sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝ′ ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ −

ටఈഇ′
మ ାଶ

ଶ
sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝబ
ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ.(52) 

Substituting Eqs. (43), (48) and (52) in Eq. 
(42), we get: 

ܹ′ = ߙඨቆ′ݎ 2݉√ + 
′ −

ቀఈഇ′
మ ାଶቁ

ଶ′మ ቇ −

ߙඨቆݎ 2݉√ + 
బ

−
ቀఈഇ′

మ ାଶቁ

ଶబమ ቇ +

ߙ݇−√ܽ 2݉√ cosିଵ ቆଵ


ቀ1 − ′


ቁቇ −

ߙ݇−√ܽ 2݉√ cosିଵ ൬ଵ


ቀ1 − బ


ቁ൰ +

ටߙఏ′
ଶ + 2݉ℎ sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝ′ ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ −

ටߙఏ′
ଶ + 2݉ℎ sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝబ
ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ.  

      (53) 
The complete characteristic function is:  

ܹ = ߙඨቆ′ݎ 2݉√ + 
′ −

ቀఈഇ′
మ ାଶቁ

ଶ′మ ቇ −

ߙඨቆݎ 2݉√ + 
బ

−
ቀఈഇ′

మ ାଶቁ

ଶబమ ቇ +

ߙ݇−√ܽ 2݉√ cosିଵ ቆଵ


ቀ1 − ′


ቁቇ −

ߙ݇−√ܽ 2݉√ cosିଵ ൬ଵ


ቀ1 − బ


ቁ൰ +

ටߙఏ′
ଶ + 2݉ℎ sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝ′ ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ −

ටߙఏ′
ଶ + 2݉ℎ sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝబ
ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ +

′ఏߙ ቀsinିଵ ቂ ௦ఊ
௦ఏ′ቃ −

ߛݏܿ tanିଵ ቀtan ቂsinିଵ ቂ ௦ఊ
௦ఏ′ቃቃ ቁቁߛݏܿ −

ߛ)′ఏߙ − ߛݏܿ tanିଵ(ߛ݊݅ݏ)) +   ఝ′߮′ .     (54)ߙ

Substituting Eq. (54) in Eq. ܵ(ݍ, ,ߙ (ݐ =
,ݍ)ܹ (ߙ −  :we obtain ,ݐߙ
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,ݍ)ܵ ,ߙ (ݐ = ߙඨቆ′ݎ 2݉√ + 
′ −

ቀఈഇ′
మ ାଶቁ

ଶ′మ ቇ −

ߙඨቆݎ 2݉√ + 
బ

−
ቀఈഇ′

మ ାଶቁ

ଶబమ ቇ +

ߙ݇−√ܽ 2݉√ cosିଵ ቆଵ


ቀ1 − ′


ቁቇ −

ߙ݇−√ܽ 2݉√ cosିଵ ൬ଵ


ቀ1 − బ


ቁ൰ +

ටߙఏ′
ଶ + 2݉ℎ sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝ′ ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ −

ටߙఏ′
ଶ + 2݉ℎ sinିଵ ቌ

ഀ
ഇ′
మ శమ

ೝబ
ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ +

′ఏߙ ቀsinିଵ ቂ ௦ఊ
௦ఏ′ቃ −

ߛݏܿ tanିଵ ቀtan ቂsinିଵ ቂ ௦ఊ
௦ఏ′ቃቃ ቁቁߛݏܿ −

ߛ)′ఏߙ − ߛݏܿ tanିଵ(ߛ݊݅ݏ)) + ′߮′ఝߙ −   .ݐߙ
      (55)  

Differentiating Eq. (55) with respect to ߙ, 
we obtain:  

ߚ + ݐ = డௌ
డఈ

=
ටቀ

మ ቁ′

ඩቌఈାೖ
ೝ′ି

൬ഀ
ഇ′
మ శమ൰

మೝ′మ
ቍ

+

ܽටቀି
ଶఈ

ቁ cosିଵ ቆଵ


ቀ1 − ′


ቁቇ +

 
ଶቀఈഇ′

మ ାଶቁቌି
൬ഀ

ഇ′
మ శమ൰

ೝ′ ቍ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ⃓

⎝

⎜
⎜
⎛

ቀଶఈቀఈഇ′
మ ାଶቁାమమቁ

మ

ି൮ଶቀఈഇ′
మ ାଶቁቌି

൬ഀ
ഇ′
మ శమ൰

ೝ′ ቍ൲

మ

⎠

⎟
⎟
⎞

−

ටቀ
మ ቁబ

ඩቌఈା ೖ
ೝబ

ି
൬ഀ

ഇ′
మ శమ൰

మೝబమ ቍ

 – 

   ܽටቀି
ଶఈ

ቁ cosିଵ ൬ଵ


ቀ1 − బ


ቁ൰ −   

ଶ(ఈഇ′
మ ାଶ)ቌି

൬ഀ
ഇ′
మ శమ൰

ೝబ
ቍ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ⃓

⎝

⎜
⎜
⎛

ቀଶఈቀఈഇ′
మ ାଶቁାమమቁ

మ

ି൮ଶ(ఈഇ′
మ ାଶ)ቌି

൬ഀ
ഇ′
మ శమ൰

ೝబ
ቍ൲

మ

⎠

⎟
⎟
⎞

         (56.A) 

′ఏߚ =

ටߙఏ′
ଶ + 2݉ℎ ×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ మഀഇ′

ೝ′ ቆටଶఈቀఈഇ′
మ ାଶቁାమమቇ

ିସఈఈഇ′ቌ
൬ഀ

ഇ′
మ శమ൰

ೝ′ ିቍ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ⃓

⎝

⎜
⎜
⎜
⎜
⎛

ቀଶఈቀఈഇ′
మ ାଶቁାమమቁ

మ

ି

⎝

⎜⎜
⎛

మഀഇ′
ೝ ቆටଶఈቀఈഇ′

మ ାଶቁାమమቇ

ିସఈఈഇ′ቌ
൬ഀ

ഇ′
మ శమ൰

ೝ′ ିቍ
⎠

⎟⎟
⎞

మ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

−

ටߙఏ′
ଶ + 2݉ℎ ×

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ మഀഇ′

ೝబ
ቆටଶఈቀఈഇ′

మ ାଶቁାమమቇ

ିସఈఈഇ′ቌ
൬ഀ

ഇ′
మ శమ൰

ೝబ
ିቍ

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
ለ⃓

⎝

⎜
⎜
⎜
⎜
⎛

ቀଶఈቀఈഇ′
మ ାଶቁାమమቁ

మ

ି

⎝

⎜⎜
⎛

మഀഇ′
ೝబ

ቆටଶఈቀఈഇ′
మ ାଶቁାమమቇ

ିସఈఈഇ′ቌ
൬ഀ

ഇ′
మ శమ൰

ೝబ
ିቍ

⎠

⎟⎟
⎞

మ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

+

ఈഇ′

ටఈഇ′
మ ାଶ

sinିଵ ቌ
ഀ

ഇ′
మ శమ

ೝ′ ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ −

ఈഇ′

ටఈഇ′
మ ାଶ

sinିଵ ቌ
ഀ

ഇ′
మ శమ

ೝబ
ି

ටଶఈቀఈഇ′
మ ାଶቁାమమ

ቍ +

sinିଵ ቂ ௦ఊ
௦ఏ′ቃ − ߛ −

ߛݏܿ tanିଵ ቀtan ቂsinିଵ ቂ ௦ఊ
௦ఏ′ቃቃ ቁߛݏܿ +

ߛݏܿ tanିଵ(ߛ݊݅ݏ)      (56.B)  
′ఝߚ =  ఝ′ .      (56.C)ߙ

 

Conclusion 
We have chosen the Hamilton – Jacobi 

equation of a central potential example and 
separated the variables using Staeckel boundary 
conditions. This method applies to some 
Hamiltonians in which certain conditions are 
satisfied, such as: conservative Hamiltonian and 
orthogonal coordinates.  
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After doing the application of Staeckel 
boundary conditions, we found Hamilton's 
characteristic function and Hamilton's principal 
function, then we separated completely the 

variables of the Hamilton – Jacobi equation in a 
central potential. Our results, as expected, are 
found in agreement with those obtained using 
other methods [ଶ]. 
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