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Abstract: Using the method of retarded potentials, approximate formulae are obtained that 
describe the electromagnetic field outside the relativistic uniform system in the form of a 
charged sphere rotating at a constant speed. For the near, middle and far zones, the 
corresponding expressions are found for the scalar and vector potentials, as well as for the 
electric and magnetic fields. Then, these expressions are assessed for correspondence to the 
Laplace equations for potentials and fields. One of the purposes is to test the truth of the 
assumption that the scalar potential and the electric field depend neither on the value of the 
angular velocity of rotation of the sphere nor on the direction to the point where the field is 
measured. However, calculations show that potentials and fields increase as the observation 
point gets closer to the sphere’s equator and to the sphere’s surface, compared with the case 
for a stationary sphere. In this case, additions are proportional to the square of the angular 
velocity of rotation and the square of the sphere’s radius and inversely proportional to the 
square of the speed of light. The largest found relative increase in potentials and fields 
could reach the value of 4% for the rapidly rotating neutron star PSR J1614-2230, if the 
star were charged. For a proton, a similar increase in fields on its surface near the equator 
reaches 54%. 
Keywords: Electromagnetic field, Relativistic uniform system, Rotation. 
 

 
1. Introduction 

In article [1], it is emphasized that in most 
cases, calculation of the components of 
electromagnetic field of rapidly changing 
currents is extremely difficult. Even in simple 
configurations of moving charges, it appears that 
non-elementary integrals cannot be expressed in 
terms of simple functions. The simplest example 
is a current loop and already here, we have to 
deal with elliptic integrals. To determine the 
field components, Maxwell equations for the 
vector potential were integrated in [1] using 
Laplace transformation and the solution was 
found in the form of a sum with the help of 
Legendre polynomials for the charged spherical 
shell during its rotation in different cases, 
including change in the charge configuration on 
the surface and accelerated rotation. 

The solution for the rotating uniformly 
charged sphere’s surface can be found in [2], 
where the magnetic field was expressed as a 
vector in the spherical reference frame. In [3], 
the vector potential and magnetic field are 
calculated for a uniformly charged rotating 
sphere. A more complicated situation, where the 
matter inside the sphere or cylinder is a 
conductor and an additional charge appears 
during rotation from the centripetal force and 
inertia of electrons, is considered in [4-5]. 

In [6], rotating cylindrical charge distribution 
was studied and a solution was obtained for the 
magnetic and electric fields around the rotating 
sphere. Then, in [7] a general solution was found 
for symmetric rotating charge distributions. 
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In contrast to these works, we consider not 
just uniformly charged matter distributed inside 
the sphere or in its shell, but a relativistic 
uniform system. This means that the matter in 
the sphere’s volume is in equilibrium with the 
gravitational forces, pressure field and 
acceleration field and the charged particles can 
move chaotically and have the same invariant 
charge density. If such a system of particles 
rotates at a certain constant angular velocity, this 
leads to the corresponding vector potential and 
magnetic field, which do not depend on time. 
We will calculate all the components of the 
electromagnetic field outside the system, 
including the scalar and vector potentials, 
electric and magnetic fields. Previously, these 
quantities were found in [8-12] for the case of a 
uniform system at rest without rotation, in which 
the vector potentials are equal to zero. 

The study of a rotating relativistic uniform 
system is important in itself and it is of academic 
interest from the point of view of developing an 
ideal model corresponding to the relativistic 
approach. But, there are also a number of 
physical problems, such as calculating the 
angular momentum, magnetic moment and 
relativistic energy of rotating objects, where it is 
necessary to correctly estimate the contributions 
of various fields associated with these objects. 

As a rule, in articles describing a steadily 
rotating spherical shell, it is assumed that the 
electric field outside the sphere does not depend 
on the angular velocity of rotation. In contrast to 
this, in [13] it is indicated that there is such a 
dependence both for the electric and magnetic 
fields. In [14], this question was considered 
again and an error in calculations was found in 
[13], associated with the replacement of the 
partial time derivative with the total derivative. 

To check the assumption about the possible 
dependence of the fields on the angular velocity 
of rotation and to estimate the contribution from 
the particles’ motion inside the system, the 
accuracy of our calculations will be increased up 
to the terms containing the square and even the 
third power of the speed of light in the 
denominator. The method of retarded potentials 
used for calculations provides the result based on 
first principles, which reduces possible 
inaccuracies that appear under additional 
assumptions. 

 

2. Statement of the Problem 
The standard equations for the electric field 

strength E , magnetic field induction B  and 
electromagnetic field potentials in the framework 
of the special theory of relativity have the 
following form: 
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For the particles moving inside the rotating 

sphere: 
2 2

1
1 v c

 


 is the Lorentz factor; v  

is the particles’ velocity in the reference frame 
K , in which the sphere is rotating; 0q  is the 
charge density of a moving particle in the 
comoving reference frame; 0  is the electrical 
constant; 0  is the magnetic constant; 

0q j v  denotes the vector of the electric 
current density; c  is the speed of light, while 

2
0 0 1c   ; A  is the four-potential of the 

electromagnetic field;   and A  are the scalar 
and vector potentials. Wave equations (2) for the 
potentials are obtained from equations (1) taking 
into account (3). 

If the sphere with the particles rotates at a 
constant angular velocity  , the potentials 
would not depend on time. Then, the time 
derivatives disappear in (2) and the following 
remains: 

0
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Eqs. (4) were solved in the absence of 
rotation, when 0  , for a relativistic uniform 
system [11]. In this case, the Lorentz factor    
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of the particles’ motion relative to the reference 
frame K , associated with the center of the fixed 
sphere, was substituted instead of   in (4). For 
the spherical system with the particles in the 
absence of the matter’s general rotation, the 
Lorentz factor according to [8] is equal to: 

߱)ᇱߛ = 0) = ௖ ఊᇲ
೎
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In (5), r  is the current radius, c   is the 
Lorentz factor at the center of the sphere,   is 
the acceleration field coefficient and 0  is the 
mass density of a moving particle in the 
comoving reference frame. Taking this into 
account, the scalar (electric) potential i  inside 

the sphere and the similar potential o  outside 
the sphere are defined by the expressions: 

߮ ௜ = ఘబ೜  ௖మ  ఊᇲ
೎

ସ గ ఌబ   ఎ  ఘబ  ௥
  ൤ ௖

ඥସ గ  ఎ  ఘబ
sin ቀ௥

௖ ඥ4 ߩ  ߟ  ߨ଴ቁ −

cos ݎ ቀ௔
௖ ඥ4 ߩ  ߟ  ߨ଴ቁ൨ ≈ ఘబ೜  ఊᇲ

೎  (ଷ ௔మି௥మ)
଺ఌబ

.         (6) 

߮௢ = ఘబ೜  ௖మ  ఊᇲ
೎

ସ గ ఌబ  ఎ  ఘబ  ௥
൤ ௖

ඥସ గ  ఎ  ఘబ
sin ቀ௔

௖ ඥ4 ߩ  ߟ  ߨ଴ቁ −

ܽ cos ቀ௔
௖ ඥ4 ߩ  ߟ  ߨ଴ቁ൨. 

2
0 0

31
4 4 10

b c
o

q q m
r r ac

 


 
  

   
 

.          (7) 

In (7), the quantity q  is the product of 0q  

by the volume sV  of the sphere of radius a ; that 

is 
3
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 . Similarly, m  is the product of 

the invariant mass density 0  of the matter’s 
particles by the sphere’s volume. However, the 
external potential o  of the electric field does 
not depend on q , but it depends on the total 
charge bq  of the sphere, defined by the 
expression: 
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As for the vector (magnetic) potential A  in 
(4), on the average, it turns out to be equal to 
zero everywhere due to the chaotic motion of 
particles. 

The particles’ rotation at the angular velocity 
  about the axis OZ  that passes through the 
center of the sphere changes the particles’ linear 
velocities. Taking into account the rule of 
relativistic addition of velocities, for the absolute 
velocity and the Lorentz factor of an arbitrary 
particle, we find the following: 
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where v  is the velocity of chaotic motion of a 
particle in the reference frame K  rotating with 
the matter at the angular velocity  ; rv  is the 

linear velocity of motion of the reference frame 
K  at the particle’s location, arising due to 
rotation in the reference frame K ; 

2 2

1
1

r

rv c
 


 is the Lorentz factor for the 

velocity rv , 
2 2

1
1 v c

  


 is the Lorentz 

factor for the velocity v . 

Expressions (9) should be averaged over the 
volume in a small neighborhood of the point 
under consideration so that a sufficient number 
of particles would be present in this volume. Due 
to the chaotic character of motion, the velocities 
v  of neighboring particles are directed in 

different ways. As a result, the average values 
will be: rv v , r   . Next, we will assume 
that, despite the general rotation, formula (5) for 
   continues to be valid in the reference frame 
K , with the exception that instead of the 
Lorentz factor c   at the center of the sphere, the 
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formula must contain a quantity denoted as c . 
Indeed, c   is determined in the absence of 
rotation, but the Lorentz factor at the center of 
the sphere can be changed due to rotation and 
turn into c . 

2.1 Potentials outside the Rotating Sphere 

The charge density 0q  outside the sphere is 
zero due to the absence of charged particles 
there. This simplifies the form of equations (4), 
which turn into Laplace equations: 

0  , 0 A .          (10) 

From the great number of possible solutions 
of equations (10), we should choose those that, 
in the absence of rotation, go over to the solution 
of (7) for the scalar potential o  and to the 
solution 0o A  for the vector potential. 

In order to find the necessary solutions, we 
will use the Lienard-Wiechert approach for 
retarded potentials. Let us assume that a point 
charged particle rotates along a circle of radius 
  at the angular velocity   and with the linear 
velocity rv  . We will place the cylindrical 
reference frame with coordinates , , dz   at the 
center of the sphere and will search for the 
electromagnetic field potentials from the rotating 
charge at a certain remote point P  with the 
radius vector ( , , )x y zR . 

The current position of the charge is given by 
the radius vector 
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The Lienard-Wiechert formulae for the scalar 
and vector potentials of one particle with the 
number n  have the following form: 
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Here, ˆ ˆP q R R r  is the vector from the 

charge to the point P  at the early time point 
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Let’s locate the coordinate dz  in such a way 
that it would define the location of a thin layer 
with thickness s  in the form of a disk parallel to 
the plane XOY . The radius of such a disk inside 

the sphere will be 2 2
d da z   , where the 

sphere’s radius is a . The sphere is tightly filled 
with rotating particles and the same applies to 
this disk. We will use the principle of 
superposition of potentials and will find the 
scalar potential at the remote point P  from the 
rotating disk with charged particles. For this 
purpose, we need to take the sum over all N  
charges in the disk. In view of (12), for the scalar 
potential, we have the following: 
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Each charge nq  inside the disk has its own 
rotation radius n  and motion velocity 

n nv  , while the instantaneous position of 
the charge is given by the vector 

( cos , sin , )qn n n n n dz   r . In this regard, in 
(14), the denominator depends on the location of 
the particle in the disk and therefore, it has an 
index n . 

The charge of a point particle rotating in the 
disk can be expressed in terms of the invariant 
charge density, Lorentz factor and moving 
volume: 
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element of the volume of a rotating disk, which, 
as a result of Lorentz contraction, is r  times 
less than the volume element s d d    of the 
fixed disk. The quantity 0q   defines the 
effective density of the charge, taking into 
account its rotation inside the disk and the 
chaotic motion of particles. As   in (15), we 
should substitute the averaged value of the 
Lorentz factor r   , according to (9). This 
gives the following: 

0n qq s d d    .          (15) 

The charge nq  is expressed in terms of the 
product of differentials, so that the sum (14) can 
be transformed into an integral. With this in 
mind, from (13-15), it follows: 
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In order to be able to perform integration, in 
(16), we need to express the angle ̂ , defining 
the position of an arbitrary particle at the early 
time point t̂ , in terms of the angle   at the time 
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From comparison of (12) and (16), it follows 
that the vector potential of the rotating disk will 
be equal to: 
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In (16), the scalar potential d  is sought for 
the remote point P  with the radius vector 

( , , )x y zR . The vector potential dA  at this 
point depends on the velocity ݒො௥ = (ݐ̂)௥ݒ =
 of motion of the (cos߶෠, 0ߩ ߱ ,sin߶෠ߩ ߱−)

charged particles of the rotating disk at the early 
time t̂ . The velocity ˆ rv  lies in a plane parallel 
to the plane XOY  and the same holds true for 

dA . For the components dA , we can write the 
following:  
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ௗ ௭ܣ = 0.           (18) 

2.2 Scalar Potential in the Middle Zone 

Let us first consider the case when in (17) the 
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corresponds to the case of sufficiently large 
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point P  where the scalar potential is sought. As 
an example, let us assume that the relations of 
sizes and velocities are given by the relative 
value of 1%. In this case, the condition of the 

middle zone at ˆ
PR R  means that 0,01a

R
  

and 0,01R
c


 , so that a two-sided inequality 

100
100

ca R


   is obtained for the distance. 

Under the above conditions for ˆ
PR , we can 

assume in (17) that: 

ˆˆcos cos sinPR
c

    , 

ˆˆsin sin cosPR
c

    .         (19) 

Let us square ˆ
PR  in (13), substitute there 

ˆcos  and ˆsin  from (19), obtain a quadratic 

equation to determine ˆ
PR  and write down its 

solution: 

෠ܴ௉ = − ఠ ఘ(௫ୱ୧୬థି௬ୡ୭ୱథ)  
௖

+ටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ − ߶cosݔ ߩ 2 − ߶sinݕ ߩ 2 + ఠమ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ  

௖మ .
       (20) 

Since the square root in (16) is equal to ˆ
PR  

according to (13), we can replace this square root 
with the expression for ˆ

PR  from (20). Then, 

using ˆsin  and ˆcos  from (19) for 
transformation of (16), we arrive at the 
expression: 

߮ௗ = ௦ ఘబ ೜

ସ గ ఌబ

⌡
⎮
⎮
⎮
⎮
⌠

⌡
⎮
⎮
⎮
⎮
⌠

ఊᇲ   ఘ  ௗఘ  ௗథ 

ඩ
ோమା௭೏

మିଶ ௭ ௭೏ାఘమିଶ ఘ ௫ୡ୭ୱథି

ିଶ ఘ ௬ୱ୧୬థାഘమ  ഐమ(ೣ౩౟౤ഝష೤ౙ౥౩ഝ)మ 
೎మ

     ି     ഘ
మ ഐ ೣ ೃ෡ು

೎మ ୡ୭ୱథିഘమ  ഐ ೤ ೃ෡ು
೎మ ୱ୧୬థ

ఘ೏

଴

ଶగ

଴

.       (21) 

In (21), we will expand the square root to the 
third-order terms by the rule 

2

1 1
2 8
     : 
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ටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ − ߶cosݔ ߩ 2 − ߶sinݕ ߩ 2 + ఠమ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ  

௖మ

≈ ඥܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

⎣
⎢
⎢
⎢
⎢
⎡ 1 − ఘ ௫ୡ୭ୱథାఘ ௬ୱ୧୬థ

ோమା௭೏
మିଶ ௭ ௭೏ାఘమ +

+ ఠమ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ

ଶ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯

− ఘమ(௫ୡ୭ୱథା௬ୱ୧୬థ)మ

ଶ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ +

+ ఠమ  ఘయ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ(௫ୡ୭ୱథା௬ୱ୧୬థ)

ଶ ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ ⎦

⎥
⎥
⎥
⎥
⎤

.
          (22) 

Let us substitute (22) into (20): 

෠ܴ௉ ≈ ඥܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 − ఠ ఘ(௫ୱ୧୬థି௬ୡ୭ୱథ)  

௖ටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

− ఘ ௫ୡ୭ୱథାఘ ௬ୱ୧୬థ
ோమା௭೏

మିଶ ௭ ௭೏ାఘమ +

+ ఠమ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ

ଶ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯

− ఘమ(௫ୡ୭ୱథା௬ୱ୧୬థ)మ

ଶ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ +

+ ఠమ  ఘయ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ(௫ୡ୭ୱథା௬ୱ୧୬థ)

ଶ ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

.      (23) 

With the help of ˆ
PR  from (23), we will 

transform the second and third terms in the 

denominator of (21), leaving only the terms 
containing 2c  and 3c : 
 

− ఠమ  ఘ ௫ ோ෠ು
௖మ cos߶ − ఠమ  ఘ ௬ ோ෠ು

௖మ sin߶

≈ −ඥܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ఠమ  ఘ  (௫ୡ୭ୱథା௬ୱ୧୬థ)
௖మ

− ఠయ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)(௫ୡ୭ୱథା௬ୱ୧୬థ) 

௖యටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

− ఠమఘమ  (௫ୡ୭ୱథା௬ୱ୧୬థ)మ

௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯

− ఠమఘయ(௫ୡ୭ୱథା௬ୱ୧୬థ)య

ଶ ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

.
       (24) 

Let us now substitute (22) and (24) into (21) 

and put 2 2 22d dR z zz     outside the 
brackets: 
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߮ௗ ≈
଴ ௤ߩ ݏ

଴ߝ ߨ 4

⌡
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌠

⌡
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⎮
⌠

1

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1 − ߶cosݔ)ߩ + (߶sinݕ 

ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

− ߶cosݔ)ଶߩ + sin߶)ଶݕ

2(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ

− ߱ଶ ߶cosݔ)  ߩ  + (߶sinݕ
ܿଶ

+ ߱ଶ ߶sinݔ)ଶߩ  − cos߶)ଶݕ

2ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + (ଶߩ

+ ߱ଶߩଶ ߶cosݔ)  + sin߶)ଶݕ

ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + (ଶߩ +

+ ߱ଶ ߶cosݔ)ଷߩ  + ߶sinݔ)(߶sinݕ − cos߶)ଶݕ

2 ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ

+ ߱ଶ ߶cosݔ)ଷߩ  + sin߶)ଷݕ

2 ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ

+ ߱ଷ ߶sinݔ)ଶߩ  − ߶cosݔ)(߶cosݕ +  (߶sinݕ

ܿଷටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ᇱߛ  ߶݀  ߩ݀  ߩ  

ටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

ఘ೏

଴

ଶగ

଴

. 

In this integral, we will use an approximate 

expression of the form 21 1
1

 

  


 for 

small  . This gives the following: 

2

2
0

0 0
2 2

0 24

d

d d

q
d

s dD
R z zz

d   










 
  . (25) 

The quantity D  in (25) is given by the 
expression: 



The Electromagnetic Field outside the Steadily Rotating Relativistic Uniform System 

 387

ܦ ≈ 1 + ఘ ௫ୡ୭ୱథାఘ ௬ୱ୧୬థ
ோమା௭೏

మିଶ ௭ ௭೏ାఘమ + ଷఘమ(௫ୡ୭ୱథା௬ୱ୧୬థ)మ

ଶ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ + ఘయ(௫ୡ୭ୱథା௬ୱ୧୬థ)య

൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య +

+ ఘర(௫ୡ୭ୱథା௬ୱ୧୬థ)ర

ସ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯ర + ఠమ  ఘ  (௫ୡ୭ୱథା௬ୱ୧୬థ)

௖మ − ఠమ  ఘమ൫௫మା௬మ൯
ଶ௖మ൫ோమା௭೏

మିଶ ௭ ௭೏ାఘమ൯ +

+ ଷఠమ  ఘమ   (௫ୡ୭ୱథା௬ୱ୧୬థ)మ

ଶ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯ − ଷఠమ  ఘయ൫௫మା௬మ൯(௫ୡ୭ୱథା௬ୱ୧୬థ)

ଶ ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ −

− ଶఠమ  ఘర൫௫మା௬మ൯(௫ୡ୭ୱథା௬ୱ୧୬థ)మ

௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య + ఠమ  ఘర(௫ୡ୭ୱథା௬ୱ୧୬థ)మ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ

ଶ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య −

− ఠమ  ఘఱ൫௫మା௬మ൯(௫ୡ୭ୱథା௬ୱ୧୬థ)య

ଶ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯ర − ఠయ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)(௫ୡ୭ୱథା௬ୱ୧୬థ) 

௖యටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

−

− ଶఠయ  ఘయ(௫ୱ୧୬థି௬ୡ୭ୱథ)(௫ୡ୭ୱథା௬ୱ୧୬థ)మ  

௖య൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య మ⁄ − ఠయ  ఘర(௫ୱ୧୬థି௬ୡ୭ୱథ)(௫ୡ୭ୱథା௬ୱ୧୬థ)య  

௖య൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯ఱ మ⁄ .

⎭
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎫

                   (26) 

In (25), only the quantity D  depends on the 
angle  , according to (26). After integration 
over this angle in (25), the following remains: 

߮ௗ ≈ ௦ ఘబ ೜

ଶ ఌబ

⌡
⎮
⎮
⎮
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎢
⎡ଵା ഘమ  ഐమ   ൫ೣమశ೤మ൯

ర೎మቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

ା యഐమ൫ೣమశ೤మ൯

రቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

మି

ି భఱഘమ  ഐర൫ೣమశ೤మ൯
మ

భల೎మቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

యା యഐర൫ೣమశ೤మ൯
మ

యమቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

ర
⎦
⎥
⎥
⎥
⎥
⎤

  ఊᇲ ఘ  ௗఘ

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

ఘ೏

଴

. 

The last two terms in the square brackets 
inside the integral, due to their smallness, can be 
further neglected. The Lorentz factor   , 
similarly to (5), is written in the first 
approximation as follows: 

ᇱߛ = ௖ ఊ೎
௥ඥସ గ  ఎ  ఘబ

  sin ቀ௥
௖ ඥ4 ߩ  ߟ  ߨ଴ቁ ≈ ௖ߛ −

ଶ గ  ఎ  ఘబ   ௥మఊ೎
ଷ ௖మ = ௖ߛ − ଶ గ  ఎ  ఘబ   ൫ఘమା௭೏

మ൯ఊ೎
ଷ ௖మ ,           (27) 

We will note that here we use the Lorentz 
factor c  at the center of the rotating sphere, 
which may not be equal to c   in (5) at the center 
of the sphere at rest. In view of    from (27), we 
can write for d  the following: 

߮ௗ ≈ ௦ ఘబ ೜  ఊ೎

ଶ ఌబ

⌡
⎮
⎮
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡ ଵି

మ ഏ  ആ  ഐబ   ቀഐమశ೥೏
మ ቁ

య ೎మ ା

ା ഘమ  ഐమ   ൫ೣమశ೤మ൯
ర೎మቀೃమశ೥೏

మ షమ ೥ ೥೏శഐమቁ
ା యഐమ൫ೣమశ೤మ൯

రቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

మ
⎦
⎥
⎥
⎥
⎤
   ఘ  ௗఘ

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

ఘ೏

଴

. 

We will represent the potential as the sum of 
four terms, obtained by integrating the potential 

d  over the variable  : 

 0
1 2 3 4

02
q

d
cs

I I I I






    , 

where 

21
0

2 22

d

d dR z z
dI

z

  

  
  , 

 2 2
0

2
0

22 2 2

2
3 2

d
d

d d

dz
c R z z

I
z

    






  
  , 
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 
 

2 2 2

3 22 2 2

3

23
04 2

d

d d

x y
c R z z

dI
z

 






  
 , 

 
 

2 3

4
0

2

5 22 2 2

3
4 2

d

d d

x y

R z

dI
zz

  





  
  . 

These integrals, taking into account the 
relation 2 2 2

d da z   , equal: 

ଵܫ = ඥܴଶ + ܽଶ − ௗݖ ݖ 2 − ටܴଶ + ௗݖ
ଶ −  .ௗݖ ݖ 2

ଶܫ = −
଴ߩ  ߟ  ߨ 2

3 ܿଶ

⎣
⎢
⎢
⎢
⎡(ܴଶ + ܽଶ − ௗ)ଷݖ ݖ 2 ଶ⁄

3
− ൫ܴଶ + ௗݖ

ଶ − ௗ൯ඥܴଶݖ ݖ 2 + ܽଶ − ௗݖ ݖ 2 +

+
2൫ܴଶ + ௗݖ

ଶ − ௗ൯ଷݖ ݖ 2 ଶ⁄

3 ⎦
⎥
⎥
⎥
⎤

−
଴ߩ  ߟ  ߨ 2 ௗݖ 

ଶ

3 ܿଶ ቆඥܴଶ + ܽଶ − ௗݖ ݖ 2 − ටܴଶ + ௗݖ
ଶ − ௗቇݖ ݖ 2 .

 

ଷܫ = ఠమ   ൫௫మା௬మ൯
ସ௖మ ቈඥܴଶ + ܽଶ − ௗݖ ݖ 2 + ோమା௭೏

మିଶ ௭ ௭೏

ඥோమା௔మିଶ ௭ ௭೏
− 2ටܴଶ + ௗݖ

ଶ −  .ௗ቉ݖ ݖ 2

ସܫ = − ൫௫మା௬మ൯
ସ

቎ ௔మି௭೏
మ

(ோమା௔మିଶ ௭ ௭೏)య మ⁄ + ଶ
ඥோమା௔మିଶ ௭ ௭೏

− ଶ

ටோమା௭೏
మିଶ ௭ ௭೏

቏. 

(28) 

The potential d  is the potential at the 
remote point P  from one thin layer in the form 
of a disk, which is parallel to the plane XOY  
and shifted along the axis OZ  by distance dz . 
Now, it is necessary to sum up separate 
potentials created at the point P  by all layers of 
the ball, taking into account that the layer 
thickness s  is the differential dd z . Passing 
from the sum to the integral, we find: 

 0
1 2 3 4

02

a
q

d
a

c I I I I d z








    . 

Using (28), we have the following: 
3

1
2
3

a

d
a

I z
R

d a



 , 0
2

5

2

4
15

a

d
a

I a
c

d z
R

 



 , 

 2

3

2 5 2

2 315

a

d
a

a x y
c R

I d z







 , 

 2

4

5 2

55

a

d
a

a x y
d z

R
I






 . 

Taking this into account, the following is 
obtained for the potential: 

߮ ≈ ఘబ ೜  ௔య  ఊ೎

ଷ ఌబ  ோ
ቂ1 − ଶ గ  ఎ  ఘబ  ௔మ

ହ ௖మ + ଷ ௔మ  ൫௫మା௬మ൯
ଵ଴ ோర +

ఠమ  ௔మ  ൫௫మା௬మ൯
ଵ଴ ௖మோమ ቃ.           (29) 

Expression (29) for the potential is an 
approximate solution in the middle zone, where 
the conditions R a , ఠ ோ෠ು

௖
≈ ఠ ோು

௖
≈ ఠ ோ

௖
<< 1 

are met. 

Let us now calculate the charge of a slowly 
rotating sphere in spherical coordinates , ,r   . 
According to (9), the averaged Lorentz factor of 
the particles’ motion is r   , the charge 
density inside the sphere is 0qr    and the 
element of volume moving due to rotation is 

2 sin
s

r

r drd ddV   


 . Hence, in view of (27), 

we find for the charge by integrating over the 
sphere’s volume in spherical coordinates: 

ఠݍ = ∫଴௤ߩ ᇱߛ ௥ߛ   ݀ ௦ܸ =
௖  ఘబ೜  ఊ೎

ඥସ గ  ఎ  ఘబ
∫   sin ቀ௥

௖ ඥ4 ߩ  ߟ  ߨ଴ቁ   .ߠ݀ߠsin߶݀ݎ݀ ݎ

      (30) 

The integration result is as follows: 
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ఠݍ = ఘబ೜  ௖మ  ఊ೎

ఎ  ఘబ
൤ ௖

ඥସ గ  ఎ  ఘబ
sin ቀ௔

௖ ඥ4 ߩ  ߟ  ߨ଴ቁ − ܽ cos ቀ௔
௖ ඥ4 ߩ  ߟ  ߨ଴ቁ൨

≈ ସ గ ఘబ೜  ௔య  ఊ೎

ଷ
  ቀ1 − ଶ గ  ఎ  ఘబ  ௔మ

ହ ௖మ ቁ .
                    (31) 

According to the method of calculation in 
(31), the charge q  is the sum of invariant 
charges of all the system’s particles and 
therefore, is an invariant quantity that does not 
depend on the angular velocity of rotation  . In 
this case, the charge q  (31) must be equal to 
the charge bq  in (8). Hence, we find the equality 
of the Lorentz factors at the center of the sphere 
for the cases of a sphere at rest and a similar 
rotating sphere: c c   . 

From (29) and (31), it follows: 

߮ ≈ ௤ഘ
ସ గ ఌబ  ோ

ቂ1 + ଷ ௔మ  ൫௫మା௬మ൯
ଵ଴  ோర + ఠమ  ௔మ  ൫௫మା௬మ൯

ଵ଴ ௖మோమ ቃ.  (32) 

In order to check the solution of (32) for the 
potential, we can substitute it in (10) into the 

equation 
2 2 2

2 2 2 0
x y z
     

    
  

. As a 

consequence, it appears that in (32), the sum of 

the two terms 
   2 2 2 2 2 2 2

4 2 2

3
10 10

a x y a x y
R c R

 
  

does not agree with this equation. This is 
possible, because during integration, we 
neglected all the possible small terms, the 
presence of which could lead to satisfying the 
Laplace equation 0  . In this regard, we 
will remind that in (17), we expanded the sine 
and cosine only to the first-order terms in the 
form  ˆ ˆsin / /P PR c R c  ,  ˆcos / 1PR c  , 

obtaining (19). But in (32), the angular velocity 
  is present in the second-order term containing 
the square of the speed of light in the 
denominator. This term can change if in (17) we 
expand the sine and cosine to the second-order 

terms in the form 
3 3

3

ˆ ˆ ˆ
sin

6
P P PR R R

c c c
   

  
 

, 

2 2

2

ˆ ˆ
cos 1

2
P PR R

c c
  

  
 

. On the other hand, the 

presence of the small term 
 2 2 2

4

3
10

a x y
R


 

contradicts the Coulomb law at 0   and its 

very appearance may be a consequence of the 
adopted approximation procedure. 

For the Laplace equation to hold, we will 
substitute the sum of the two terms in (32) with 

2 2

210
a
c


. At least, such substitution is quite 

acceptable under the conditions R a , 
2 2 2x y z  , 2 2 2x y R  . In view of the 

above, the potential takes the following form: 
2

0

2

21
4 10

q a
R c









  

 
.         (33) 

It follows from the above that in the general 
case, the potential outside the rotating sphere can 
be represented by the formula: 

04
Fq

R






 ,          (34) 

where the function F  can be a function of  , 
a , R  and of 2 2x y . At 0  , it must be 

1F   and in case of rotation of the sphere with 
charged particles, for the middle zone, where the 

conditions R a , 1R
c


 , 2 2 2x y R   

are met, we must have 
2 2

21
10

aF
c


   if we 

consider (33) true. Thus, the function F  differs 
a little from 1. 

It follows from expression (32) that in the 
middle zone, the potential actually can depend 
on the direction to the observation point and at 
the same distance R , it increases as it gets 
closer to the equatorial plane. This could be a 
consequence of the spherical-cylindrical 
symmetry of arrangement of the moving charges 
when the potential is calculated. Indeed, 
according to (16), the potential d  from one 
disk inside the sphere depends on the retarded 
angle ߶෠ = ݐ̂ ߱ + ߶଴ = ݐ ߱ + ߶଴ − ఠ ோ෠ು

௖
= ߶ −

ఠ ோ෠ು
௖

, which is a function of the angular velocity 
 . This implies the dependence of the potential 
  outside the sphere on  , which can be 
realized in the form of (32-34). 
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2.3 Vector Potential in the Middle Zone 

Proceeding in the same way as when we 
obtained (25) from (16), we will transform the 
components of the vector potential of the 
rotating disk (18): 

2 2 2

2 2
0 0

0 0

ˆs
24

ind
q

d

d

x

d

s dD
z

dA
R z z

     








 



   , 

2 2
0

2 2
0

2

0

0

ˆco
4

s
2

d

d

q
d

d

y

s dD
R z zz

dA
    

 






 
  , 

0d zA  .           (35) 

Substitution of ˆ
PR  from (23) into (19) gives 

the following: 

cos߶෠ ≈ cos߶ +
߱ 
ܿ

ටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ߶ଶsinߩ −

߱ଶ ߶sinݔ)ߩ  −  ߶cos߶)sinݕ
ܿଶ

−
߶cosݔ)ߩ ߱ + ߶sin߶)sinݕ

ܿටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

+
߱ଷ ߶sinݔ)ଶߩ  −  ߶cos߶)ଶsinݕ

2 ܿଷටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

−
ଶߩ ߱ ߶cosݔ)  + ߶sin߶)ଶsinݕ

2 ܿ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄ +

߱ଷ ߶sinݔ)ଷߩ  − ߶cosݔ)cos߶)ଶݕ + ߶sin߶)sinݕ
2 ܿଷ(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄ .

 

 

sin߶෠ ≈ sin߶ −
߱
ܿ

ටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ߶ଶcosߩ +

߱ଶ ߶sinݔ)ߩ  −  ߶cos߶)cosݕ
ܿଶ

+
߶cosݔ)ߩ ߱ + ߶sin߶)cosݕ 

ܿටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

−
߱ଷ ߶sinݔ)ଶߩ  − ߶cos߶)ଶcosݕ

2 ܿଷටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

+
߶cosݔ)ଶߩ ߱ + ߶sin߶)ଶcosݕ

2 ܿ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄ −

߱ଷ ߶sinݔ)ଷߩ  − ߶cosݔ)cos߶)ଶݕ + ߶sin߶)cosݕ
2 ܿଷ(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄ .

 

     (36) 

We will use D  from (26), as well as ˆcos  

and ˆsin  from (36) and will integrate the 
products of these quantities over the angle  : 

න sin߶෠ܦ   ݀߶
ଶగ

଴

≈
ߨ ݕ ߩ

ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ +

ଶݔ)ݕଷߩ 3 + ߨ(ଶݕ
4(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ +
ଶݔ)ݔଷߩ ߱ 3 + ߨ(ଶݕ

4 ܿ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ହߩ ଶ⁄

−
15 ߱ଶ ଶݔ)ݕଷߩ  + ߨ(ଶݕ

8  ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ −

߱ଷ ߨ ݔ  ߩ 
ܿଷ ටܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶߩ +
7 ߱ଷ ଷߩ  ଶݔ)ݔ   + ߨ(ଶݕ

4 ܿଷ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄ .

 

න cos߶෠ܦ   ݀߶
ଶగ

଴

≈
ߨ ݔ ߩ

ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ +

ଶݔ)ݔଷߩ 3 + ߨ(ଶݕ
4(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ −
ଶݔ)ݕଷߩ߱ 3 + ߨ(ଶݕ

4 ܿ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ହߩ ଶ⁄

−
15 ߱ଶ ଶݔ)ݔଷߩ  +  ߨ(ଶݕ

8 ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ +

߱ଷ ߨ ݕ ߩ 
ܿଷ ටܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶߩ −
7 ߱ଷ ଷߩ  ଶݔ) ݕ  + ߨ(ଶݕ

4 ܿଷ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄ .

 

 (37) 

From (35) and (37), it follows: 
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ௗ ௫ܣ ≈ −
଴ߤ ଴ ௤ߩ ݏ  ߱  ݔ 

4
⌡
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡ ଶݔ)ଶߩ 3߱ + (ଶݕ
4ܿ(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ −
߱ଷ

ܿଷ

+
7߱ଷ ଶݔ)ଶߩ  + (ଶݕ

4ܿଷ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ ⎦

⎥
⎥
⎥
⎤

 

ఘ೏

଴

ᇱߛ   ଷߩ   ߩ݀ 

−
଴ߤ ଴ ௤ߩ ݏ  ߱  ݕ 

4
⌡
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡1 +

ଶݔ)ଶߩ3 + (ଶݕ
4(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ

−
15߱ଶ ଶݔ)ଶߩ  + (ଶݕ

8 ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ⎦(ଶߩ

⎥
⎥
⎥
⎤

ᇱߛ  ଷߩ   ߩ݀ 
(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄

ఘ೏

଴

.

 

ௗ ௬ܣ ≈ −
଴ߤ ଴ ௤ߩ ݏ  ߱  ݕ 

4
⌡
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡ ଶݔ)ଶߩ 3߱ + (ଶݕ
4ܿ(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ −
߱ଷ

ܿଷ

+
7߱ଷ ଶݔ)ଶߩ  + (ଶݕ

4ܿଷ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ ⎦

⎥
⎥
⎥
⎤

ᇱߛ ଷߩ   ߩ݀  

ఘ೏

଴

+
଴ߤ ଴ ௤ߩ ݏ  ߱  ݔ 

4
⌡
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡1 +

ଶݔ)ଶߩ3 + (ଶݕ
4(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଶߩ

−
15߱ଶ ଶݔ)ଶߩ  + (ଶݕ

8 ܿଶ(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + (ଶߩ ⎦

⎥
⎥
⎥
⎤

ᇱߛ   ଷߩ   ߩ݀  
(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄

ఘ೏

଴

.

 

 (38) 

Let us substitute the Lorentz factor    from 
(27) into (38). Next, we will consider the 
following integrals: 

ହܫ ≈ ௖ߛ   ඳ ൤1 − ଶ గ  ఎ  ఘబ   ൫ఘమା௭೏
మ൯

ଷ ௖మ ൨ ൦

ଷఠ ఘమ൫௫మା௬మ൯

ସ௖൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య − ఠయ

௖య +

+ ଻ఠయ  ఘమ൫௫మା௬మ൯

ସ௖య൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ

൪

ఘ೏

଴

ଷߩ      .ߩ݀ 

଺ܫ ≈ ௖ߛ   ඳ ൦
1 − ଶ గ  ఎ  ఘబ   ൫ఘమା௭೏

మ൯
ଷ ௖మ +

+ ଷ ఘమ൫௫మା௬మ൯

ସ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ − ଵହ ఠమ  ఘమ൫௫మା௬మ൯ 

଼ ௖మ൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯

൪   ఘయ   ௗఘ

൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య మ⁄

ఘ೏

଴

.    (39) 

With the help of (39), expressions (38) are 
written as follows: 

0 0 0 0
5 64 4

q q
d x

s x s y
A I I

    
   , 

0 0 0 0
5 64 4

q q
d y

s y s x
A I I

    
   .      (40) 

After integrating the integrals (39) over the 
variable  , in view of the relation 

2 2
d da z   , we obtain: 

2
0 0

225 1 2

2 21
3 3

d c
c

z D DI
c c

    

 
  

 
 , 

where 

ଵܦ = න ൤ ଷఠ ఘమ൫௫మା௬మ൯

ସ௖൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య − ఠయ

௖య +
ఘ೏

଴
଻ఠయ  ఘమ൫௫మା௬మ൯

ସ௖య൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ൨ ଷߩ      .ߩ݀ 

ଶܦ = න ൤ ଷఠ ఘమ൫௫మା௬మ൯

ସ௖൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య − ఠయ

௖య +
ఘ೏

଴
଻ఠయ  ఘమ൫௫మା௬మ൯

ସ௖య൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯మ൨ ହߩ      .ߩ݀ 
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Besides 

ଵܦ ≈
ଶݔ)3߱ + (ଶݕ

4ܿ(ܴଶ + ௗݖ
ଶ − ௗ)ଷݖ ݖ 2

⎣
⎢
⎢
⎢
⎡൫ܽଶ − ௗݖ

ଶ൯ଷ

6
−

3൫ܽଶ − ௗݖ
ଶ൯ସ

8(ܴଶ + ௗݖ
ଶ − (ௗݖ ݖ 2

+
3൫ܽଶ − ௗݖ

ଶ൯ହ

5(ܴଶ + ௗݖ
ଶ − ௗ)ଶݖ ݖ 2 ⎦

⎥
⎥
⎥
⎤

−
߱ଷ

ܿଷ
൫ܽଶ − ௗݖ

ଶ൯ଶ

4
+

7߱ଷ ଶݔ)  + (ଶݕ
4ܿଷ(ܴଶ + ௗݖ

ଶ − ௗ)ଶݖ ݖ 2

⎣
⎢
⎢
⎢
⎡൫ܽଶ − ௗݖ

ଶ൯ଷ

6
−

൫ܽଶ − ௗݖ
ଶ൯ସ

4(ܴଶ + ௗݖ
ଶ − (ௗݖ ݖ 2

+
3൫ܽଶ − ௗݖ

ଶ൯ହ

10(ܴଶ + ௗݖ
ଶ − ௗ)ଶݖ ݖ 2 ⎦

⎥
⎥
⎥
⎤

.

 

ଶܦ ≈
ଶݔ)3߱ + (ଶݕ

4ܿ(ܴଶ + ௗݖ
ଶ − ௗ)ଷݖ ݖ 2

⎣
⎢
⎢
⎢
⎡൫ܽଶ − ௗݖ

ଶ൯ସ

8
−

3൫ܽଶ − ௗݖ
ଶ൯ହ

10(ܴଶ + ௗݖ
ଶ − (ௗݖ ݖ 2

+
൫ܽଶ − ௗݖ

ଶ൯଺

2(ܴଶ + ௗݖ
ଶ − ௗ)ଶݖ ݖ 2 ⎦

⎥
⎥
⎥
⎤

−
߱ଷ

ܿଷ
൫ܽଶ − ௗݖ

ଶ൯ଷ

4
+

7߱ଷ ଶݔ)  + (ଶݕ
4ܿଷ(ܴଶ + ௗݖ

ଶ − ௗ)ଶݖ ݖ 2

⎣
⎢
⎢
⎢
⎡൫ܽଶ − ௗݖ

ଶ൯ସ

8
−

൫ܽଶ − ௗݖ
ଶ൯ହ

5(ܴଶ + ௗݖ
ଶ − (ௗݖ ݖ 2

+
൫ܽଶ − ௗݖ

ଶ൯଺

4(ܴଶ + ௗݖ
ଶ − ௗ)ଶݖ ݖ 2 ⎦

⎥
⎥
⎥
⎤

.

 

 (41) 

In addition, we have 

6 3 4 5 6I D D D D    , 

where 

ଷܦ = ቆߛ௖ −
଴ߩ  ߟ  ߨ 2 ௗݖ  

ଶ ௖ߛ 

3 ܿଶ ቇ ඲
ଷߩ   ߩ݀  

(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄

ఘ೏

଴

= ቆߛ௖ −
଴ߩ  ߟ  ߨ 2 ௗݖ  

ଶ ௖ߛ 

3 ܿଶ ቇ ቆඥܴଶ + ܽଶ − ௗݖ ݖ 2 +
ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2

ඥܴଶ + ܽଶ − ௗݖ ݖ 2
− 2ටܴଶ + ௗݖ

ଶ − ௗቇݖ ݖ 2 .

 

ସܦ = −
଴ߩ  ߟ  ߨ 2 ௖ߛ   

3 ܿଶ ඲
ହߩ   ߩ݀  

(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ଷߩ ଶ⁄

ఘ೏

଴

= −
଴ߩ  ߟ  ߨ 2 ௖ߛ   

3 ܿଶ

⎣
⎢
⎢
⎢
⎡ (ܴଶ + ܽଶ − ௗ)ଷݖ ݖ 2 ଶ⁄

3
+

8൫ܴଶ + ௗݖ
ଶ − ௗ൯ଷݖ ݖ 2 ଶ⁄

3
−

−2൫ܴଶ + ௗݖ
ଶ − ௗ൯ඥܴଶݖ ݖ 2 + ܽଶ − ௗݖ ݖ 2 −

൫ܴଶ + ௗݖ
ଶ − ௗ൯ଶݖ ݖ 2

ඥܴଶ + ܽଶ − ௗݖ ݖ 2 ⎦
⎥
⎥
⎥
⎤

.
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ହܦ =
ଶݔ)3 + ௖ߛ(ଶݕ

4
඲

ହߩ   ߩ݀  
(ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶ)଻ߩ ଶ⁄

ఘ೏

଴

=
ଶݔ)3 + ௖ߛ(ଶݕ

4

⎣
⎢
⎢
⎢
⎢
⎡−

1
ඥܴଶ + ܽଶ − ௗݖ ݖ 2

+
8

15ටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2

+
2൫ܴଶ + ௗݖ

ଶ − ௗ൯ݖ ݖ 2
3(ܴଶ + ܽଶ − ௗ)ଷݖ ݖ 2 ଶ⁄ −

−
൫ܴଶ + ௗݖ

ଶ − ௗ൯ଶݖ ݖ 2

5(ܴଶ + ܽଶ − ௗ)ହݖ ݖ 2 ଶ⁄ ⎦
⎥
⎥
⎥
⎥
⎤

.

 

଺ܦ = −
15 ߱ଶ ଶݔ)  + ௖ߛ(ଶݕ  

8 ܿଶ ඲
ହߩ   ߩ݀  

(ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ)ହߩ ଶ⁄

ఘ೏

଴

= −
15 ߱ଶ ଶݔ)  + ௖ߛ(ଶݕ  

8 ܿଶ

⎣
⎢
⎢
⎢
⎢
⎡ ඥܴଶ + ܽଶ − ௗݖ ݖ 2 +

2൫ܴଶ + ௗݖ
ଶ − ௗ൯ݖ ݖ 2

ඥܴଶ + ܽଶ − ௗݖ ݖ 2
−

−
8ටܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2

3
−

൫ܴଶ + ௗݖ
ଶ − ௗ൯ଶݖ ݖ 2

3(ܴଶ + ܽଶ − ௗ)ଷݖ ݖ 2 ଶ⁄ ⎦
⎥
⎥
⎥
⎥
⎤

.

 

 (42) 

Substituting in (40) s  with the differential 

dd z  and integrating over all the disks inside the 
sphere between a  and a , we arrive at the 
components xA  and yA  of the vector potential 
from the entire sphere: 

௫ܣ ≈
− ఓబ  ఠ  ఘబ ೜  ௫

ସ ∫ ହܫ ௗݖ ݀  
௔

ି௔ − ఓబ  ఠ  ఘబ ೜  ௬
ସ ∫ ଺ܫ ௗݖ ݀  

௔
ି௔ . 

௬ܣ ≈
− ఓబ  ఠ  ఘబ ೜  ௬

ସ ∫ ହܫ ௗݖ ݀  
௔

ି௔ + ఓబ  ఠ  ఘబ ೜  ௫
ସ ∫ ଺ܫ ௗݖ ݀  

௔
ି௔ . 

Here, we will take into account that the 
integrals 5I  and 6I  in (39) are calculated using 
the quantities 1D , 2D , 3D , 4D , 5D  and 6D  
from (41-42): 

௫ܣ ≈ −
଴ߤ ଴ ௤ߩ  ߱  ௖ߛ ݔ 

4
඲ ቆ1 −

଴ߩ  ߟ  ߨ 2 ௗݖ  
ଶ

3 ܿଶ ቇ ଵܦ ௗݖ ݀  

௔

ି௔

+
଴ߤ ߨ ଴ߩ  ߟ  ଴ ௤ߩ  ߱  ௖ߛ ݔ 

6 ܿଶ න ଶܦ ௗݖ ݀  

௔

ି௔

−
଴ߤ ଴ ௤ߩ  ߱  ݕ 

4
න(ܦଷ + ସܦ + ହܦ + ௗݖ ݀  (଺ܦ

௔

ି௔

.

 

௬ܣ ≈ −
଴ߤ ଴ ௤ߩ  ߱  ௖ߛ ݕ 

4
඲   ቆ1 −

଴ߩ  ߟ  ߨ 2 ௗݖ  
ଶ

3 ܿଶ ቇ ଵܦ ௗݖ ݀  

௔

ି௔

+
଴ߤ ߨ ଴ߩ  ߟ  ଴ ௤ߩ  ߱  ௖ߛ ݕ 

6 ܿଶ න ଶܦ ௗݖ ݀  

௔

ି௔

+
଴ߤ ଴ ௤ߩ  ߱  ݔ 

4
න(ܦଷ + ସܦ + ହܦ + ଺ܦ ௗݖ ݀ ( 

௔

ି௔

.

 

 (43) 
The integrals of the quantities 

2
0

12

21
3

dz D
c

  
 

 
, 2D , 3D , 4D , 5D  and 6D  

over the variable dz  are weakly dependent on z  
and in the first approximation are equal to: 



Review Article  Sergey G. Fedosin 

 394

඲ ቆ1 −
଴ߩ  ߟ  ߨ 2 ௗݖ  

ଶ

3 ܿଶ ቇ ଵܦ ௗݖ ݀   ≈

௔

ି௔
4 ߱  ܽ଻(ݔଶ + (ଶݕ

35 ܴܿ଺ −
4߱ଷܽହ

15ܿଷ +
4 ߱ଷ  ܽ଻(ݔଶ + (ଶݕ

15 ܿଷܴସ −
଴ߩ ߱  ߟ  ߨ 8  ܽଽ(ݔଶ + (ଶݕ

945 ܿଷܴ଺ .

 

∫ ଶܦ ௗݖ ݀  
௔

ି௔ ≈ ଼ ఠ ௔వ  ൫௫మା௬మ൯
ଵ଴ହ ௖ ோల − ଼ఠయ௔ళ

ଷହ௖య + ଼ఠయ  ௔వ൫௫మା௬మ൯
ସହ௖యோర . 

5 7
0

33 2 3

4 8
15 315

a

d
a

c cD d z a a
R c R
   



  , 

4 3

7
0
2

32
315

a

d
a

ca
c

D d z
R

  



 . 

 7

5

2 2

7

4
35

a

d
a

cD z
a

d
x y

R





 , 

 7

6

2 2 2

2 5

2
7

a

d
a

ca
c

D
x

d
y

R
z

 



 


 . 

Substituting these integrals into (43), we find: 

௫ܣ ≈ −
଴ߤ  ߱ଶ ଴ ௤ߩ   ܽଷߛ ݔ௖

5 ܿ
ቈ
ܽସ(ݔଶ + (ଶݕ

7 ܴ଺ −
߱ଶܽଶ

3ܿଶ +
߱ଶ  ܽସ(ݔଶ + (ଶݕ

3 ܿଶܴସ −
଴ߩ  ߟ  ߨ 2  ܽ଺(ݔଶ + (ଶݕ

27 ܿଶܴ଺ ቉ −

−
଴ߤ ଴ ௤ߩ  ߱   ܽ ହߛ ݕ௖

15ܴଷ ቈ1 −
଴ߩ  ߟ  ߨ 10  ܽଶ

21 ܿଶ +
3ܽଶ(ݔଶ + (ଶݕ

7ܴସ −
15 ߱ଶܽଶ ଶݔ)  + (ଶݕ

14 ܿଶܴଶ ቉ .
 

௬ܣ ≈ −
଴ߤ  ߱ଶ ଴ ௤ߩ   ܽଷߛ ݕ௖

5ܿ
ቈ
ܽସ(ݔଶ + (ଶݕ

7ܴ଺ −
߱ଶܽଶ

3ܿଶ +
߱ଶ  ܽସ(ݔଶ + (ଶݕ

3 ܿଶܴସ −
଴ߩ  ߟ  ߨ 2  ܽ଺(ݔଶ + (ଶݕ

27 ܿଶܴ଺ ቉ +

+
଴ߤ ଴ ௤ߩ  ߱    ܽହߛ ݔ௖

15ܴଷ ቈ1 −
଴ߩ  ߟ  ߨ 10  ܽଶ

21 ܿଶ +
3ܽଶ(ݔଶ + (ଶݕ

7ܴସ −
15߱ଶ  ܽଶ(ݔଶ +  (ଶݕ

14 ܿଶܴଶ ቉ .
 

 (44) 

In view of the approximate nature of our 
calculations, we should define more precisely all 
the terms in (44) by substituting the components 

xA  and yA  of the vector potential into the 
Laplace equation (10), which has the form 

0 A . For this equation to hold, we need to 
perform simplification in (44), eliminating the 

small terms and assuming 
2 2

2 1x y
R


 . 

Previously we used a similar approach, in order 
to pass on from (32) to expression (33) for the 
potential. This gives the following expression, 
which is valid at small z : 

௫ܣ ≈ ఓబ  ఠర  ఘబ ೜  ௔ఱ௫ ఊ೎

ଵହ ௖య − ఓబ  ఠ  ఘబ ೜  ௔ఱ௬ ఊ೎

ଵହோయ ቀ1 −
ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ − ଵହ ఠమ௔మ  
ଵସ ௖మ ቁ. 

௬ܣ ≈ ఓబ  ఠర  ఘబ ೜  ௔ఱ௬ ఊ೎

ଵହ௖య + ఓబ  ఠ  ఘబ ೜   ௔ఱ௫ ఊ೎

ଵହோయ ቀ1 −
ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ − ଵହ ఠమ  ௔మ  
ଵସ  ௖మ ቁ.         (45) 

Since in (35) 0d zA   for each rotating disk 

inside the sphere, the component zA  of the 
vector potential from the entire rotating sphere 
with charged particles is also equal to zero. 

2.4 Electric and Magnetic Fields in the Middle 
Zone 

The electric field strength E  and the 
magnetic field induction B  are given by 
standard formulae: 

t
 

  

AE ,  B A .         (46) 

Since the sphere rotates at the constant 
angular velocity  , the vector potential 
components in (45) do not depend on time and 
then the field E  is defined only by the gradient 
of the scalar potential  . Let us substitute (33) 
and (45) into (46) and find the fields E  and B , 
taking into account that 0zA  : 
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2 2

3 2
04 10

1q a
R c

 


 
  

 
E R

. 

௫ܤ = డ ஺೥
డ ௬

−
డ ஺೤

డ ௭
≈ ఓబ  ఠ  ఘబ ೜  ௔ఱ௫ ௭ ఊ೎

ହ ோఱ ቀ1 −
ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ − ଵହ ఠమ௔మ  
ଵସ ௖మ ቁ. 

௬ܤ = డ ஺ೣ
డ ௭

− డ ஺೥
డ ௫

≈ ఓబ  ఠ  ఘబ ೜  ௔ఱ௬ ௭ ఊ೎

ହ ோఱ ቀ1 −
ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ − ଵହ ఠమ௔మ  
ଵସ ௖మ ቁ. 

௭ܤ =
డ ஺೤

డ ௫
− డ ஺ೣ

డ ௬
≈

ఓబ  ఠ  ఘబ ೜   ௔ఱ  ఊ೎൫ଶோమିଷ௫మିଷ௬మ൯
ଵହ ோఱ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ −
ଵହ ఠమ௔మ  

ଵସ ௖మ ቁ.           (47) 

Since we simplified (44) and used for the 
vector potential (45), (47) contains only the 
dipole component of the magnetic field. 

In the special theory of relativity, the wave 
equations are valid for the electric and magnetic 
fields [15]: 

2

0 02 2
0

1 1 ( )qc t t


   


 
       

 
E jE E , 

2

02 2
1
c t


 

     


BB B j . 

Since there are no charges or currents outside 
the rotating charged sphere, the right-hand side 
of the wave equations becomes equal to zero. In 
addition, at the constant velocity of rotation, E  
and B  do not depend on time. As a result, the 
wave equations for the fields turn into Laplace 
equations: 

0 E , 0 B .          (48) 

By directly substituting the components of 
the electric field E  and the magnetic field B  
from (47) into (48), we can make sure that the 
fields in the middle zone satisfy the Laplace 
equations. 

2.5 Scalar Potential in the Far Zone 

As conditions for the far zone, we can 

consider the conditions R a , 
ˆ

1PR
c


 . 

Since 
ˆˆ PR

c
   , in this case, we can write: 

 ˆcos cos P    ,  ˆsin sin P    ,  (49) 

where, in view of (13), the angle 

߶௉ = ఠ ோ෠ು
௖

= ఠ 
௖

 ඨ
ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶߩ

cos߶෠ݔ ߩ 2− − sin߶෠ݕ ߩ 2
≈ ఠ ோ 

௖
. 

Substitution of (49) into (16) gives the 
following: 

߮ௗ =

௦ ఘబ ೜

ସ గ ఌబ
඲ ඲ ఊᇲ  ఘ  ௗఘ  ௗథ 

ோ෠ುାഘ ഐ ೣ౩౟౤൫ഝషഝು൯
೎ ିഘ ഐ ೤ౙ౥౩൫ഝషഝು൯

೎

ఘ೏

଴

ଶగ

଴

.  

      (50) 

where 

෠ܴ௉ = ඨܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ − ߶)cosݔ ߩ 2 − ߶௉ )

߶)sinݕ ߩ 2− − ߶௉) . 

Let us take into account the following 
transformations for the expression under the 
integral sign: 

ܪ =
1 

෠ܴ௉ + ߶)sinݔ ߩ ߱ − ߶௉)
ܿ − ߶)cosݕ ߩ ߱ − ߶௉)

ܿ

=

൫ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶ൯ିଵߩ ଶ⁄

 

ඨ1 − ߶)cosݔ]   ߩ 2 − ߶௉) + ߶)sinݕ − ߶௉)]
ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2 + ଶߩ + ߶)sinݔ]   ߩ ߱ − ߶௉) − ߶)cosݕ − ߶௉)]

ܿටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

. 

In this expression, we use the rule for 
expanding the square root in the form 

2

1 1
2 8
      and an approximate 

expression 
ଵ

ଵିഃ
మିഃమ

ఴ ାఊ
≈ 1 + ఋ

ଶ
+ ଷ ఋమ

଼
− ߛ − 1)ߜ ߛ + (ߜ +  :ଶߛ
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ܪ ≈ ⎝

⎜
⎜
⎜
⎜
⎜
⎛

ଵାഐ   ൣೣౙ౥౩൫ഝషഝು൯శ೤౩౟౤൫ഝషഝು൯൧
ೃమశ೥೏

మ షమ ೥ ೥೏శഐమ ାయഐమ    ൣೣౙ౥౩൫ഝషഝು൯శ೤౩౟౤൫ഝషഝು൯൧మ

మቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

మ ି

ିഘ ഐ   ൣೣ౩౟౤൫ഝషഝು൯ష೤ౙ౥౩൫ഝషഝು൯൧

೎ටೃమశ೥೏
మ షమ ೥ ೥೏శഐమ

ାഘమ  ഐమ    ൣೣ౩౟౤൫ഝషഝು൯ష೤ౙ౥౩൫ഝషഝು൯൧మ
 

೎మቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

ି

ିమഘ ഐమ    ൣೣ౩౟౤൫ഝషഝು൯ష೤ౙ౥౩൫ഝషഝು൯൧ൣೣౙ౥౩൫ഝషഝು൯శ೤౩౟౤൫ഝషഝು൯൧

೎ቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

య మ⁄
⎠

⎟
⎟
⎟
⎟
⎟
⎞

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

. (51)

In view of (51), for the potential (50), we can 
write the following: 

2
0

0 0 04

d
q

d

s
H d d






   


   .         (52) 

As the distance R  increases, the angle 
ˆ

P
P

R R
c c

     can first reach the value 
2


, 

then  , 
3
2


, 2 , … etc. In the general case, 

the angle P  will pass through the values 
2

k
, 

where 1,2,3...k   

Let us integrate the quantity H  in (52) over 
the angle  , assuming the angle P  to be 
constant and almost independent of  . Taking 

into account that the integrals of  cos P  , 

 sin P   and    sin cosP P      
between the limits of 0 and 2  are equal to 
zero, we find: 

߮ௗ ≈ ௦ ఘబ ೜

ଶ ఌబ

⌡
⎮
⎮
⎮
⌠ ቎ଵା ഘమ  ഐమ    ൫ೣమశ೤మ൯

మ ೎మቀೃమశ೥೏
మషమ ೥ ೥೏శഐమቁ

ା య ഐమ    ൫ೣమశ೤మ൯

రቀೃమశ೥೏
మ షమ ೥ ೥೏శഐమቁ

మ቏ఊᇲ  ఘ  ௗఘ

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

ఘ೏

଴

.      (53) 

If we substitute the expression for    from 
(27) into (53), then we will see that the potential 
can be represented in the form 

 0
1 2 3 4

0

2
2

q c
d

s
I I I I





    , where the 

integrals 1I , 2I , 3I  and 4I  were found in (28). 

The sum of the potentials d  of all the 
sphere’s layers gives the sought-for sphere 
potential. Assuming ds d z  and substituting 
the sum of the layers’ potentials with the integral 
over the variable dz , for the sphere potential we 
can write: 

߮ ≈ ఘబ ೜  ఊ೎

ଶ ఌబ
∫ ଵܫ) + ଶܫ + ଷܫ2 + ௗݖ ݀(ସܫ2

௔
ି௔ ≈

ఘబ ೜  ௔య  ఊ೎

ଷ ఌబ  ோ
ቂ1 − ଶ గ  ఎ  ఘబ  ௔మ

ହ ௖మ + ଷ ௔మ  ൫௫మା௬మ൯
ଵ଴ ோర + ఠమ  ௔మ  ൫௫మା௬మ൯

ହ ௖మோమ ቃ .
       (54) 

The scalar potential (54) in the far zone 
differs from the potential (29) in the middle zone 
in the fact that in (54), the last term in the square 
brackets is twice as large. 

In (54), we can substitute (31) and express the 
potential in terms of the charge q . To ensure 
that the potential corresponds to the Laplace 
equation, in (54) we will eliminate the small 

term 
 2 2 2

4

3
10

a x y
R


 and assume that 

2 2 2x y R  , which is true at small z . As a 
result, we obtain the following: 

2 2

2
0

1
4 5

q a
R c











  

 
.         (55) 

We suppose that the small difference between 
the potentials in (55) and in (33) is associated 
with the fact that the solutions for these 
potentials were obtained in two different ways 
and with different degrees of approximation. 
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2.6 Vector Potential in the Far Zone 

We will transform (18) using (51) in the same 
way as potential (50) was transformed and we 
will also take into account (49). Then, for the 
vector potential components of the rotating disk, 
we find the following: 

ௗ ௫ܣ ≈ − ఓబ  ఠ ௦ ఘబ ೜

ସ గ
ධ ∫ ᇱߛ ܪ   sin(߶ −ఘ೏

଴
ଶగ

଴
߶௉)  ߩଶ ݀  ߩ݀  ߶. 

ௗ ௬ܣ ≈ ఓబ  ఠ ௦ ఘబ ೜

ସ గ
ධ ∫ ᇱߛ ܪ    cos(߶ −ఘ೏

଴
ଶగ

଴
߶௉)  ߩଶ ݀  ߩ݀  ߶. 

At large distances, we may neglect the 

change in the angle 
ˆ

P
P

R R
c c

     when 

integrating over the angle   and consider P  a 
constant. This makes it easier to integrate 
components d xA  and d yA . Taking into account 

the expression for H  from (51), we find: 

ௗ ௫ܣ ≈ ఓబ  ఠమ  ௦ ఘబ ೜  ௫
ସ ௖

න ఊᇲ   ఘయ  ௗఘ
ோమା௭೏

మିଶ ௭ ௭೏ାఘమ  
ఘ೏

଴
−

ఓబ  ఠ ௦ ఘబ ೜  ௬
ସ

඲ ఊᇲ   ఘయ  ௗఘ

൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య మ⁄  

ఘ೏

଴

. 

ௗ ௬ܣ ≈ ఓబ  ఠమ  ௦ ఘబ ೜  ௬
ସ ௖

න ఊᇲ   ఘయ  ௗఘ
ோమା௭೏

మିଶ ௭ ௭೏ାఘమ  
ఘ೏

଴
+

ఓబ  ఠ ௦ ఘబ ೜  ௫
ସ

඲ ఊᇲ   ఘయ  ௗఘ

൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య మ⁄  

ఘ೏

଴

.        (56) 

If we substitute the Lorentz factor    from 
(27) into (56), the following integrals appear: 

଻ܫ = ௖ߛ   න ൤1 − ଶ గ  ఎ  ఘబ   ൫ఘమା௭೏
మ൯

ଷ ௖మ ൨ ఘయ  ௗఘ
ோమା௭೏

మିଶ ௭ ௭೏ାఘమ

ఘ೏

଴
. 

ܫ଼ =

௖ߛ   ඲ ൤1 −

ఘ೏

଴
ଶ గ  ఎ  ఘబ   ൫ఘమା௭೏

మ൯
ଷ ௖మ ൨ ఘయ  ௗఘ

൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమ൯య మ⁄ . 

Using the integrals 7I  and 8I , we can write 
(56) as follows: 

2
0 0 0 0

7 84 4
q q

d x

x y
c
s s

A I I
    

  , 

2
0 0 0 0

7 84 4
q q

d y

y x
c
s s

A I I
    

  .        (57) 

Let us calculate the integrals 7I  and 8I  

taking into account the relation 2 2
d da z   , 

expanding the denominators into series by the 

rule 211
1

 


 


, where 

2

2 2 2d dR z zz
 

 
 : 

଻ܫ ≈
൫ܽଶ − ௗݖ

ଶ൯ଶ

4(ܴଶ + ௗݖ
ଶ − (ௗݖ ݖ 2 ቆߛ௖ −

଴ߩ  ߟ  ߨ 2 ௗݖ 
ଶ ௖ߛ    

3 ܿଶ ቇ ൥1 −
2൫ܽଶ − ௗݖ

ଶ൯
3(ܴଶ + ௗݖ

ଶ − (ௗݖ ݖ 2 +
൫ܽଶ − ௗݖ

ଶ൯ଶ

2(ܴଶ + ௗݖ
ଶ − ௗ)ଶ൩ݖ ݖ 2 −

−
଴ߩ  ߟ  ߨ ௖൫ܽଶߛ  − ௗݖ

ଶ൯ଷ

9 ܿଶ(ܴଶ + ௗݖ
ଶ − (ௗݖ ݖ 2 ൥1 −

3൫ܽଶ − ௗݖ
ଶ൯

4(ܴଶ + ௗݖ
ଶ − (ௗݖ ݖ 2 +

3൫ܽଶ − ௗݖ
ଶ൯ଶ

5(ܴଶ + ௗݖ
ଶ − ௗ)ଶ൩ݖ ݖ 2 .

 

ܫ଼ = ቆߛ௖ −
଴ߩ  ߟ  ߨ 2 ௗݖ 

ଶ ௖ߛ 

3 ܿଶ ቇ ቈඥܴଶ + ܽଶ − ௗݖ ݖ 2 +
ܴଶ + ௗݖ

ଶ − ௗݖ ݖ 2

ඥܴଶ + ܽଶ − ௗݖ ݖ 2
− 2ටܴଶ + ௗݖ

ଶ − ௗ቉ݖ ݖ 2 −

−
଴ߩ  ߟ  ߨ 2 ௖ߛ 

3 ܿଶ

⎣
⎢
⎢
⎢
⎡(ܴଶ + ܽଶ − ௗ)ଷݖ ݖ 2 ଶ⁄

3
− 2൫ܴଶ + ௗݖ

ଶ − ௗ൯ඥܴଶݖ ݖ 2 + ܽଶ − ௗݖ ݖ 2 −

−
൫ܴଶ + ௗݖ

ଶ − ௗ൯ଶݖ ݖ 2

ඥܴଶ + ܽଶ − ௗݖ ݖ 2
+

8൫ܴଶ + ௗݖ
ଶ − ௗ൯ଷݖ ݖ 2 ଶ⁄

3 ⎦
⎥
⎥
⎥
⎤

.
 

 (58) 
The quantities d xA  and d yA  are the 

components of the vector potential from one thin 
disk. To pass on to the corresponding 
components of the potential from the entire 

sphere, in (57) it is necessary to set ds d z  and 
integrate over the variable dz  that specifies the 
position of the disks inside the sphere on the axis 
OZ : 
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0 0 0 0
7 8

2

4 4

a a
q q

x d d
a a

A I d z I d
x

c
z

y    

 

   , 

0 0 0 0
7 8

2

4 4

a a
q q

y d d
a a

x
A I d z I d

y
c

z
    

 

   .  

      (59) 

Substitution of (58) into (59) and subsequent 
integration over the variable dz  give the 
following: 

௫ܣ ≈ ఓబ  ఠమ  ఘబ ೜  ௔ఱ  ௫ ఊ೎

ଵହ ௖ ோమ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ   
ଶଵ ௖మ ቁ −

ఓబ  ఠ  ఘబ ೜  ௔ఱ  ௬ ఊ೎

ଵହோయ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ ቁ. 

௬ܣ ≈ ఓబ  ఠమ  ఘబ ೜  ௔ఱ  ௬ ఊ೎

ଵହ ௖ ோమ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ   
ଶଵ ௖మ ቁ +

ఓబ  ఠ  ఘబ ೜  ௔ఱ  ௫ ఊ೎

ଵହோయ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ ቁ.        (60) 

Here, only the last terms containing 3R  in the 
denominator exactly satisfy the Laplace 
equation. As for the first terms, the far zone 

condition 1R
c


  can be taken into account in 

them. This gives the following expressions: 

௫ܣ ≈ ఓబ  ఠ ఘబ ೜  ௔ఱ  ௫ ఊ೎

ଵହ ோయ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ   
ଶଵ ௖మ ቁ −

ఓబ  ఠ  ఘబ ೜  ௔ఱ  ௬ ఊ೎

ଵହோయ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ ቁ, 

௬ܣ ≈ ఓబ  ఠ ఘబ ೜  ௔ఱ  ௬ ఊ೎

ଵହ ோయ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ   
ଶଵ ௖మ ቁ +

ఓబ  ఠ  ఘబ ೜  ௔ఱ  ௫ ఊ೎

ଵହோయ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ ቁ, 

that satisfy the Laplace equation. The 
component 0zA   and therefore, zA  
automatically satisfies the Laplace equation. 

2.7 The Electric and Magnetic Fields in the 
Far Zone 

In order to find the fields E  and B , it is 
necessary to substitute (55) and (60) into (46): 

2

3 2
0

2

4 5
1q a

R c
 


 
  

 
E R

. 

௫ܤ = డ ஺೥
డ ௬

−
డ ஺೤

డ ௭
≈ ଶఓబ  ఠమ  ఘబ ೜  ௔ఱ  ௬ ௭ ఊ೎

ଵହ ௖ ோర ቀ1 −
ଵ଴ గ  ఎ  ఘబ  ௔మ   

ଶଵ ௖మ ቁ + ఓబ  ఠ  ఘబ ೜  ௔ఱ  ௫ ௭ ఊ೎

ହோఱ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ ቁ. 

௬ܤ = డ ஺ೣ
డ ௭

− డ ஺೥
డ ௫

≈ − ଶ ఓబ  ఠమ  ఘబ ೜  ௔ఱ  ௫ ௭ ఊ೎

ଵହ ௖ ோర ቀ1 −
ଵ଴ గ  ఎ  ఘబ  ௔మ   

ଶଵ ௖మ ቁ + ఓబ  ఠ  ఘబ ೜  ௔ఱ  ௬ ௭ ఊ೎

ହோఱ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ ቁ. 

௭ܤ =
డ ஺೤

డ ௫
− డ ஺ೣ

డ ௬
≈

ఓబ  ఠ  ఘబ ೜  ௔ఱ  ఊ೎൫ଶோమିଷ௫మିଷ௬మ൯
ଵହ ோఱ ቀ1 − ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ ቁ.  

 (61) 

The fields in (61) differ insignificantly from 
the fields in (47) in the middle zone due to the 

small additions proportional to the value 
2 2

2
a

c


. 

This difference can be considered the 
consequence of the fact that during calculations, 
different methods of obtaining an approximate 
solution were used. In addition, a rotational 
component of the magnetic field appears in the 
first terms in xB  and yB  in (61). 

2.8 Scalar Potential in the Near Zone 

In the near zone, the conditions R a , 
ˆ

1PR
c


  are met, so that the point P , where 

the potential is determined, is not far from the 
sphere. We can start with expression (21) for the 
potential d , generated by a thin disk-shaped 
layer inside the sphere, located on the axis OZ  
at the height dz . For the near zone, we can 

assume that the early time point 
ˆ

ˆ PRt t
c

   is 

approximately equal to ˆ PRt t
c

  . In this case, 

the quantity PR  in (11) differs a little from ˆ
PR  

in (13), since their difference is associated with a 
small difference between the angle   and the 

angle 
ˆˆ PR

c
   . Therefore, the quantity ˆ

PR  

in the denominator in (21) can be substituted 
with PR . 

The quantity PR  is the distance from the 
integration point inside the sphere to the 
observation point P . Further, we will assume 
that the point P  is located outside the sphere 

and the condition 
 sin cos

P

x y
R

c
  

  

is met. This allows us to expand the root in (21) 
so as to distinguish a small term containing the 
square of the speed of light: 
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ඨܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ − ߶cosݔ ߩ 2 − ߶sinݕ ߩ 2 +

߱ଶ ߶sinݔ)ଶߩ  − cos߶)ଶݕ  
ܿଶ

≈ ܴ௉ +
߱ଶ ߶sinݔ)ଶߩ  − cos߶)ଶݕ  

2 ܿଶܴ௉
.

 

Here, the quantity PR  represents the square 
root and corresponds to (11): 

ܴ௉ = ඨ ܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 + ଶߩ

߶cosݔ ߩ 2− −  sin߶.        (62)ݕ ߩ 2

Now, the denominator in (21) can be 
transformed by the rule 

1 1 1
P P PR R R




 
    

. The potential d  is 

generated by one layer in the form of a thin disk 

of radius 2 2
d da z   . The total potential of 

the sphere is the sum of the potentials of all the 
layers and this sum, in view of the equality 

ds d z , can be substituted with the integral: 

߮ ≈

ఘబ ೜

ସ గ ఌబ
඲ ඲ න ൤1 − ఠమ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ  

ଶ ௖మோು
మ +

ଶగ

଴

ఘ೏

଴

௔

ି௔
ఠమ  ఘ ௫

௖మ cos߶ + ఠమ  ఘ ௬
௖మ sin߶൨ ఊᇲ  ఘ  ௗఘ  ௗథ  ௗ ௭೏

ோು
.     (63) 

In (63), the expression in square brackets 
depends on the angle  , as well as PR  
according to (62). When integrating over the 
angle, we need four integrals: 

ଽܫ = න ௗథ 
ோು

ଶగ

଴
=

඲ ௗథ 

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమିଶ ఘ ௫ୡ୭ୱథିଶ ఘ ௬ୱ୧୬థ

ଶగ

଴

. 

ଵ଴ܫ =

඲ (௫ୱ୧୬థି௬ୡ୭ୱథ)మ  

൫ோమା௭೏
మିଶ ௭ ௭೏ାఘమିଶ ఘ ௫ୡ୭ୱథିଶ ఘ ௬ୱ୧୬థ൯య మ⁄ ݀߶

ଶగ

଴
. 

ଵଵܫ =

඲ ୡ୭ୱథ

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమିଶ ఘ ௫ୡ୭ୱథିଶ ఘ ௬ୱ୧୬థ

݀߶

ଶగ

଴

. 

ଵଶܫ =

඲ ୱ୧୬థ

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమିଶ ఘ ௫ୡ୭ୱథିଶ ఘ ௬ୱ୧୬థ

݀߶

ଶగ

଴

.  

                         (64) 

As shown in [16], integrals (64) are expressed 
in terms of the elliptic integrals  
ܧ ቀ݇, గ

ଶ
ቁ and ܨ ቀ݇, గ

ଶ
ቁ.  Taking into account (64), 

as well as (27) for   , (63) will be written as 
follows: 

߮ ≈ ఘబ ೜   ఊ೎

ସ గ ఌబ
ඳ ඳ ቐ

൤1 − ଶ గ  ఎ  ఘబ   ൫ఘమା௭೏
మ൯

ଷ ௖మ ൨ ଽܫ − ఠమ  ఘమ  
ଶ ௖మ ଵ଴ܫ +

+ ఠమ  ఘ ௫
௖మ ଵଵܫ + ఠమ  ఘ ௬

௖మ ଵଶܫ

ቑ ௗݖ ݀   ߩ݀  ߩ

ఘ೏

଴

௔

ି௔

.

This expression shows that we need to 

calculate the integrals 9
0

d

I d


  , 3
9

0

d

I d


  , 

3
10

0

d

I d


  , 2
11

0

d

I d


  , 2
12

0

d

I d


  . To do 

this, it is necessary to represent the quantities 9I , 

10I , 11I  and 12I  so that the variable   appears 
in them in an explicit form. For this purpose, we 

will expand the elliptic integrals ,
2

E k  
 
 

 and 

,
2

F k  
 
 

 into series by the standard formulae: 

ܨ ቀ݇, గ
ଶ

ቁ = గ
ଶ

ቀ1 + ௞మ

ସ
+ ଽ௞ర

଺ସ
. . . ቁ =

గ
ଶ

෍ ቀ (ଶ௡)!
ଶమ೙௡!మቁ

ஶ

௡ୀ଴

ଶ
݇ଶ௡. 

ܧ ቀ݇, గ
ଶ

ቁ = గ
ଶ

ቀ1 − ௞మ

ସ
− ଷ௞ర

଺ସ
. . . ቁ =

గ
ଶ

෍ ቀ (ଶ௡)!
ଶమ೙௡!మቁ

ஶ

௡ୀ଴

ଶ
௞మ೙

ଵିଶ௡
.         (65) 
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In (65), we take into account the first two 

expansion terms ,
2

F k  
 
 

 and substitute them 

into 9I  and then substitute three terms of each 
expansion into 10I , 11I  и 12I . The quantities ܫଵ଴, 

11I  and 12I  are proportional to each other, so 
that their substitution into the expression for the 
potential leads to cancellation of the terms: 

߮ ≈ ఘబ ೜   ఊ೎

ସ గ ఌబ
඲ න ൜൤1 − ଶ గ  ఎ  ఘబ   ൫ఘమା௭೏

మ൯
ଷ ௖మ ൨ ଽܫ +

ఘ೏

଴

௔

ି௔
ఠమ  ఘమ  

ଶ ௖మ ଵ଴ൠܫ  .ௗݖ ݀   ߩ݀  ߩ

Now, we can calculate the integrals 

1 9
0

d

H I d


   , 3
2 9

0

d

H I d


                         

and 3
3 10

0

d

H I d


    and then express the 

potential in terms of integrals over the variable 
dz  of the quantities 1H , 2H  and 3H  [16]: 

߮ ≈ ఘబ ೜   ఊ೎

ସ గ ఌబ
∫ ଵܪ ௗݖ ݀  

௔
ି௔ + ఠమఘబ ೜   ఊ೎

଼ గ ௖మఌబ
∫ ଷܪ ௗݖ ݀  

௔
ି௔ −

ఎ  ఘబ   ఘబ ೜   ఊ೎

଺  ௖మఌబ
∫ ௗݖ

ଶ ଵܪ  ௗݖ ݀  
௔

ି௔ −
ఎ  ఘబ  ఘబ ೜   ఊ೎

଺ ௖మఌబ
∫ ଶܪ ௗݖ ݀  

௔
ି௔   .        (66) 

Due to the cumbersomeness of the 
expressions for 1H , 2H  and 3H , integration in 
(66) becomes difficult; besides, the solution is 
expressed in terms of special functions and 
cannot be represented in an explicit form without 
expansion into series. In this regard, we will 
consider here only three simplest cases. 

The first term on the right-hand side of (66), 

that is, the term 0
1

04
c

a
q

d
a

H d z








   , does not 

contain the speed of light and does not depend 
on the angular velocity of rotation  . In the case 
of a classical uniform solid body and in the 

absence of rotation, this term should define the 
scalar potential in accordance with Coulomb 
law. Indeed, if we calculate   using 1H  on the 
axis OZ , on condition that 0x y  , z R , 
then we will obtain: 

ݖ)ଵܪ = ܴ) = ඥܴଶߨ2 + ܽଶ − ௗݖ ܴ 2 −
ܴ)ߨ2 −  .(ௗݖ

߮ᇱ(ݖ = ܴ) = ఘబ ೜   ఊ೎

ସ గ ఌబ
∫ ଵܪ ݖ)  = ௗݖ ݀  (ܴ

௔
ି௔ =

ఘబ ೜  ௔య  ఊ೎

ଷ ఌబ  ோ
.           (67) 

In a solid body, the Lorentz factor at the 
center of the sphere is 1c  . Taking into 
account that the electric charge of a uniformly 

charged solid spherical body is 0
34

3
qq
a 

 , 

we have:  
04

qz R
R


 

   , which 

corresponds to the Coulomb law on the axis ܱܼ. 

In the case of a relativistic uniform system, 
potential (66) on the axis ܱܼ, on condition that 

0x y  , z R , will depend only on 1H  and 

2H , since 3H  vanishes. Since 

ݖ)ଶܪ = ܴ) = ଶగ
ଷ

൫ܽଶ − 2ܴଶ − ௗݖ3
ଶ +

ௗ൯ඥܴଶݖ ܴ 4 + ܽଶ − ௗݖ ܴ 2 + ସగ
ଷ

(ܴ −  ,ௗ)ଷݖ

then, in view of (67) and (31), potential (66) 
becomes equal to: 

ݖ)߮ = ܴ) ≈ ఘబ ೜  ௔య  ఊ೎

ଷ ఌబ  ோ
ቀ1 − ଶగ ఎ  ఘబ    ௔మ

ହ ௖మ ቁ ≈ ௤ഘ
ସ గ ఌబ  ோ

.   (68) 

Determination of the potential on the sphere’s 
surface, where 0z  , R a , is of particular 
interest. Using 1H  from [16], we will express 

1

a

d
a

H d z

  in (66) in the following form: 

∫ ଵܪ ௗݖ ݀  
௔

ି௔ = ଵଷܫߨ2 − ߨ2 ඲ ටܴଶ + ௗݖ
ଶ − ௗݖ ݖ 2 ௗݖ ݀  

௔

ି௔

+ ଵସܫߨ2

ଶݔ)ߨ2− + (ଶݕ ඲
ටோమା௭೏

మିଶ ௭ ௭೏

(௭ି௭೏)మ ௗݖ ݀  

௔

ି௔

+ ଵହܫߨ2 + ଵ଺ܫߨ2 − ଵ଻ܫߨ2  .

 (69)

Here,  
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ଵଷܫ = ඳ ඨܴଶ + ܽଶ − ௗݖ ݖ 2 + 2  ටܽଶ − ௗݖ
ଶඥݔଶ + ଶݕ ௗݖ ݀  

௔

ି௔

. 

ଵସܫ = ଶݔ) + ଶ)ଶݕ

⌡
⎮
⎮
⌠

ௗ ௭೏

(௭ି௭೏)మඨோమା௔మିଶ ௭ ௭೏ାଶ ට௔మି௭೏
మ  ඥ௫మା௬మ

  

௔

ି௔

. 

ଵହܫ = ଶݔ) + ଶ)ଷݕ ଶ⁄

⌡
⎮
⎮
⌠ ට௔మି௭೏

మ

(௭ି௭೏)మඨோమା௔మିଶ ௭ ௭೏ାଶ ට௔మି௭೏
మ  ඥ௫మା௬మ

ௗݖ ݀  

௔

ି௔

. 

ଵ଺ܫ = ଶݔ) + (ଶݕ

⌡
⎮
⎮
⌠

ଵ

ඨோమା௔మିଶ ௭ ௭೏ାଶ ට௔మି௭೏
మ  ඥ௫మା௬మ

ௗݖ ݀  

௔

ି௔

. 

ଵ଻ܫ = ඥݔଶ + ଶݕ

⌡
⎮
⎮
⌠ ට௔మି௭೏

మ

ඨோమା௔మିଶ ௭ ௭೏ାଶ ට௔మି௭೏
మ  ඥ௫మା௬మ

ௗݖ ݀  

௔

ି௔

. 

When 0z  , R a , all the integrals in (69) 
are taken exactly, without applying elliptic 
integrals, by using substitution sin 2dz a  . In 
particular, we have: 

 
2

13
8 2

3
aI R a  . 

 
2

14

23 2ln tg
4 48

I a aR a      
 

. 

 
2 2

15
2 5 ln tg
4 4 8
a aI R a       

 
. 

  2
16

22 2 2 ln tg
8

a aI R a   
 
 

. 

 
2

2
17

2 2 2 ln tg
3 8

aI R a a      
 

.        (70) 

Substituting (70) into (69), we find: 

∫ ܴ)ଵܪ = ௗݖ ݀(ܽ
௔

ି௔ = ߨ2 ቂଵ଺√ଶ௔మ

ଷ
+

5ܽଶlntg ቀగ
଼

ቁ − 3ܽଶln൫1 + √2൯ቃ ≈  .ଶܽ ߨ 0,98

On the other hand, for the Coulomb law to 
hold true for a fixed solid body at 0z  , R a , 
in (66), only the first term is taken into account 

and it must be 
2

2
1

4 1,32
3

a

d
a

a aH d z 




 . The 

obtained above value 0.98 ߨ ܽଶ turns out to be 
26% less. The difference arose from the fact that 
when calculating the integrals 9I  and 10I , 
expansion (65) of complete elliptic integrals was 
used only up to the second- and third-order 
terms, respectively. For greater accuracy, an 
increased number of expansion terms should be 
used. 

Thus, it can be stated that the scalar potential 
outside the sphere is determined exactly on the 
axis OZ and in the other directions, we obtain 
only an approximate estimate, depending on the 
number of expansion terms used in (65). 
Nevertheless, since 1H  does not depend on 
either the speed of light or the angular velocity 
of rotation  , this also applies to the potential 

0
1

04
c

a
q

d
a

H d z








    in (66). This means that 

the value of the potential   in an arbitrary 
direction cannot differ significantly from the 
value  z R   in (67) on the axis OZ  and 

from  z R   in (68). Indeed, the dependence 
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of the potential on the direction of the radius-
vector R  from the center of the sphere to the 
point with coordinates , ,x y z , where the 
potential is calculated, could arise due to 
rotation. However, the potential   does not 
depend on   and for the sphere at rest with 

0  , the potential is symmetric with respect to 
the choice of direction of the vector R . 

In this regard, we will assume that in (66), 

߮ᇱ = ఘబ ೜   ఊ೎

ସ గ ఌబ
∫ ଵܪ ௗݖ ݀  

௔
ି௔ ≈ ߮ᇱ(ݖ = ܴ) = ఘబ ೜  ௔యఊ೎

ଷ ఌబ  ோ
.  

                                                                                  (71) 

Calculating the last three terms on the right-
hand side of (66) in accordance with [16], taking 
into account (31), we find the potential at rather 
large R : 

߮(ܴ >> ܽ) ≈ ௤ഘ
ସ గ ఌబ  ோ 

൤1 +    ఠమ௔మ(௫మା௬మ)
ଵ଴  ௖మோమ ൬1 −

ଶଶହగ௔ඥ௫మା௬మ

ଵଶ଼ோమ − ଵହ௔మ

ଵସோమ൰൨.          (72) 

Potential (72) actually has the same 
dependence on the angular velocity   as 
potential (32) in the middle zone, but it is not 
exact in the near zone, where the radius R  is not 
much larger than the sphere’s radius a . 

We can also estimate the potential in the case 
when 0z  , R a  and all the integrals are 
taken quite easily. In this case, we find: 

∫ ଷܪ   (ܴ = ௗݖ ݀(ܽ
௔

ି௔ = − ଵଶ଻ଽ√ଶగ௔ర

ଶସ଴
−

ସଶ଻గ௔ర

ଵ଺
lntg ቀగ

଼
ቁ ≈  .ସܽߨ  15,98

Instead of (72) for the potential, we obtain the 
following: 

 
2 2

2
0

1
4

6R a
a

q a
c




 
   

 
.        (73) 

Comparison of (73) with (72) shows that in 
our calculations at 0z   on the surface of a 
rotating sphere, the correction with respect to the 
potential of a fixed sphere reaches the value of 

the order of 
2 2

2

6 a
c


. 

2.9. Vector Potential in the Near Zone 
Based on the similarity of formulae for scalar 

potential (16) and vector potential (18), in view 
of (63), we can express the components of the 
vector potential of the rotating disk in the near 
zone: 

ௗ ௫ܣ ≈ − ఓబ  ఠ  ௦ ఘబ ೜

ସ గ
ඳ ඳ ቎

1 − ఠమ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ  
ଶ ௖మோು

మ +

+ ఠమ  ఘ ௫
௖మ cos߶ + ఠమ  ఘ ௬

௖మ sin߶
቏ ఊᇲ   ୱ୧୬థ෡   ఘమ  ௗఘ  ௗథ 

ோು

ఘ೏

଴

ଶగ

଴

. 

ௗ ௬ܣ ≈ ఓబ  ఠ  ௦ ఘబ ೜

ସ గ
ඳ ඳ ቎

1 − ఠమ  ఘమ(௫ୱ୧୬థି௬ୡ୭ୱథ)మ  
ଶ ௖మோು

మ +

+ ఠమ  ఘ ௫
௖మ cos߶ + ఠమ  ఘ ௬

௖మ sin߶
቏ ఊᇲ   ୡ୭ୱథ෡   ఘమ  ௗఘ  ௗథ 

ோು

ఘ೏

଴

ଶగ

଴

. 

Assuming ˆ
P PR R , instead of (19), we have 

the following: 

ˆcos cos sinPR
c


    , 

ˆsin sin cosPR
c


    . 

Taking this into account, we will transform 
the vector potential components d xA  and d yA : 
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ௗ ௫ܣ ≈ −
଴ߤ ଴ ௤ߩ ݏ ߱ 

ߨ 4

⌡
⎮
⎮
⎮
⌠

⌡
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡1 −

߱ଶ ߶sinݔ)ଶߩ  − cos߶)ଶݕ  
2 ܿଶܴ௉

ଶ +

+
߱ଶ ݔ ߩ 

ܿଶ cos߶ +
߱ଶ ݕ ߩ 

ܿଶ sin߶ ⎦
⎥
⎥
⎥
⎤ ᇱߛ    sin߶  ߩଶ  ߶݀  ߩ݀ 

ܴ௉

ఘ೏

଴

ଶగ

଴

+

+
଴ߤ  ߱ଶ ଴ ௤ߩ ݏ 

ܿ ߨ 4

⌡
⎮
⎮
⎮
⌠

⌡
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡1 −

߱ଶ ߶sinݔ)ଶߩ  − cos߶)ଶݕ  
2 ܿଶܴ௉

ଶ +

+
߱ଶ ݔ ߩ 

ܿଶ cos߶ +
߱ଶ ݕ ߩ 

ܿଶ sin߶ ⎦
⎥
⎥
⎥
⎤

ᇱߛ   cos߶  ߩଶ ߶݀  ߩ݀ 

ఘ೏

଴

ଶగ

଴

.

 

ௗ ௬ܣ ≈
଴ߤ ଴ ௤ߩ ݏ ߱ 

ߨ 4

⌡
⎮
⎮
⎮
⌠

⌡
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡1 −

߱ଶ ߶sinݔ)ଶߩ  − cos߶)ଶݕ  
2 ܿଶܴ௉

ଶ +

+
߱ଶ ݔ ߩ 

ܿଶ cos߶ +
߱ଶ ݕ ߩ 

ܿଶ sin߶ ⎦
⎥
⎥
⎥
⎤ ᇱߛ   cos߶  ߩଶ ݀  ߩ݀  ߶ 

ܴ௉

ఘ೏

଴

ଶగ

଴

+

+
଴ߤ  ߱ଶ ଴ ௤ߩ ݏ 

ܿ ߨ 4

⌡
⎮
⎮
⎮
⌠

⌡
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎡1 −

߱ଶ ߶sinݔ)ଶߩ  − cos߶)ଶݕ  
2 ܿଶܴ௉

ଶ +

+
߱ଶ ݔ ߩ 

ܿଶ cos߶ +
߱ଶ ݕ ߩ 

ܿଶ sin߶ ⎦
⎥
⎥
⎥
⎤

ᇱߛ    sin߶  ߩଶ ݀  ߩ݀  ߶

ఘ೏

଴

ଶగ

଴

.

 

(74) 

Here, PR  is defined in (62). After integration over the angle   and the 
cylindrical coordinate  , the following is 
obtained: 

௫ܣ ≈ −
଴ߤ ଴ ௤ߩ  ߱  ௖ߛ   ݕ   

4

⌡
⎮
⎮
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ቆ1 −

଴ߩ  ߟ  ߨ 2 ௗݖ  
ଶ

3 ܿଶ ቇ ଶ଺ܫ −
  ଴ߩ  ߟ  ߨ 2

3 ܿଶ ଶ଼ܫ +
߱ଶ  
ܿଶ ଶହܫ +

+
߱ଶඥݔଶ + ଶݕ  

ܿଶ ଶ଻ܫ +
ଶݔ଴ඥߩ  ߟ  ߨ  3  + ଶݕ

ܿଶ ଷ଴ܫ +

+ ൭
଴ߩ  ߟ  ߨ  3  ௗݖ  

ଶඥݔଶ + ଶݕ

ܿଶ −
9  ඥݔଶ + ଶݕ

2 ൱ ଶଽܫ
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ௗݖ ݀

௔

ି௔

−

଴ߤ  ߱ସߩ଴ ௤ ௖ߛ  ݔ   
192  ܿଷ(ݔଶ + (ଶݕ න[(ܴଶ + ܽଶ − ௗ)ଷݖ ݖ 2 − (ܴଶ + ௗݖ

ଶ − ௗ)ଷݖ ݖ 2 − ଶݔ)15 + ଶ)(ܽଶݕ − ௗݖ
ଶ)ଶ]݀ ݖௗ

௔

ି௔

.

 

௬ܣ ≈
଴ߤ ଴ ௤ߩ ߱  ௖ߛ  ݔ 

4

⌡
⎮
⎮
⎮
⎮
⎮
⌠

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ቆ1 −

଴ߩ  ߟ  ߨ 2 ௗݖ  
ଶ

3 ܿଶ ቇ ଶ଺ܫ −
଴ߩ  ߟ  ߨ 2   

3 ܿଶ ଶ଼ܫ +
߱ଶ

ܿଶ ଶହܫ +

+
߱ଶඥݔଶ + ଶݕ

ܿଶ ଶ଻ܫ +
ଶݔ଴ඥߩ  ߟ  ߨ  3 + ଶݕ

ܿଶ ଷ଴ܫ +

+ ൭
଴ߩ  ߟ  ߨ 3 ௗݖ  

ଶඥݔଶ + ଶݕ

ܿଶ −
9  ඥݔଶ + ଶݕ

2 ൱ ଶଽܫ
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

ௗݖ ݀

௔

ି௔

−

଴ߤ  ߱ସ ଴ ௤ߩ  ௖ߛ  ݕ   
192 ܿଷ(ݔଶ + (ଶݕ න[(ܴଶ + ܽଶ − ௗ)ଷݖ ݖ 2 − (ܴଶ + ௗݖ

ଶ − ௗ)ଷݖ ݖ 2 − ଶݔ)15 + ଶ)(ܽଶݕ − ௗݖ
ଶ)ଶ]݀ ݖௗ

௔

ି௔

.

 

(75) 
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Here, the integrals 25I , 26I , 27I , 28I , 29I  and 

30I  are calculated in [16].  

It should be recalled that in the course of 
calculations, the integrals 11I  and 12I , defined in 
(64), were calculated approximately, by using in 
(65) expansion up to the second-order terms. The 
same holds true for some integrals that appear 
when integrating over the angle  . 

A similar situation took place in the previous 
section, where we found that deviation of the 
scalar potential in our calculations in the 
equatorial plane on the sphere’s surface reached 
26% due to the fact that not all the expansion 
terms were used in (65). Therefore, it should be 
expected that although the dependence of the 
vector potential components on the coordinates 

, ,x y z  is shown correctly in (75), the inaccuracy 
increases as the sphere and the equatorial plane 
are approached.  

In this regard, we will consider below two 
particular cases when the potential components 
are calculated in a relatively simple way, which 

makes it easy to analyze the solution. The first 
case refers to the region of space near the axis 
OZ , where it can be assumed that z R , 
R x , R y . The second case refers to the 
points on the sphere’s surface, where 0z  , 

2 2 2R x y  , while R a . 

2.9.1 The Case When z R  

In this case, at 0x  , 0y  , the integrals 

11I  and 12I , defined in (64), can be simplified, if 
we make substitution: 

ଵ

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమିଶ ఘ ௫ୡ୭ୱథିଶ ఘ ௬ୱ୧୬థ

≈

ଵା ഐ ೣౙ౥౩ഝశഐ ೤౩౟౤ഝ
ೃమశ೥೏

మ షమ ೥ ೥೏శഐమ

ටோమା௭೏
మିଶ ௭ ௭೏ାఘమ

. 

Making similar replacements in the integrals 
that appear during integration over the angle   
and acting similarly to [16], we find the 
components of the vector potential at large 
distances, when z R , R a :  

ݖ)௫ܣ ≈ ܴ > ܽ) ≈ −
଴ߤ ଴ ௤ߩ  ߱    ܽହߛ ݕ௖

15ܴଷ ቆ1 −
଴ߩ  ߟ  ߨ 10  ܽଶ

21 ܿଶ −
 ߱ଶܽଶ  
7 ܿଶ ቇ −

−
଴ߤ   ߱ଷ ଴ ௤ߩ    ܽହߛ ݕ௖

15 ܿଶܴ
+

଴ߤ  ߱ସ ଴ ௤ߩ     ܽ ହߛ ݔ௖

15 ܿଷ .
 

ݖ)௬ܣ ≈ ܴ > ܽ) ≈
଴ߤ ଴ ௤ߩ  ߱    ܽହߛ ݔ௖

15ܴଷ ቆ1 −
଴ߩ  ߟ  ߨ10  ܽଶ   

21 ܿଶ −
߱ଶܽଶ

7ܿଶ ቇ +

+
଴ߤ  ߱ଷ ଴ ௤ߩ    ܽହߛ ݔ௖

15 ܿଶܴ
+

଴ߤ  ߱ସ ଴ ௤ߩ   ܽହߛ ݕ௖

15 ܿଷ .
 

(76) 

2.9.2 The Case When 2 2R x y a    

Let us now consider the second case, 
referring to the points on the sphere’s surface, 
where 0z  , 2 2 2R x y  , while R a . 

In order to simplify the calculations, in (75), 
we will limit ourselves to only the largest terms 
that do not contain 2c  and 3c  in the 
denominator. This gives us the following: 

௫ቀܴܣ = ඥݔଶ + ଶݕ = ܽቁ ≈ − ଵ଴షరఓబ  ఠ  ఘబ ೜  ௔మ௬   ఊ೎  
ସ , 

௬ቀܴܣ = ඥݔଶ + ଶݕ = ܽቁ ≈ ଵ଴షరఓబ  ఠ ఘబ ೜  ௔మ௫  ఊ೎

ସ
.  
(77) 

If we proceed from the form of (60) and (76), 
the vector potential components at 0z   and 
R a  should be approximately as follows: 

0 0
2

15
q

x
ca y

A
   

  , 0 0
2

15
q c

y

a x
A

  
 .  

(78) 

Apparently, the difference between the results 
of (77) and (78) was due to an inaccuracy that 
arose when some integrals were found by 
expanding the elliptic integrals into a series up to 
the second-order terms. Although the general 
behavior of the vector potential outside the 
rotating charged sphere is determined correctly, 
this accuracy turns out to be insufficient for the 
correct determination of the vector potential 
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directly at the equator of the sphere and 
expansion of the elliptic integrals up to higher-
order terms is required here. 

2.10 Electric and Magnetic Fields in the Near 
Zone 

According to (46), the electric field depends 
on the potentials’ rates of change in space and 

time. Since the vector potential at constant 
rotation of the sphere’s particles does not depend 
on time, the expression  E  will hold true. 
Using (66), for the electric field, we find the 
following expression with the use of the sum of 
integrals: 

ܧ ≈ −
଴ ௤ߩ ௖ߛ  

଴ߝ ߨ 4
න ଵܪߘ ௗݖ ݀  

௔

ି௔

−
߱ଶߩ଴ ௤ ௖ߛ  

଴ߝଶܿ ߨ 8
න ଷܪߘ ௗݖ ݀  

௔

ି௔

+
଴ߩ  ߟ ଴ ௤ߩ   ௖ߛ  

6  ܿଶߝ଴
න ௗݖ

ଶ ଵܪ ߘ   ௗݖ ݀  

௔

ି௔

+

+
଴ߩ  ߟ ଴ ௤ߩ  ௖ߛ  

6 ܿଶߝ଴
න ଶܪߘ ௗݖ ݀  

௔

ି௔

   .

 

(79) 

Still this expression is not final, since in it, we 
must first take the spatial gradients of the 
quantities 1H , 2H  and 3H  and then perform 
integration over the variable dz . 

The situation on the axis OZ  turns out to be 
much simpler. Here, in view of (68), the field 
depends on the distance R  approximately 
according to the Coulomb law for the charge ݍఠ: 

       
32

0 04 4
1qd z qR dz R z R

d d R
 





 




      
RE

R R R
.             (80) 

At small z , when 2 2 2x y R   and 
R a , in order to estimate the electric field, 
we can use (72): 

              
2 2

3 2
04 10

1R a R a q a
R c









 
 

    
 

E R
.      (81) 

If we proceed from the form of (73), then at 
0z  , R a , for the electric field, we obtain 

the following: 

                 
0

2 2

3 2

61
4

qR a a
R c

a R 







 
 

    
 

E R
.      (82) 

The inaccuracy in the definition of 
 R aE  depends on the inaccuracy of the 

potential in (73). 

In (75), approximate expressions were 
presented for the vector potential components 
A . The subsequent application of the curl 
operation allows us to find the magnetic field by 
the formula  B A ; however, the result is 
cumbersome. 

The expressions for the vector potential 
components are greatly simplified near the axis 
OZ . Leaving the largest terms in (76) and 
taking into account that 0zA  , we find: 

ݖ)௫ܣ ≈ ܴ > ܽ) ≈ − ఓబ   ఠ  ఘబ ೜  ௔ఱ௬ ఊ೎

ଵହோయ ቀ1 −
ଵ଴ గ  ఎ  ఘబ  ௔మ

ଶଵ ௖మ −  ఠమ௔మ  
଻ ௖మ ቁ. 

ݖ)௬ܣ ≈ ܴ > ܽ) ≈ ఓబ   ఠ  ఘబ ೜  ௔ఱ௫ ఊ೎

ଵହோయ ቀ1 −
ଵ଴గ  ఎ  ఘబ  ௔మ   

ଶଵ  ௖మ − ఠమ௔మ

଻௖మ ቁ. 

ݖ)௫ܤ ≈ ܴ > ܽ) = డ ஺೥
డ ௬

−
డ ஺೤

డ ௭
≈

ఓబ   ఠ  ఘబ ೜  ௔ఱ௫ ௭ ఊ೎

ହோఱ ቀ1 − ଵ଴గ  ఎ  ఘబ  ௔మ   
ଶଵ ௖మ − ఠమ௔మ

଻௖మ ቁ. 

ݖ)௬ܤ ≈ ܴ > ܽ) = డ ஺ೣ
డ ௭

− డ ஺೥
డ ௫

≈
ఓబ   ఠ  ఘబ ೜  ௔ఱ௬ ௭ ఊ೎

ହோఱ ቀ1 − ଵ଴గ  ఎ  ఘబ  ௔మ   
ଶଵ  ௖మ − ఠమ௔మ

଻௖మ ቁ  
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ݖ)௭ܤ ≈ ܴ > ܽ) =
డ ஺೤

డ ௫
− డ ஺ೣ

డ ௬
≈

ఓబ   ఠ  ఘబ ೜  ௔ఱ  ఊ೎൫ଶோమିଷ௫మିଷ௬మ൯
ଵହோఱ ቀ1 − ଵ଴గ  ఎ  ఘబ  ௔మ   

ଶଵ  ௖మ −
ఠమ௔మ

଻௖మ ቁ. 
(83) 

In (83), R a , but R  is not much larger 
than the sphere’s radius a . 

The components of the magnetic field in (83) 
actually repeat expressions (47) for the magnetic 
field in the middle zone, with a slight difference 
in the terms containing the square of the speed of 
light. 

3. Conclusion 
The presence of the sphere’s rotation leads to 

addition of cylindrical symmetry about the 
rotation axis OZ  to the sphere’s radial 
symmetry in the formulae for the potential. As a 
rule, this is expressed in the fact that the scalar 
potential of the electromagnetic field becomes 
dependent not only on the sphere’s radius a , the 
distance R  and the angular velocity  , but 
also on the angle   between the axis OZ  and 
the direction to the point P  where the potential 
is measured. The latter is confirmed by 
expressions for the potential (32) in the middle 
zone, (54) in the far zone, (72) and (73) in the 
near zone, from which it follows that the 
potential increases as the radius-vector R  of the 
observation point approaches the equatorial 
plane of the rotating sphere. By the order of 
magnitude, the relative change in the potential 

does not exceed 
2 2

2

6 a
c


, depending on the 

sphere’s radius a  and on the angular velocity of 
rotation  . 

Thus, for the potential of the rotating sphere, 
we can expect dependence of the form߮ =

௤ഘ
ସ గ ఌబ  ோ

,ܽ)ܨ ܴ, ߱, ,ܽ)ܨ where ,(ߠ ܴ, ߱,  is a (ߠ
certain function. In this case, the remote point ܲ, 
where the potential is calculated, has a radius-
vector ࡾ = (ݖ ,ݕ ,ݔ) = (ܴsinߠcos߶, ܴsinߠcos߶,
ܴcosߠ). However, due to the sphere’s symmetry, 
there is no dependence on the angle   in the 
function ( , , , )F a R    and in the potential  . 

In addition to the scalar potential, we 
calculate the vector potential in the middle zone 
(45), in the far zone (60) and in the near zone 
(75). The first terms in the vector potential 

components in (45) contain 3c  in the 
denominator and in (60), the similar terms 
contain c  in the denominator. Such a change in 
the potential dependence, which appears when 
going over from the middle zone to the far zone, 
is a typical consequence of the method of 
retarded potentials. 

In (45) and in (60), there is the same term 
2

0
2

10
21

a
c

 
  associated with the properties of 

the relativistic uniform system. However, the 

terms, which are proportional to 
2 2

2

a
c


 and 

define the dependence on the angular velocity  
 , have different coefficients. A similar 
situation occurs in the near zone for the case 
when z aR  , which is seen in (76). 

This can be explained by the fact that in the 
course of calculations, we used not coincident 
procedures for expansion of functions and their 
subsequent integration, which give different 
accuracy. Another possible explanation may be 
that, indeed, in different zones, the dependence 
on   is different. The accuracy of the results 
obtained can be improved by increasing the 
terms in expansion of functions into series; 
however, introduction of each new term 
significantly complicates the calculations. It 
should be noted that for the purpose of more 
convenient analytical presentation of the results 
in an explicit form, some elliptic integrals were 
expanded into series up to the second- and third-
order terms, while other integrals were expanded 
into series up to the sixth-order terms. 

Using the obtained expressions for the scalar 
and vector potentials, we calculate the electric 
and magnetic fields outside the rotating charged 
sphere. The corresponding expressions for the 
fields are presented in (47) for the middle zone, 
in (61) for the far zone and in (79) in the near 
zone for E . The formulae for the electric field 
E  in the near zone are made more precise in 
(80) on the axis OZ , at small z  in (81) and at 

0z  , R a  in (82). In all cases, we can see 
that the field E  increases due to rotation, while 
the maximum relative increase does not exceed 

the value 
2 2

2

6 a
c


 near the sphere’s surface in 

the plane XOY . 
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The components of the magnetic field B  in 
the near zone on the axis OZ  on condition that 
z R a   are presented in (83). Comparison of 
(47), (61) and (83) shows that within the 
framework of the approach used, the obtained 
approximate expressions for B  differ in 
different zones in small terms, associated with 
the dependence on the angular velocity  , 
repeating the corresponding difference for the 
vector potential A . 

Due to the charge conservation condition, the 
charge q  (31) of the rotating sphere is equal to 
the charge bq  of the fixed sphere in (8). This 
allows us to equate the Lorentz factor c  of the 
particles’ motion in the center of the rotating 
sphere and the similar Lorentz factor c   for the 
same and generally fixed sphere. 

The results obtained can be applied to 
nucleons in atomic nuclei when calculating the 
binding energy in the gravitational model of 
strong interaction, which takes into account 
attraction of nucleons to each other in the strong 
gravitational field, repulsion of protons due to 
the electric force, repulsion of nucleons’ 
magnetic moments oriented in the combined 
magnetic field, as well as interaction of the 
nucleons’ spin gravitational moments in the 
torsion field of strong gravitation due to the 
nucleons’ proper rotation. Since near the 
equatorial plane at the surface of a rotating 

proton the electric potential can be increased due 

to the addition of the order of 
2 2

2

6 a
c


 according 

to (73), then at a typical angular rotation velocity 
231.03 10    rad/s, according to [17], and at 

the proton radius of the order of 168.73 10  m, 
this increases the potential by a factor of 1.54. 
As a result, this also has an impact on the value 
of the binding energy of atomic nuclei. 

Similar calculation for the neutron star PSR 
J1614–2230, for which the angular velocity of 
rotation is 31.994 10    rad/s and the radius 
is 12.8a   km according to [18], gives 

28.51 10a
c
    and 

2 2

2 .046 0a
c


 . So, if 

this star were charged, the field near the star’s 
equator would probably also be increased by a 

factor of 
2 2

2 461 1.0a
c


   as compared to the 

field of a non-rotating star. The same applies to 
the gravitational field in the covariant theory of 
gravitation, the equations of which are similar to 
the equations of the electromagnetic field [12]. 

Due to the fact that the calculations contain a 
great number of integrals, the key details of these 
calculations are presented in special files, which 
are included in an appendix to this work [16]. 
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