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Abstract: Using the method of retarded potentials, approximate formulae are obtained that
describe the electromagnetic field outside the relativistic uniform system in the form of a
charged sphere rotating at a constant speed. For the near, middle and far zones, the
corresponding expressions are found for the scalar and vector potentials, as well as for the
electric and magnetic fields. Then, these expressions are assessed for correspondence to the
Laplace equations for potentials and fields. One of the purposes is to test the truth of the
assumption that the scalar potential and the electric field depend neither on the value of the
angular velocity of rotation of the sphere nor on the direction to the point where the field is
measured. However, calculations show that potentials and fields increase as the observation
point gets closer to the sphere’s equator and to the sphere’s surface, compared with the case
for a stationary sphere. In this case, additions are proportional to the square of the angular
velocity of rotation and the square of the sphere’s radius and inversely proportional to the
square of the speed of light. The largest found relative increase in potentials and fields
could reach the value of 4% for the rapidly rotating neutron star PSR J1614-2230, if the
star were charged. For a proton, a similar increase in fields on its surface near the equator

reaches 54%.
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1. Introduction

In article [1], it is emphasized that in most
cases, calculation of the components of
electromagnetic field of rapidly changing
currents is extremely difficult. Even in simple
configurations of moving charges, it appears that
non-elementary integrals cannot be expressed in
terms of simple functions. The simplest example
is a current loop and already here, we have to
deal with elliptic integrals. To determine the
field components, Maxwell equations for the
vector potential were integrated in [1] using
Laplace transformation and the solution was
found in the form of a sum with the help of
Legendre polynomials for the charged spherical
shell during its rotation in different cases,
including change in the charge configuration on
the surface and accelerated rotation.

The solution for the rotating uniformly
charged sphere’s surface can be found in [2],
where the magnetic field was expressed as a
vector in the spherical reference frame. In [3],
the vector potential and magnetic field are
calculated for a uniformly charged rotating
sphere. A more complicated situation, where the
matter inside the sphere or cylinder is a
conductor and an additional charge appears
during rotation from the centripetal force and
inertia of electrons, is considered in [4-5].

In [6], rotating cylindrical charge distribution
was studied and a solution was obtained for the
magnetic and electric fields around the rotating
sphere. Then, in [7] a general solution was found
for symmetric rotating charge distributions.
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In contrast to these works, we consider not
just uniformly charged matter distributed inside
the sphere or in its shell, but a relativistic
uniform system. This means that the matter in
the sphere’s volume is in equilibrium with the
gravitational  forces, pressure field and
acceleration field and the charged particles can
move chaotically and have the same invariant
charge density. If such a system of particles
rotates at a certain constant angular velocity, this
leads to the corresponding vector potential and
magnetic field, which do not depend on time.
We will calculate all the components of the
electromagnetic field outside the system,
including the scalar and vector potentials,
electric and magnetic fields. Previously, these
quantities were found in [8-12] for the case of a
uniform system at rest without rotation, in which
the vector potentials are equal to zero.

The study of a rotating relativistic uniform
system is important in itself and it is of academic
interest from the point of view of developing an
ideal model corresponding to the relativistic
approach. But, there are also a number of
physical problems, such as calculating the
angular momentum, magnetic moment and
relativistic energy of rotating objects, where it is
necessary to correctly estimate the contributions
of various fields associated with these objects.

As a rule, in articles describing a steadily
rotating spherical shell, it is assumed that the
electric field outside the sphere does not depend
on the angular velocity of rotation. In contrast to
this, in [13] it is indicated that there is such a
dependence both for the electric and magnetic
fields. In [14], this question was considered
again and an error in calculations was found in
[13], associated with the replacement of the
partial time derivative with the total derivative.

To check the assumption about the possible
dependence of the fields on the angular velocity
of rotation and to estimate the contribution from
the particles’ motion inside the system, the
accuracy of our calculations will be increased up
to the terms containing the square and even the
third power of the speed of light in the
denominator. The method of retarded potentials
used for calculations provides the result based on
first principles, which reduces possible
inaccuracies that appear under additional
assumptions.
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2. Statement of the Problem

The standard equations for the electric field
strength E, magnetic field induction B and
electromagnetic field potentials in the framework
of the special theory of relativity have the
following form:

Y Po 1 OE
V.-E="22, VxB=pu,j+—

&, Hol 7ot
V-B=0, vxE=-8 (1)
ot

10° P,
aﬂaﬂ@:—2 —Ap="21
&
00" A= AA =
5 —c—2 - HoJ - )

E:—qu—a—A B=VxA, 4, (f,— j
ot c
(3)

For the particles moving inside the rotating

1
,ll—vz/c2

is the particles’ velocity in the reference frame

sphere: y = is the Lorentz factor; v

K, in which the sphere is rotating; Py, 1s the

charge density of a moving particle in the

comoving reference frame; &, is the electrical

constant; 4, is the magnetic constant;

jzypoqv denotes the vector of the electric
current density; ¢ is the speed of light, while

,uogoc2 =1; A4, is the four-potential of the

electromagnetic field; @ and A are the scalar

and vector potentials. Wave equations (2) for the
potentials are obtained from equations (1) taking
into account (3).

If the sphere with the particles rotates at a
constant angular velocity @, the potentials
would not depend on time. Then, the time
derivatives disappear in (2) and the following
remains:

Agg:_@ AA

s AA=—p,j=—1, Y po, V- (4
80
(4) were solved in the absence of
rotation, when @ =0, for a relativistic uniform

system [11]. In this case, the Lorentz factor '
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of the particles” motion relative to the reference

frame K', associated with the center of the fixed
sphere, was substituted instead of ¥ in (4). For

the spherical system with the particles in the
absence of the matter’s general rotation, the
Lorentz factor according to [8] is equal to:

y'(w=0)= TR/%TCPO sin (E,M—T[r]po) =~ y'c —

2m r2y!
NPoTY ¢ (5)

3c2
is the

Lorentz factor at the center of the sphere, 17 is

In (5), r is the current radius, ¥/

the acceleration field coefficient and p, is the

mass density of a moving particle in the
comoving reference frame. Taking this into

account, the scalar (electric) potential ¢, inside

the sphere and the similar potential ¢, outside

the sphere are defined by the expressions:
@; = Pogc?y'¢

c o T
~ imeonpor [JAJ—MSIH (cvamnp0) -

Pog¥' (3a*-1%)
rcos (%,/4717],00)] ~ WT. (6)

2.7
Qb = pog) V' (@ = 0)dV; = po‘cho’/ C[Wﬂ:—nposm (%,/47”];)0) — acos (%,/47”];)0)] ~

271 poa?

_ 4mpoqa®y’, (1

3 5c¢2

As for the vector (magnetic) potential A in
(4), on the average, it turns out to be equal to
zero everywhere due to the chaotic motion of
particles.

The particles’ rotation at the angular velocity
@ about the axis OZ that passes through the
center of the sphere changes the particles’ linear
velocities. Taking into account the rule of
relativistic addition of velocities, for the absolute
velocity and the Lorentz factor of an arbitrary
particle, we find the following:

V,+mvrw

V=

, V'V,
y=w,(1+ > j
C

where v’ is the velocity of chaotic motion of a

©)

particle in the reference frame K' rotating with
the matter at the angular velocity @; Vv, is the

poqc?y’.

c . a
= amegnpor [Jm—npo s (Z\/TWPO) -
acos (4@, )|

_ 4 4 [y 3nm
qDo_ ~ 2 |
dre,r  Ame,r 10ac

Po

(7

In (7), the quantity g is the product of p,,
by the volume ¥, of the sphere of radius a ; that

47 p,, @’

is g= . Similarly, m is the product of

the invariant mass density p, of the matter’s
particles by the sphere’s volume. However, the
external potential ¢, of the electric field does
not depend on ¢, but it depends on the total
charge ¢, of the sphere, defined by the

expression:

()

_ r _ 3nm )
=av. (1 10ac?
linear velocity of motion of the reference frame

K' at the particle’s location, arising due to
rotation in the reference frame K ;

b

v, = is the Lorentz factor for the
1-v° / c’

r

!’

velocity v , y'= is the Lorentz

1
’1 _ VIZ/CZ
factor for the velocity v'.

Expressions (9) should be averaged over the
volume in a small neighborhood of the point
under consideration so that a sufficient number
of particles would be present in this volume. Due
to the chaotic character of motion, the velocities
v’ of neighboring particles are directed in
different ways. As a result, the average values
willbe: V=v_, ¥ =y'y . Next, we will assume
that, despite the general rotation, formula (5) for
y' continues to be valid in the reference frame

K', with the exception that instead of the
Lorentz factor ¥, at the center of the sphere, the
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formula must contain a quantity denoted as ¥, .

Indeed, y! is determined in the absence of

rotation, but the Lorentz factor at the center of
the sphere can be changed due to rotation and

turn into ¥, .
2.1 Potentials outside the Rotating Sphere

The charge density p,, outside the sphere is

zero due to the absence of charged particles
there. This simplifies the form of equations (4),
which turn into Laplace equations:

Ap=0, AA=0. (10)

From the great number of possible solutions
of equations (10), we should choose those that,
in the absence of rotation, go over to the solution

of (7) for the scalar potential ¢, and to the

solution A =0 for the vector potential.

In order to find the necessary solutions, we
will use the Lienard-Wiechert approach for
retarded potentials. Let us assume that a point
charged particle rotates along a circle of radius
P at the angular velocity @ and with the linear

velocity v. = @p . We will place the cylindrical

reference frame with coordinates p,¢,z, at the

center of the sphere and will search for the
electromagnetic field potentials from the rotating
charge at a certain remote point P with the
radius vector R =(x, y,z) .

The current position of the charge is given by
the radius vector

14 = (pcose, psing, z;) = [pcos(wt +
¢O)! pSIU(wt + ¢O)!Zd]:

so that the circle of rotation is parallel to the
plane XOY , while the angle ¢ depends on the

current time: ¢ = @t + ¢, ; here, the constant ¢,

is the initial phase.

The vector from the charge to the point P
will be as follows:

Rp =R — g = [x — pCOS(wt + ¢0);y -
psin(wt + ¢o), z — z4],

wherein
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o |G peosd)? + (y = psing)2)
P +(z — z4)? l

(11

_ | R2+ 2% —2zz4 4+ p? |
—2pxcos¢p — 2pysing’ J
The Lienard-Wiechert formulae for the scalar

and vector potentials of one particle with the
number # have the following form:

J—L. A . (12)

A

Here, RP:R—f‘q is the vector from the

charge to the point P at the early time point

- R )
t =t——L the radius vector
c

fy = (pcosd, psind, z,) = [pcos(wt +

®0), psin(wt + o), z4]
defines the position of the charge at the time
point 7, while

Ry = \/(x - pcos$)2 +(y - psin$)2 + (z — z9)2.
The current rotation velocity of the charge is

dr
vV = 7” =(—wpsing,wpcos¢,0) and the
t
charge’s velocity at the early time point will be

A

. dr . .
V. =v. ()= dt? = (—wpsing,wpcos,0),

U)RP

wherein ¢ = wf + ¢y = wt + Py —
R
=0~ ¢

Since, according to (9), the average velocity
of the particles’ motion is V=V _, in (12), V,

=¢ —

Cc

should be used instead of V. Then, for lA?P and

the product V,-R,, in (12), we obtain:

R? + 22 — 22274 + p?
RP = . s
—2pxcosdp — 2pysind

v -sza)pycosgz;—wpxsingz;. (13)

I3
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Let’s locate the coordinate z, in such a way

that it would define the location of a thin layer
with thickness s in the form of a disk parallel to

the plane XOY . The radius of such a disk inside

Ja’ -z, , where the

sphere’s radius is a. The sphere is tightly filled
with rotating particles and the same applies to
this disk. We will use the principle of
superposition of potentials and will find the
scalar potential at the remote point P from the
rotating disk with charged particles. For this
purpose, we need to take the sum over all N
charges in the disk. In view of (12), for the scalar
potential, we have the following:

the sphere will be p, =

N 1 N

P =20, 2

n=1 n=l1

4q,
(R,—%,-

= .(14
dre, (9

RP/c)

Each charge ¢, inside the disk has its own

n

rotation radius o, and motion velocity
v, =wp,, while the instantaneous position of
the charge is given by the vector

r, = (p,cos@,,p,sing ,z,). In this regard, in

(14), the denominator depends on the location of
the particle in the disk and therefore, it has an
index n.

The charge of a point particle rotating in the
disk can be expressed in terms of the invariant
charge density, Lorentz factor and moving
volume:

q::pW7Spdpd¢
! Y,
spdpdg

Iz

element of the volume of a rotating disk, which,

The quantity here specifies the

as a result of Lorentz contraction, is y, times
less than the volume element spdpd¢ of the
fixed disk. The quantity p, » defines the

effective density of the charge, taking into
account its rotation inside the disk and the
chaotic motion of particles. As ¥ in (15), we

should substitute the averaged value of the
Lorentz factor ¥ =y'y,, according to (9). This
gives the following:

q,=po,y'spdpdg. (15)

The charge ¢, is expressed in terms of the

product of differentials, so that the sum (14) can
be transformed into an integral. With this in
mind, from (13-15), it follows:

2 ~pPg
— SPogq
Pa = 4meE 2 oy o
0 o o JR2+zd—Zzzd+p2—2pxcos¢—2pysin¢+

In order to be able to perform integration, in

(16), we need to express the angle qg, defining
the position of an arbitrary particle at the early

Y pdpdg (16)
wpxsing wpycosdp
[ [
A R .. oR

cos @ = cos ¢ cos—= + singsin—=
c

o R . oR

sing =singcos—= —cosgsin—=.  (17)
c

time point 7 , in terms of the angle ¢ at the time
point . Since ¢=wt+¢,, g$= a)f+¢0 and
R, ok,
c

c

f=t—

, we will have (l;:(b— and

therefore,

From comparison of (12) and (16), it follows
that the vector potential of the rotating disk will
be equal to:

Y Drpdpde

2 ~pg
A_ﬂﬁgf f
a=
41T \[2 2
Re+z5-2zz4+
0 0 d dtp

In (16), the scalar potential ¢, is sought for
the remote point P with the radius vector
R =(x,y,z). The vector potential A, at this
point depf:nds onAthe velocity D, = v,.(f) =
(—wpsing, wpcosp,0) of motion of the

2_2pxcos¢p—2pysinp+

~ wpxsing wpycosP’
c c

charged particles of the rotating disk at the early
time 7. The velocity V, lies in a plane parallel
to the plane XOY and the same holds true for
A, . For the components A ,, we can write the
following:
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y' sing p*dp d¢

2T rPq
A _ __Ho®Spogq
dx 41 2..2 5 = . =~ wpxsing wpycosep’
0 0 Re+z5-2zzg+p“—2pxcos¢p—2pysing+ 5

c

y' cos¢ p*dp d¢

2T rpg
A __ HowWSPpogq
ay 41 R2+72—2 2_ B2 . 2 wpxsing wpycosd’
0 0 +z5-2zzq+p —2pxcos¢p—2pysingp+ 5

AdZ = 0.

2.2 Scalar Potential in the Middle Zone

Let us first consider the case when in (17) the

A

A

" oR )
conditions R, >>a, P <<1 are met, which
c

corresponds to the case of sufficiently large
distances R from the sphere of radius a to the

point P where the scalar potential is sought. As
an example, let us assume that the relations of
sizes and velocities are given by the relative
value of 1%. In this case, the condition of the

A

middle zone at R~ R, means that %<0,01

c

(18)

A

Under the above conditions for R,, we can
assume in (17) that:

A

oR,

cosqucos¢+ sing,

A

oOR,

singz;zsingb— cos@ . (19)

A

Let us square R, in (13), substitute there

COS¢A and sin¢A from (19), obtain a quadratic

A

equation to determine R, and write down its

oR . . ) solution:
and — < 0,01, so that a two-sided inequality
c
100a < R < ¢ is obtained for the distance.
100w
ﬁ _ wp(xsing—ycose)
b =—

. (20)
2 52 _ 2
+\[R2 +22— 2224 + p? — 2pxcosp — 2 pysing + =L (xsnﬁ YosP)”
. . . 5 using sin¢A and cos¢A from (19) for
h 1 l1to R
Slnc?et © square root n (16) is .equa to fp transformation of (16), we arrive at the
according to (13), we can reAplace this square root expression:
with the expression for R, from (20). Then,
{'2” {‘Pd
L ,
5P y' pdpdg
P | | Teeere an
Re+z5-2zzq+p“—2pxcosp— 25 2 =
w? p2(xsinp-ycosp)2 ~ 2 ‘;;RPUO (0] @ ﬁ%’RPsindJ

oy

In (21), we will expand the square root to the
third-order terms by the rule

2
\/1+5z1+%—%:
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\[R2+z§—222d + p? — 2 pxcos¢p — 2 pysing + 7

w? p?(xsing—ycos¢)?

w? p?(xsing—ycose)?

pxcos¢p+pysing
R%2+z5-2z24+p?

p?(xcosp+ysing)? n (22)

~JR?2 + 2% — 2224 + p?

2¢2(R%+z5-2zz4+p?)
w? p3(xsing—ycosg)?(xcos¢p+ysing)

2(R2+z[21—222d+pz)2

+

Let us substitute (22) into (20):

2::2(R2+z[21—222d+p2)2 i

i w p(xsingp—ycose) __ pxcos¢p+pysing

1- R2+z2-22z2z4+p?
c ,R2+z[21—222d+p2 d arp

w? p?(xsingp—ycose)? _ p?(xcosp+ysing)? n

(23)

Rp ~[R2 + 2% — 2224 + p?

2¢2(R%+z5-2z24+p?)
w? p3(xsing—ycosg)?(xcos¢p+ysing)

2(R2+z[21—222d+pz)2

+

A

With the help of R, from (23), we will
transform the second and third terms in the

w?pxRp

_ w3 p?(xsingp—ycosd)(xcos¢p+ysing)

2::2(R2+z[21—222d+p2)2 _
denominator of (21), leaving only the terms

.. 2
containing ¢ and ¢’ :

2
PYRp _.
C—Zsm¢

2 C0Sp — v

w? p (xcosp+ysing)
o2

~ —\/R2+Z§—222d +p2

Let us now substitute (22) and (24) into (21)

and put \/Rz +z,-2zz,+p° outside the

brackets:

_ w?p?(xcosgp+ysing)?

__w?p3(xcosp+ysing)?

24

c3 ,R2+z[21—222d+p2

c?(R?+z5-2zzq+p?)

2::2(R2+z[21—222d+p2)2 i
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2

Y pdpde

SPogq 1

Pa 477.'80

1— p(xcos¢ + ysing)

R? 425 — 27274 + p? \/R2+Z§_Zzzd+,02
p?(xcos¢ + ysing)?

"~ 2(R2+ 2% — 2224 + p?)?
_ w?p (xcos¢ + ysing)

c2

+

w? p?(xsing — ycos¢g)?

+

2c2(R% + 75 — 2724 + p?)
w?p? (xcos¢p + ysing)?

c2(R%? + 275 — 2724 + p?)
+ w? p3(xcos¢ + ysing)(xsing — ycosep)?

+

+

2¢2(R% + 23 — 27224 + p?)?
w? p3(xcos¢p + ysing)3

2¢2(R% + 73 — 27224 + p?)?
+ w3 p?(xsing — ycos¢)(xcos¢ + ysing)

o

0
In this integral, we will use an approximate

1
expression of the form ——=~1-8+6" for
1+0

small o . This gives the following:

386

c3\/R2 + 22 —2z2z4 + p?

Py =

5Py, ﬁ Dy'pdpd¢

. (25)
drey o % \/R2+Zj —222{,+p2

The quantity D in (25) is given by the

expression:
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D~14 pxcosp+pysing = 3p?(xcosp+ysing)? p3(xcos¢p+ysing)3 \
R%+z5-222q+p? 2(R2+z§—222d+p2)2 (R2+zé—222d+p2)3
p*(xcosp+ysing)* n w? p (xcosp+ysing) _ w?p?(x2+y?)
4(R2+z§—222d+p2)4 c? 2c2(R2+z5-2zz4+p?)
2p2 (xcosp+ysing)?  3w?p3(x2+y?)(xcosp+ysing)
2c?(R2+25-2224+p?) B 262(R2+z§—222d+p2)2 B
202 p*(x2+y?)(xcosp+ysing)?  w?p*(xcosp+ysing)Z(xsing—ycosep)? _ g (26)
B cZ(R2+zé—Zzzd+p2)3 2c2(R2+zé—Zzzd+p2)3
2 p3(x2+y?)(xcosp+ysing)3 _ w3 p?(xsingp—ycosep)(xcosp+ysing) _
252(R2+Zé_zzzd+/72)4 c3 /R2+z§—222d+p2
w3 p3(xsing—ycose)(xcosp+ysing)? w3 p*(xsing—ycosg)(xcosp+ysing)*
c3(R2+z§l—Zzzd+p2)3/2 c3(R2+zé—Zzzd+p2)5/2

In (25), only the quantity DD depends on the
angle ¢, according to (26). After integration
over this angle in (25), the following remains:
(Paf,, p? (x%+y?%) + 3p?(x2+y?)
| 4c2(R2+zd—Zzzd+p ) 4(R2+Zé—222d+p2)2

I

Y pdp

]
|
| ! |
I 15w2 p#(x? +y2) ) 3p*(x2+y?) l

3t 7
SPogq l 16c2 R2+zd—zzzd+p ) 32(R2+zé—zzzd+p2) J

&0 /R2+zé—222d+p2
Jo

The last two terms in the square brackets We will note that here we use the Lorentz

inside the integral, due to their smallness, canbe  factor 7. at the center of the rotating sphere,
further neglected. The Lorentz factor y',

similarly to (5), is written in the first
approximation as follows:

V= sin (24 pg) ~ v -

2w po Ty _ 2mn po (p%+23)v.
3(:02 £ = y(,‘ - 3¢2 Ca (27)

Q

which may not be equal to ! in (5) at the center
of the sphere at rest. In view of ¥’ from (27), we

can write for ¢, the following:

[Paf 2mn po (p?+23) ]
Iz I

w2 p? (22 +y?) . 3p2(x2+y?) |p dp
4—c2 R2+zz—zzz +p2)—r 2,,2 2 ZJ

SPoqYc d d 4(R tzg-2zzg+p )

&0 /R2+zé—222d+p2
Jo

,___

Q

We will represent the potential as the sum of I = J‘ pdp
four terms, obtained by integrating the potential 1= ) \/ R4 2 2’

+z,-2zz,+
@, over the variable pO: d s TP

I - 27T7]p0 j Pz"‘Zj)Pd,D
S 2 s
godz—poq}/c(ll+lz+l3+[4), \/R2+Z§_2zzd+p2
2¢,
where
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a)z(x2 +y2) Py

3
4c?

3(x2 +y2)'°d

p'dp
0 (R2 +2z3-2zz, + p2)3/2

p dp
2 2 2\92 7
0 (R +z;-2zz,+p )

N 4

These integrals, taking into account the

: 2 2 2
relation p; =a” -z, , equal:

L =R*+a?—2zz4 —\/R2 +2z5—2zz74.

[(R? + a? — 2224)%/?
2111 po | 3
3c¢? |

12:—

—(R? + 22— 2224)JR* + a% — 2224 +

Z(R2 +z3 — ZZZd)

3/2

|

e —

3

3¢2

2m z3
—&G/R2 +a?—-2zz5— \/RZ + 23 — ZZZd).

2 2 2
I; = %[\/RZ +a?—-2zz; +

(x2+y?) a?-z3
14 - —

R%+z%-2z24

JR?*+a?-2zz4

— 2 |R?+ 25— ZZZd].

2 2

The potential ¢, is the potential at the
remote point P from one thin layer in the form
of a disk, which is parallel to the plane XOY
and shifted along the axis OZ by distance z,.
Now, it is necessary to sum up separate

potentials created at the point P by all layers of
the ball, taking into account that the layer
thickness s is the differential dz,. Passing
from the sum to the integral, we find:

ST (1wt 4 1 41, dz,

2¢,
Using (28), we have the following:

a 4 5
[ 1dz, = 47020

1 2a
_{I‘ Ty 15¢°R

a)ZaS(x2 + yz)
15¢’R’

a’ (x2 + yz)
SR°

9

jl3dzd ~

jl4dzdz

Taking this into account, the following is
obtained for the potential:
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4 (R2+a2-22z24)3/2

Z4q2_ :
VR*+a?-2zz4 JR2+Z§—Zzzd

(28)
~P0qa3yc[ _ 2mnpoa? 3a2(x2+y2)+
= 3R 5¢2 10R*
2a?(x*+y?)
T | 29)

Expression (29) for the potential is an
approximate solution in the middle zone, where

the conditions R >>a, — << 1
are met.

Let us now calculate the charge of a slowly
rotating sphere in spherical coordinates 7,0,¢ .
According to (9), the averaged Lorentz factor of
the particles’ motion is ¥ =7'y,, the charge

o .y
density inside the sphere is y'y,p,, and the
element of volume moving due to rotation is

r*drdgsin 0do

£
we find for the charge by integrating over the
sphere’s volume in spherical coordinates:

dv, =

Hence, in view of (27),

Qo = Pog) V' vrdVs =
CPoqYc )
Wf s1n( \/Tnpo)rdrdcpsmede(.so)

The integration result is as follows:
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Pog € Yc c?ye

Ao =

_ 4mpogatyc (1

271 poa? )
3

5c¢2
According to the method of calculation in
(31), the charge ¢, is the sum of invariant

charges of all the system’s particles and
therefore, is an invariant quantity that does not
depend on the angular velocity of rotation @ . In

this case, the charge ¢, (31) must be equal to
the charge ¢, in (8). Hence, we find the equality

of the Lorentz factors at the center of the sphere
for the cases of a sphere at rest and a similar

rotating sphere: y, =y!.
From (29) and (31), it follows:

q 3a?(x%+y?
p o [1 420
4megR 10R

wa el @)

In order to check the solution of (32) for the
potential, we can substitute it in (10) into the
0’ ol ol
equation A@ = ¢2>+ .29 =0. As a
ox* 0y’ 62
consequence, it appears that in (32), the sum of
3az(x2 +y2) a)zaz(x2 +y2)
+
10R* 10c*R?
does not agree with this equation. This is
possible, because during integration, we
neglected all the possible small terms, the
presence of which could lead to satisfying the
Laplace equation A@ =0. In this regard, we

the two terms

will remind that in (17), we expanded the sine
and cosine only to the first-order terms in the

form sin(a)lé,, /c) za)lé,, /c, cos(a)lA?P /c) ~1,
obtaining (19). But in (32), the angular velocity
o is present in the second-order term containing
the square of the speed of light in the

denominator. This term can change if in (17) we
expand the sine and cosine to the second-order

. . 3 A
a)RP]szP_a) R,

9

terms in the form sin 3
c c 6¢

]% 2 p2
cos O zl—a)]fp
c 2c

presence of the small term

. On the other hand, the

3az(x2 + yz)
10R*
contradicts the Coulomb law at @ =0 and its

— msm( 1/4717],00)—ac0s( 1/4717],00)]

€2))

very appearance may be a consequence of the
adopted approximation procedure.

For the Laplace equation to hold, we will
substitute the sum of the two terms in (32) with

2 2
o a e .
5. At least, such substitution is quite

10c
acceptable under the conditions R>>a,

¥+’ >>z2°, X+ ~R’. In view of the

above, the potential takes the following form:

2 2

q w°a
~ @ 1+ . 33
¢ 47[80R[ ] 33)

10¢’
It follows from the above that in the general
case, the potential outside the rotating sphere can
be represented by the formula:

q
—_% 34
¢ drey R G4
where the function /' can be a function of @,
a, R and of X’ +3°. At @=0, it must be

F =1 and in case of rotation of the sphere with
charged particles, for the middle zone, where the

.. oR
conditions R>>a, —<<1, x’+y’ =R’
c
w'a
are met, we must have F =1+ 05 if we
c

consider (33) true. Thus, the function F' differs
a little from 1.

It follows from expression (32) that in the
middle zone, the potential actually can depend
on the direction to the observation point and at
the same distance R, it increases as it gets
closer to the equatorial plane. This could be a
consequence of the spherical-cylindrical
symmetry of arrangement of the moving charges
when the potential is calculated. Indeed,

according to (16), the potential ¢, from one

disk inside the sphere depends on the retarded
angle ¢ = wt+ ¢y=wt+ ¢g— pr_¢_
fp which is a function of the angular velocity

@ . This implies the dependence of the potential
@ outside the sphere on @, which can be

realized in the form of (32-34).
389



Review Article Sergey G. Fedosin

2.3 Vector Potential in the Middle Zone - 1,05 Py, 27 Py D;/' Cosgl; pz dpd

. . A, =
Proceeding in the same way as when we dy .[ .[ 2 | 2 2’
obtained (25) from (16), we will transform the 00 R vz =22z, 4 p
components of the vector potential of the A4,,=0. (35)
rotating disk (18): .

Substitution of R, from (23) into (19) gives

A, the following:

:_,uoa)SPOquT D;/'sin(z;pzdpd(b
. 4 o R+ -2zz,+p0

w? p(xsing — ycos¢)sing
CZ
wp(xcosd + ysing)sing N w3 p?(xsing — ycosp)?sing

- w ) .
cos¢p = cos¢ + ?\/R2 +2z5—22z4 + p?sing —

C\/R2+Z§—222d + p? 263\/R2+Z§—222d+p2

wp? (xcosg + ysing)?sing N w3 p3(xsing — ycosp)?(xcos¢ + ysing)sing
2c¢(R% + z2 — 22274 + p?)3/2 2¢3(R% + 72 — 27z, + p2)3/2

w? p(xsing — ycos¢g)cosep
CZ
wp(xcosp + ysing)cosp w3 p?(xsing — ycosg)?cosep

Lo . w 2
sing ~ sing — ?\/R2 +2z5—22zz4 + p%cos¢p +

C\/R2+Z§—222d + p? 263\/R2+Z§—222d+p2

wp?(xcos¢ + ysing)2cosp w3 p3(xsing — ycosg)?(xcosd + ysing)cosgp
2c(R% + z2 — 22274 + p?)3/2 2¢3(R% + 72 — 2z2z4 + p2)3/2

(36)

We will use D from (26), as well as COS¢A

and sin¢A from (36) and will integrate the
products of these quantities over the angle ¢ :

2

pym 3p3y(x? +yHm 3wpdx(x? +yHm

Dsing d¢ = +
of ing de RZ+7%—2zz5+p% 4(R%+2z%3—2zz5+p2)3 4c(R%+ 273 — 22z, + p2)>/2

7Twdp3x(x? +yH)m
4c3(R2 422 — 2224 + p?)3/2°

15w?p3y(x? + y?)1 w3pxm
8c2(R? + 25 — 2224 + p?)? c3

\/RZ +22—2zz4+p*+
2
PXTT 3p3x(x? + yH)m 3wpdy(x* + y*)m

Dcos¢p dop = + -
of ¢do Rz +7%—2zz5+p% 4(R%2+2z%3—22z4+p2)3 4c(R%+ 22 — 2274 + p?)5/2

Twd3pdy(x? +y®)m
4c3(R2 + 22 — 2224 + p?)3/2°
(37)

15w?p3x(x? + y?)1 wipym
8c2(R% + z3 — 2224 + p?)? c3

\/RZ 425 —22z4+p% —

From (35) and (37), it follows:

390



The Electromagnetic Field outside the Steadily Rotating Relativistic Uniform System

Pd
(‘ [ Bwp?(x? + y?) w?]
ws | 14c(R? + 22— 2224 + p2)3 3|
Aqx al POq || ( d 3 ZZZ‘zi ,02) | v/ p3dp
J I 4 w3 p?(x* +y?) |
. | 4c3(R% + 23 — 2224 + p?)? |
Pd
(1. 3p2(x* +y%) ]
HowSpoqy | I 4(R? + 22 — 2224 + p?)?| y' pidp
4 J | 15w? p?(x? + y?) |(R2 + 22 — 27224 + p2)3/2°
y | 8c2(R? +2z3 —2zz4 + pZ)J
Pd
(‘ [ Bwp?(x? + y?) w?]
ws | lac(RZ+ 22 — 2224 + p2)3 3|
Aa, Mo Pqu || ( Zq ; ZZZ‘zi PZ) ly’ p3 dp
J I 4 w3 p?(x* + y?) |
. | 4c3(R% + z3 — 22274 + p?)? |
Pd
(1.4 3p2(x* +y%) ]
.uowSPOq H I 4(R2+Z¢21—222d+,02)2| y' p3dp
J | 15w? p?(x? + y?) |(R2 + 22 — 27224 + p2)3/2°
. | 8c2(R% +2z3 —2zz4 +p2)J
(38)
Let us substitute the Lorentz factor ¥’ from
(27) into (38). Next, we will consider the
following integrals:
rpd 3wp2(x2+y2) _ w_3 +
N [ 2nn po (p?+23) 4c(R2+zé—Zzzd+p2)3 c3 3
Is =vc 1- 3c2 703 p2(x?+y?) p=dp.
0 4c3(R2+zé—Zzzd+p2)2
rpd [ 1 _ 2mnpo (p?+23) +
I, ~ 3¢? p3dp 39
6~ Ve 3p2(x2+y?) _ 15 w2 p?(x2+y?) (R2+Zé—ZZZd+p2)3/2‘ (39)
o 4(R2+zé—222d+p2)2 8c2(R2+25-222q+p?)
With the help of (39), expressions (38) are 2 e 21
written as follows: I, ~y, 1—% D, —%Dz ,
3c 3c
Hy@ S Py, X Hy@S Py, Y
A4, ~—— 40” I, - 40q I, where
Pa 2(2402 3
Ho@SPy, Yy Hy®S Py, X _ [ SopP(+y?) e
Ady - 4 & 15 + . 4 & [(,- (40) by f 4c(R2+zé—Zzzd+p2)3 c3 +
7w3 p2(x2+y?) ] 34
After integrating the integrals (39) over the 4c3(R2+23-2224+p?)° pmap.
variable o, in view of the relation Pd
D _f [ o by) _ory
oy :\/az —Zj , we obtain: - o lac(R?4z3-22744p2)° 3
7w3 p?(x2+y?) ] 5
4c3(R2+zé—Zzzd+p2)2 pdp.
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Besides
[(a2-22)°  3(a?-2z2)" ]
D~ 3w(x? +y?) i 6 ~8(R2 472 - ZZZd)l
Y7 4c(R2 4+ 22 - ZZZd)3| . 3(a% - Zd) |
l 5(R? + z3 — 2224)? J
[(a2-28)°  (a®-28)" ]
_@? (a? - Zﬁ)2 Tw3 (x% + y?) i 6 4(R? + % — Zzzd)I
c3 4 4c3(R? + z5 — ZZZd)Zl 3(a2 _ 23)5 |
| 10(R? + z3 — 2224)? |
[(a? — 22 * 3(a? - zd) 1
Do~ Bw(x? +y?) i 8 " 10(R2 + z% — ZZZd)I
27 4c(R? + 2% — ZZZd)3| (a2 - Zd) |
l + 2(R? + 23 — 2224)? J
4 5
3 (@-2)'  (@-2 |
_@? (a? - 23) Tw3 (x% + y?) i 8 5(R? + 2% — Zzzd)I
c3 4 4c3(R? + 75 — ZZZd)Zl (az _ Zﬁ)é |
| * 4(R? 4 25 — 2224)? |
(41)
In addition, we have where

I¢=D,+D,+ D+ D,
Pd

o[ _ 271 po Z5 Ve p®dp
3T\ Y 3c¢? (R2 422 — 2272z, + p2)3/2

0
21 72 R+ 22 —-22zz
=<y5—M)<\/R2+a2—Zzzd+ d d —2\/R2+z§—222d).

3c? JR2+a?—2zz,
pa
D4:_2nnpoycj p®dp
3¢? (R2 4 22 — 27z, + p2)3/2

0
(R? + a% — 222,4)%/? N 8(R? + 23 — 222,)

[ 32 ]
Znnpoyci 3 3 I
I |
I |

3¢2

—2(R?*+ 22— 2224)JR? + a? — 22z, —
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P
D, — 3(x2 +y2)e p°®dp
5 4 (R2 422 —27z4+ p2)7/2

0
1 8 2(R*+ 22 — 222,)
3(R2 + a2 — 2zz4)3/2

_ 3(x% + yHy. 15\/R2 + 22— 2274

(R2 + 23 — ZZZd)Z
5(R% + a% — 2zz4)%/?

N
I
I
|.
I
|

15w% (x? + ¥y, p®dp
(R2 422 — 2724+ p?)5/2

Z(R2 +z3 — ZZZd)
JR2 +a? —2zz,

VR +a%—2zz4 +

|
I
I
| .
I
|

8c? 8\/R2+Z§_Zzzd (R2+Z§—ZZZd)2
3 3(R2 + a2 — 22zz4)3/2
(42)
Substituting in (40) s with the differential A, =~
dz, and integrating over all the disks inside the - M[_‘la Isdzy + M[_‘la Igdzy.

sphere between —a and a, we arrive at the . .
P tWA 14 ft’hw . v cential Here, we will take into account that the
components 4, and 4, of the vector potentia integrals /; and /, in (39) are calculated using

the quantities D,, D,, D;, D,, D; and D,
from (41-42):

from the entire sphere:
Ay =

HoW Pogx ra HoW PoqY ra
——4 f_als dZd ——4 f—alé dZd.

a

a
fo @ Pog XY, 211 po 24 T o7 Po @ Pog XY,
sz—+j<1—T Dled‘I' 6 c2 - DZdZd
—-a
—-a
a
Uo W
—# f(D3 +D4 +D5 +D6) dZd.
—-a
a a
Ho® Pog VYe 21N po 25 TUT Po @ Poq Y Ve
Ayz—Tj <1—T Dled‘I' 62 DZdZd
—-a
—-a
a
Uo W x
% f(D3 +D4 +D5 + Dﬁ)dzd'

—-a
(43)
The  integrals ~ of  the  quantities  qver the variable z, are weakly dependent on z

2 2 . . . .
( 1_2% 13] 'LZO z, ] D, D,, D,, D,, D, and D, and in the first approximation are equal to:
c
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a

I8

—-a

211 po 24
3¢2

)Dl dzy =

dwa’(x? +y?) 4wda® 4wia’(x?+y?) 8rnwpya’®(x? + y?)

35cR6 153 | 1503R* 945 c3R®
a _8wa’(x*+y?)  8w3a’  8w3a’(x?+y?)
f—a Dydzy = 105¢R6  35¢3 45C3R%
a 4 5 7
IDstd ~Ta }’; _87:77p02a 37c ’ a 4a7(x2 +y2)7/c
J 15 315¢°R [ Dz, ~ T
f 327”7100 a77/c B 2. 7(..2 2
£D4dzd~—w. j.DdZ z_2a)a (.x +y )}/C
;. 6mn 7¢*R’

Substituting these integrals into (43), we find:

A ~ .uowpoanXVc [a4(x2 +y2) wzaz
x = — —

w?a*(x? +y?) 2mnpya(x? + yz)]

5c¢ 7R® 3c? 3c2R* 27 c?R®
o @ Pog asyyv[ 10mnpoat | 3a*x® +y") 150%a*(x* + yZ)]
15R3 21c¢2 7R* 14 c2R? '
4~ Ho@?Poq @Y [a4(x2 +y3)  wia®  wfat(x® +y?)  2mnpeat(x® + yz)]
Y 5¢c 7R® 3c2 3c2R* 27c2RS
HoW Pog A°XYe [ 10mnpoa® 3a?(x? +y?) 15w?a?(x? + }’2)]
15R3 21c¢2 7R* 14 c2R? '

In view of the approximate nature of our
calculations, we should define more precisely all
the terms in (44) by substituting the components

A, and A, of the vector potential into the
Laplace equation (10), which has the form
AA =0. For this equation to hold, we need to
perform simplification in (44), eliminating the
x4+’
R2
Previously we used a similar approach, in order
to pass on from (32) to expression (33) for the

potential. This gives the following expression,
which is valid at small z :

~1.

small terms and assuming

A~ H0@ P0q@XYe  Ho® Poq @YV (4
x ™ 15¢3 15R3
1077 pga’ 15w2a2)
21c? 14c2

tow*Poqa®yye | How poq A°XYc
A, = 1—
y 15¢3 15R3
1077 pga’ 15w2a2)
21c¢? 14c2

(45)
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(44)
Since in (35) A,, =0 for each rotating disk

inside the sphere, the component A  of the

vector potential from the entire rotating sphere
with charged particles is also equal to zero.

2.4 Electric and Magnetic Fields in the Middle
Zone

The electric field strength E and the
magnetic field induction B are given by

standard formulae:

E:—V(p—a—A, B=VxA.
ot

(46)

Since the sphere rotates at the constant
angular velocity @, the vector potential
components in (45) do not depend on time and
then the field E is defined only by the gradient
of the scalar potential ¢ . Let us substitute (33)

and (45) into (46) and find the fields E and B,
taking into account that 4. =0:
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R w’a’
Ex—Lo= 122 |
dre, R 10c
_ 04, 04y  powpoqa®xzyc (1 _
x ay 0z 5RS
1077 poa’ 15w2a2)
21c¢? 14c2 J°
B. = 0Ax 04, _ Ho ® Poq a®yzye (1 _
y 0z dx 5RS5

1077 poa’ 15w2a2)
21c¢2 14c¢2 )’
_ 94y o4
z dx ady

How poq a®yc(2R*~3x2-3y?) (1 1077 po a?
15R5 21c?
15w?a?
14c2 ) (47)

Since we simplified (44) and used for the
vector potential (45), (47) contains only the
dipole component of the magnetic field.

In the special theory of relativity, the wave
equations are valid for the electric and magnetic
fields [15]:

1 &°E 1 0j
0,0’E=——"—"—AE=——V 9
! ¢’ or £, 7o) =t

2
aﬂaﬂBzciza B Vxj.

Since there are no charges or currents outside
the rotating charged sphere, the right-hand side
of the wave equations becomes equal to zero. In

addition, at the constant velocity of rotation, E

and B do not depend on time. As a result, the
wave equations for the fields turn into Laplace
equations:

AE=0, AB=0. (48)

H =

By directly substituting the components of
the electric field E and the magnetic field B
from (47) into (48), we can make sure that the
fields in the middle zone satisfy the Laplace
equations.

2.5 Scalar Potential in the Far Zone

As conditions for the far zone, we can
R, ~1
c

R>>a,

consider the conditions

A

A R
Since (b:(b—w L

, in this case, we can write:

cosqucos((}ﬁ—(ﬁp), sin(ﬁ:sin((p—qﬁp), (49)
where, in view of (13), the

¢P_wﬁp_2\[R2+Z§—Zsz+p2 wR

angle

N —

—2pxcosp — 2pysing ¢

Substitution of (49) into (16) gives the
following:

Y pdpde

SPoq
471'50 R
[

wpxsm(d) ¢p) wpycos(p—¢pp)

(50)

b - R? 423 — 2224+ p? — 2pxcos(p — ¢p)
F —2pysin(¢p — ¢p) '

Let us take into account the following
transformations for the expression under the
integral sign:

—wpycos(dp —pp)

Rp +

(R2 +z2—2zz4+ pz)

5, wpxsin(d — ¢p)
c

C
-1/2

, wp Lxsin(@ — 9p) — yeos(p — ¢)]

R? 4 22 — 2274 + p?

Jl_Zpme¢—¢»+yﬂm¢—¢»]

In this expression, we use the rule for

expanding the square root in the form
o 5 2 )
1-6 =1- 7% and an approximate

C\/RZ + 25 — 2224 + p?

expression
1 5§ 362

1-5—5+y
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/ p[xcos(d) ¢p)+ysin(p— ¢p)] 3p? [xcos(p—pp)+ysin(¢p— ¢p)]

R2+Zd_2 zzd+p2

wp [xsin(¢—¢p)—ycos(¢—¢p)] w?

(R2+zd—zzzd+p

p? [xsin(¢p—pp)-ycos(p— ¢P)]

JR2+zé—2 zzd+p2

CZ(R2+zd—Zzzd+p )

|
|
|
|
|\ 2w p? [xsin(p—¢p)-ycos(¢p—¢p)]|[xcos(¢p—¢pp)+ysin(p-¢p)]

(R2+zd—zzzd+p )3 g

\
)

/R2+zé—222d+p2

In view of (51), for the potential (50), we can
write the following:

(D

k
the angle ¢, will pass through the values 77[ ,
=1,2,3...

Let us integrate the quantity A in (52) over
the angle ¢, assuming the angle ¢, to be

constant and almost independent of ¢ . Taking
into account that the integrals of COS(¢—¢P),

sin(¢—g,) sin(¢—g, ) cos(p—¢,)

between the limits of 0 and 27 are equal to

and

zero, we find:

SPo, F1E where k
e HHypdpcM) (52)
0 0
As the distance R increases, the angle
a)R oR T
o, = ~ —— can first reach the value >
c c
RY/4
then 7, 7, 27, ... etc. In the general case,
(‘pd . w2p2 (x2+y2) 3p2 (x2+y2) V' pdp
_ SPog H ZCZ(R2+zé—Zzzd+p2) 4(R2+Zé—222d+l72)2

Pa =,
0 J /R2+zé—222d+p2
0

If we substitute the expression for ¥’ from
(27) into (53), then we will see that the potential

can be  represented in  the  form
s
o, ~ P20q7c (I,+1,+2L,+1,), where the
80

integrals /,, /,, I, and I, were found in (28).

Q= %f_‘la(h + 1, + 23+ 2,)dzy =
?a?(x? +y2)]

5c2R2

3a?(x? +y2)
10R*

271 poa?
5c¢2

Poq aly. [1 _
3&R
The scalar potential (54) in the far zone
differs from the potential (29) in the middle zone
in the fact that in (54), the last term in the square
brackets is twice as large.

In (54), we can substitute (31) and express the
potential in terms of the charge ¢, . To ensure
that the potential corresponds to the Laplace
equation, in (54) we will eliminate the small
3az(x2 + yz)

™G that

term and assume

396

(53)

The sum of the potentials ¢, of all the
sphere’s layers gives the sought-for sphere
potential. Assuming s =dz, and substituting
the sum of the layers’ potentials with the integral
over the variable z,, for the sphere potential we

can write:
(54)

x +y2 ~ R*, which is true at small z. As a
result, we obtain the following:

2 2
Q= Qo142 621 .
dre, R Sc
We suppose that the small difference between
the potentials in (55) and in (33) is associated
with the fact that the solutions for these

potentials were obtained in two different ways
and with different degrees of approximation.

(55)
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2.6 Vector Potential in the Far Zone

We will transform (18) using (51) in the same
way as potential (50) was transformed and we
will also take into account (49). Then, for the
vector potential components of the rotating disk,
we find the following:

2n
Ay = —% fodey’ sin(¢ —

¢p) p>dp de.
Ady Mowspoqf J‘pd H]/ COS(¢ _

¢p) p>dp de.

At large distances, we may neglect the

R, R
change in the angle ¢, = O 2
c

integrating over the angle ¢ and consider ¢, a

constant. This makes it easier to integrate

and A4,

the expression for H from (51), we find:
y' p3dp

Pd
Ao~ Ho %5 pggx
dx ™~ 4c R24z2-2zz,+p2
0 d d+p

Pd
HoWSPoqy y' p3dp
4 (R2+zé—222d+p2)3/2
0

Pd
Ao~ to w?SPoqy y' p3dp
dy 4c 0 R2+z5-2zz4+p?

Pd
Ko WS PogX v p3dp (56
4 24,2 2)3/2 " )
(R +z5-2zzgq+p )
0

components A4, , - Taking into account

If we substitute the Lorentz factor ¥’ from
(27) into (56), the following integrals appear:

Pd
2nnp p 24z
I, = ycf [1 gcz d)]

Ig =
Ye j [1 -
0

2mn po (p%+25)
3¢2

p3dp
R2+z5-2zzg+p?

p3dp
(R2+zé—222d+p2)3/2

Using the integrals /, and /,, we can write
(56) as follows:

2
4, ~ Hy SquxI7 B ,uoa)spoqylgj
4c 4
2
w s s X
4, Hy poqyl7 + Hy@S Py, I, (57)
4c 4

Let us calculate the integrals [/, and I

taking into account the relation p, =4/a’ —z; ,
expanding the denominators into series by the
1
rule —=1-6+67, where
1+6
2
5= P

T p2 2 :
R +z;,-2zz,

I; =

(a2 —22)° (yc B

4(R% 4+ 23 — 2z2z4) 3c¢?

0 pove(a? — 22)°

ZnnpoZ§Vc)[ ~

3(a2 — Zﬁ)

2(a? - 73) (a® - 23)’ ]_

3(R2+2z2—2zz5) 2(R%2+2z2—2z24)2
d d d

T 9c2(R% + 75 —2z2y)

" 4(R? + 7% —2zz4)

_( 271 PoZ5 Ve
b= (re- "S5

[(R2 +a%—2zz,)3?

Znnpoycl 3
3¢2 |

3(a ~23)" ]

S5(R% + 73 — 2z24)?|

R*+273—2z2z,4

VR +a? —2zz4 +
3c? )[ JR2+a?—2zz,

—2(R? + 2% —222))yR? +a? — 22z, —

(R2 +z3 — ZZZd)Z

—2\/R2 + 22 —ZZZd] -

8(R? + 23 — ZZZd)3/2

| JR2 +a?2—2zz, 3

The quantities A,  and 4, are the

components of the vector potential from one thin
disk. To pass on to the -corresponding
components of the potential from the entire

| ——)

(58)
sphere, in (57) it is necessary to set s =dz, and

integrate over the variable z, that specifies the

position of the disks inside the sphere on the axis

o7 :
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0]
A =~ MJ‘[ dz &J’[ dz,,
0]
4, —“0 Pog jld —p(’q jldzd
(39)
Substitution of (58) into (59) and subsequent
integration over the variable z, give the
following:
A ~ #ow2p0qa5xyc( _ 1077—'77,00‘12) _
x 15cR? 21c2
#owPOqasch( _loﬂnpoaz)
15R3 21c?
- Mow2p0qa5yyc( _ 1077—'77,00‘12)
Ay ~ 15¢R? 1 21¢2 +
Ho® Poqa xyc( _ 1077-'77,00‘12)
15R3 21c¢? ’ (60)

Here, only the last terms containing R’ in the
denominator exactly satisfy the Laplace
equation. As for the first terms, the far zone

..  OR ) )
condition — ~1 can be taken into account in
c

them. This gives the following expressions:

Ho W Poq a°XYc 1077 po a?
Ay ™ 15R3 ( e )_
C
MowPOqasch( _ 10nnpoa2)
15R3 21c¢? >
A~ uowPOqasch( _ 10nnpoa2) n
y 15R3 21c?
uowpoqasxyc( _1077-'77,00‘12)
15R3 21c? >

that satisfy the Laplace equation. The
A =0 and therefore, A4

automatically satisfies the Laplace equation.

2.7 The Electric and Magnetic Fields in the
Far Zone

In order to find the fields E and B, it is
necessary to substitute (55) and (60) into (46):

R 2 2
E = o 3 1+ ® i .
dre, R 5¢

04, 04y

component

4

_ 210 0% poga®yzyc 1
= 2Ho @7 poq@7YZ¥e (4

ay az 15cR*
107'”7,00‘12) oW Poqa®xzyc (1 _ 1071.'17p0a2)
21c? 5R5 21c¢?
B %_%N_Zﬂow Pogqa xZVc(l
y 0z dx 15cR*
10N poa ) #owpoqasyzyc( _ 1071'17p0a2)
21c? 5R5 21c¢?

_ 04y _04x
Z 7 ax dy =
How Poqa’yc(2R2-3x2-3y2) (1 1011:17p0a2)
15RS T 21c2

(61)

The fields in (61) differ insignificantly from

the fields in (47) in the middle zone due to the
2 2

small additions proportional to the value —

c
This difference can be considered the
consequence of the fact that during calculations,
different methods of obtaining an approximate
solution were used. In addition, a rotational
component of the magnetic field appears in the

first terms in B, and B in (61).

2.8 Scalar Potential in the Near Zone

In the near zone, the conditions R=>a,
R
c

the potential is determined, is not far from the
sphere. We can start with expression (21) for the

potential ¢,, generated by a thin disk-shaped

P <<1 are met, so that the point P, where

layer inside the sphere, located on the axis OZ

at the height z,. For the near zone, we can

A

assume that the early time point 7 =¢f——2 is

C

. A R .
approximately equal to ¢ ~f——2_ In this case,
c

the quantity R, in (11) differs a little from ]A?P

in (13), since their difference is associated with a
small difference between the angle ¢ and the

. R

angle ¢ =¢p ——2=
c

in the denominator in (21) can be substituted

with R, .

. Therefore, the quantity R,

The quantity R, is the distance from the
integration point inside the sphere to the
observation point P . Further, we will assume

that the point P is located outside the sphere

wp(xsing—ycosg)
c

is met. This allows us to expand the root in (21)

so as to distinguish a small term containing the
square of the speed of light:

and the condition R, >>
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\[RZ + 22— 2224+ p? — 2pxcosp — 2pysing +

w? p?(xsing — ycosep)?

c2
p?(xsin cos )2
2¢c*Rp
Here, the quantity R, represents the square 21 o
root and corresponds to (11): Iy = J;) I
2n
2 2 _ 2
R, = Re+z5—2zz4 +_p ‘ (62) d¢ ‘
—2pxcos¢p — 2pysing JRZ+Z§—Zzzd+p2—prcos¢>—2pysin¢>
Now, the denominator in (21) can be [, =
transformed by the rule 2n
R 2
1 1 | o Th tential . j o (js:@z yeos¢¢3 — ¢)3/2 do
- . € potentia 1S z5-27z3+p?—2pxcos¢p—2pysin
6 R\ R, P Pa 0 ‘
generated by one layer in the form of a thin disk
I, =
of radius p, = Ja’ - Zj . The total potential of H
the sphere is the sum of the potentials of all the cos¢ de.
layers and this sum, in view of the equality o JRZ+z§—2zzd+p2—2pxcos¢>—2pysin¢>
s =dz,, can be substituted with the integral: I =
12 =
o~
sing
2r ) d¢
4"::20] j f [1 sz(xszlr:;bR%ycos¢)2 + j() JRZ+z§—Zsz+p2—2pxcos¢>—2pysin¢>
(64)
@0y i nqb] Ypdpdddzy (43 . .
R As shown in [16], integrals (64) are expressed
in terms of the elliptic integrals

In (63), the expression in square brackets
depends on the angle ¢, as well as R,

according to (62). When integrating over the
angle, we need four integrals:

E (k, g) and F (k, g) Taking into account (64),
as well as (27) for y'
follows:

, (63) will be written as

2mn po (p*+23)
1- 5 Iy — 110 +
. PogYc 3¢ 262 do d
iy 5 . papazg
0 w?px w?py

+

-a VYo

This expression shows that we need to

Pd Pa
calculate the integrals .[[9 pdp, .[[9 pldp,
0 0

Pa Pa Pd
Illo pdp, I[ll pldp, Illz p*dp . To do
0 0 0

this, it is necessary to represent the quantities /,,
1

10°
in them in an explicit form. For this purpose, we

I,, and [, so that the variable p appears

I +
cz 11 c?

Iz

will expand the elliptic integrals E (k,%] and

F (k,%] into series by the standard formulae:
F(k2) =§(1+§2+96L:...)
£ )
(kD) -2(1-5-.)

P 2
220 )

kZTI.

(65)

1-2n’
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In (65), we take into account the first two

. V4 .
expansion terms F (k,5] and substitute them

into /, and then substitute three terms of each

expansion into /,,, /,, u [,,. The quantities I,

0>
I,, and I,, are proportional to each other, so

that their substitution into the expression for the
potential leads to cancellation of the terms:

Pd
~ PoaYe 2mn po (p*+23)
4meg j f [1 3c¢? ]19 +
—a

= 110 pdpdz,.

Now, we can calculate the

Pd Pq
H, :Ilsz pdpaH2:II9 p’dp
0 0

integrals

Pd
and H, = IIIO p’dp and then express the
0

potential in terms of integrals over the variable
z, of the quantities /1, , H, and H, [16]:

Poqycf_ Hl dZd+w quyCJ‘ H3 dZd

4-71'8

U/;ocpoezycf ZdHl dZd

%";“ J Hydzg . (66)
Due to the cumbersomeness of the

expressions for A, , H, and H, , integration in

(66) becomes difficult; besides, the solution is
expressed in terms of special functions and
cannot be represented in an explicit form without
expansion into series. In this regard, we will
consider here only three simplest cases.

The first term on the right-hand side of (66),
qu
4re

jH dz,, does not
0 —a

contain the speed of light and does not depend
on the angular velocity of rotation @ . In the case
of a classical uniform solid body and in the

that is, the term ¢’ =

absence of rotation, this term should define the
scalar potential in accordance with Coulomb

law. Indeed, if we calculate @' using H, on the
axis OZ, on condition that x=y=0, z=R,
then we will obtain:

H,(z=R) = 271\/R2 +a?—2Rz; —

27T(R - Zd)-
¢'(z=R) = i",je“f H,(z=R)dz; =
P0qa Yc
“3e0R (67)

In a solid body, the Lorentz factor at the
center of the sphere is y_ =1. Taking into

account that the electric charge of a uniformly

, , . 4z p,, a’
charged solid spherical body is ¢ :T",
we have: ¢'(z=R)= 9 ,  which
4re,R

corresponds to the Coulomb law on the axis 0Z.

In the case of a relativistic uniform system,
potential (66) on the axis 0Z, on condition that

x=y=0, z=R, will depend only on H, and

H,, since H, vanishes. Since

Hy(z=R) = —(a —2R? -3z3 +
4Rzq)JR? + a® = 2Rzq + = (R — 24)°,

then, in view of (67) and (31), potential (66)
becomes equal to:

p(z=R) ~PaTe (1

3&R

) L e (g

5c? 4megR

Determination of the potential on the sphere’s
surface, where z=0, R=a, is of particular

interest. Using H, from [16], we will express

j H, dz, in (66) in the following form:

—a

f Hidz; = 2ml3 — an \/RZ + 22— 2zz4dz4 + 21l

R2+z%-2zz4

C (z-za)?

—21(x? +y2)j

Here,

400

(69)

dZd + 27T115 + 27T116 - 27T117 .
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a

Lz = \[RZ +a2—2zz4+2 |a? —z3x? + y?dz,.

—-a
a

dZd

(
Ly = (x? + y?)? J

a

(z-z )2 R2+a2-2zz4+2 [a?-z2./x2+y?
d d d

(
Ls = (x? + y?)3/2 J

Lig = (x* +y%)

11'7:'\/ﬁ:y2

When z =0, R=a, all the integrals in (69)
are taken exactly, without applying -elliptic
integrals, by using substitution z, =asin2y . In
particular, we have:

8\/§a2
Iy(R=a)==".
2 3\/5 2
I,(R=a)=-"Int (%)— 4“
2 2
Is(R=a)=- 2 +5i1 tg(%j

Lo(R=a)=2V2d" +24° lntg(%j .
224
3

I,(R=a)= +24° lntg(%] .0

Substituting (70) into (69), we find:

2
f_aaHl(R =a)dzg =21 [@+

5a%Intg (g) —3a?In(1+ \/E)] ~ 0,98ma’.

On the other hand, for the Coulomb law to
hold true for a fixed solid body at z=0, R=a,
in (66), only the first term is taken into account

2_,2
a?-z§
dZd.
(z— zd)2 RZ+a2-2zz4+2 /az—zd x2+y?
re
1
dZd.
J jR2+a2—Zsz+2 /az—zé x2+y?
-a
a
r
/az—zé
dZd.
J jR2+a2—Zsz+2 /az—zé x2+y?
-a
2
4ra

~1,327a*. The

and it must be IH] dz, =

obtained above value 0.98ma? turns out to be
26% less. The difference arose from the fact that

and [

10°
expansion (65) of complete elliptic integrals was
used only up to the second- and third-order
terms, respectively. For greater accuracy, an
increased number of expansion terms should be
used.

when calculating the integrals 1

Thus, it can be stated that the scalar potential
outside the sphere is determined exactly on the
axis OZ and in the other directions, we obtain
only an approximate estimate, depending on the
number of expansion terms used in (65).

Nevertheless, since /, does not depend on

either the speed of light or the angular velocity
of rotation @, this also applies to the potential
AT

1 j H dz, in (66). This means that
e

0 —a
the value of the potential ¢’ in an arbitrary
direction cannot differ significantly from the

value go'(ZZ R) in (67) on the axis OZ and
from (p(z = R) in (68). Indeed, the dependence
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of the potential on the direction of the radius-
vector R from the center of the sphere to the
point with coordinates X,),z, where the
potential is calculated, could arise due to
rotation. However, the potential ¢' does not
depend on @ and for the sphere at rest with
o =0, the potential is symmetric with respect to
the choice of direction of the vector R .

In this regard, we will assume that in (66),
(Z — R) — Poqa Yc

3&R
(71)

Calculating the last three terms on the right-
hand side of (66) in accordance with [16], taking
into account (31), we find the potential at rather
large R:

! qu Yc H d
Zg ~
4 4me, f— 1%%d

~ _do w?a?(x?+y?) (4
¢R>>a)~ 4megR [1 MESTYT? (1
225ma./x2+y2  15a?
128RZ 14R2>]' (72)

Potential (72) actually has the same
dependence on the angular velocity @ as
potential (32) in the middle zone, but it is not
exact in the near zone, where the radius R is not
much larger than the sphere’s radius a

We can also estimate the potential in the case
when z=0, R=a and all the integrals are
taken quite easily. In this case, we find:
1279V2ma*

240

21 1ntg (£) ~ 15,98 wa*.

fa Hy (R=a)dzy = —
427ma*
16

Instead of (72) for the potential, we obtain the

following:
6 2 2
rdo 1,298 | (73)
dre,a c

Comparison of (73) with (72) shows that in
our calculations at z=0 on the surface of a
rotating sphere, the correction with respect to the
potential of a fixed sphere reaches the value of

p(R=a)

2 2
6w°a

the order of
c

2.9. Vector Potential in the Near Zone

Based on the similarity of formulae for scalar
potential (16) and vector potential (18), in view
of (63), we can express the components of the
vector potential of the rotating disk in the near
zone:

2p2?(xsing—ycos¢)?

2c2R2 y'sing p2dp d¢

Rp

smqb

w? p?(xsing—ycose)?

2T
HowSP 1
~ _F0T°r0gq
Agx ® — am
2T Apd
1
A . Ho@SPogq
dy 4T +w
0 0

Assuming lA?P = R, instead of (19), we have
the following:

A oR, .
cos¢p ~ cos¢g+—-Lsing,

singz; ~

402

pxcosqb 4=

2c2R2 y' cos¢ p?dp do

Rp

smqb

Taking this into account, we will transform

the vector potential components 4, and 4,
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21
Pa
[ ([, @ Gsing = yeosp)? |
p Ho®SPoq | | | 2C7R2 |y’ singp2dpde
dx -
n I J l[ +w2pxcos¢+w2pysin¢ JI Re
J Y c? c?
0
2T pa
Ir {‘lfl w? p?(xsing — ycos¢p)? +]I
5 _
Ho W* S Po | 2Cc2R?% ,
4tc : i I | w?px (I:)Zpy iy cosg pdp dep.
_} J[+ 2 cos¢ + > sing |
0
0
2T pa
([, _ @ Gsing —ycos)? 1]
A Fe®SPog I | | 2¢2R2 |V’Cosqbp2dpd¢+
SO (N B PP w?py | Rp
_} J[+ > cos¢ + > sing |
o 0
2T pa
Ir {‘ |[1 B w? p?(xsing — ycos¢p)? +]I
Ho WS Pg | 2Cc2R?% ;.
4tc ; i I | w?px (I:)Zpy iy sing pdp dg.
_} J[+ 2 cos¢ + > sing |
0
0
(74)
Here, R, is defined in (62). After integration over the angle ¢ and the
cylindrical coordinate p, the following is
obtained:
a
[ 21N po 25 2Tnp w?
[[(1- 27552 e 25 4 s
Ho® Pogy Ve w?x? + y? 37N poy/x% + y?
Ay = — 4 + c? Ie7 + c? I3 + |dza =
371 poZag X2 +y2  94/x% +y?
J + c? B 2 L2
_a -
#oa’4P0quc

a
19230 + 2) f[(RZ +a?—22z24)% — (R*+ 2% —2224)® — 15(x* + y?)(a® — z3)?*]d z4 .
-a

a
([(, 2mnpozi 211 po w? ]
1- 3¢2 26~ T 3.2 128+C_2]25+
A Ho®@PogXYe w?\/x? + y? 371 poy/x2 + y? dg —
y 27 30
NT + CZ ] + CZ I + Zd
3nnpoziJx2 +y2  9/x%+ y2 ;
J * c? B 2 29
_a -
a
Ho®* Pog ¥ Ve

1926302 +7) ") [(R?+a?—2zz4)> — (R?* + 25 — 2224)® — 15(x% + y?)(a® — z3)?]d z4 .

—-a

(75)
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I

Here, the integrals /5, 1 27

262

I, I,y and

I, are calculated in [16].

It should be recalled that in the course of

calculations, the integrals /,, and /,,, defined in

(64), were calculated approximately, by using in
(65) expansion up to the second-order terms. The
same holds true for some integrals that appear
when integrating over the angle ¢ .

A similar situation took place in the previous
section, where we found that deviation of the
scalar potential in our calculations in the
equatorial plane on the sphere’s surface reached
26% due to the fact that not all the expansion
terms were used in (65). Therefore, it should be
expected that although the dependence of the
vector potential components on the coordinates
X, ¥,z is shown correctly in (75), the inaccuracy

increases as the sphere and the equatorial plane
are approached.

In this regard, we will consider below two
particular cases when the potential components
are calculated in a relatively simple way, which

A,(z=R>a) = 0

makes it easy to analyze the solution. The first
case refers to the region of space near the axis

OZ , where it can be assumed that z= R,
R >>x, R>>y. The second case refers to the

points on the sphere’s surface, where z =0,
R*=x"+y",while R=a.

2.9.1 The Case When z ~ R

In this case, at x =0, y~0, the integrals
I,, and [,,, defined in (64), can be simplified, if

we make substitution:

25

1

~
=~

JR2+Z§—Zzzd+p2—2pxcos¢>—2pysin¢>

pxcosp+pysing
I+
R +zg—2zz4+p

/R2+zé—222d+p2

Making similar replacements in the integrals
that appear during integration over the angle ¢
and acting similarly to [16], we find the
components of the vector potential at large
distances, when z= R, R>a:

_ Ho @ Poq @YY, | l0mnpea®  w’a*\
21c2 7¢2

Mo @® poq @YY  How® pog aSxyc

Ay(z=R>a) =~

15c2R 15¢3
1mwpwa%n<1_ﬂmnma2_w%ﬂ)+
15R3 21c? 7c?
to ®* Poqg XY  fo®* Poqga®yYe
15¢2R 15¢3

2.9.2 The Case When R =+/x" + )’ =a

Let us now consider the second case,
referring to the points on the sphere’s surface,
where z=0, R>=x>+y",while R=a.

In order to simplify the calculations, in (75),
we will limit ourselves to only the largest terms
and ¢ in the

denominator. This gives us the following:

10~ %o w pog a®y v,
Ax(R=,/x2+y2=a)-«— 2 4°q £

that do not contain ¢’

9

10~ *pugwpoga’xv,
— 2 2 — ~ 0 0q c
Ay(R—w/x +y —a)~ " .

(77)
404

(76)

If we proceed from the form of (60) and (76),
the vector potential components at z =0 and
R = a should be approximately as follows:

~_,uoa)p0qa2yyc - ,uoa)po(,azxyc
! 15 Y 15 '
(78)

Apparently, the difference between the results
of (77) and (78) was due to an inaccuracy that
arose when some integrals were found by
expanding the elliptic integrals into a series up to
the second-order terms. Although the general
behavior of the vector potential outside the
rotating charged sphere is determined correctly,
this accuracy turns out to be insufficient for the
correct determination of the vector potential
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directly at the equator of the sphere and
expansion of the elliptic integrals up to higher-
order terms is required here.

2.10 Electric and Magnetic Fields in the Near
Zone

According to (46), the electric field depends
on the potentials’ rates of change in space and

a a

2
quycf w quyc‘f
E~——— | VHdz ————
4me, 1% 8mc?e
-a -a
7'].DO.DOq Ye
6c%g,

time. Since the vector potential at constant
rotation of the sphere’s particles does not depend
on time, the expression E =—-V ¢ will hold true.
Using (66), for the electric field, we find the
following expression with the use of the sum of
integrals:

a

f Zﬁ VHI dZd +

1N Po Poq Ve

VH; dz; +
342 6c?¢,

a

f VHZ dZd .

—-a

Still this expression is not final, since in it, we
must first take the spatial gradients of the

quantities f,, H, and H, and then perform

integration over the variable z, .

(79)

The situation on the axis OZ turns out to be
much simpler. Here, in view of (68), the field
depends on the distance R approximately
according to the Coulomb law for the charge q,,:

dp(z=R d 1 R
E(z=R)=-Ve(z=R)=— pz=R) 4, d 1 _ 4, - (80)
dR dre, dR \JR? 4me R
At small z, when x’ +y2 ~R* and
R >>a, in order to estimate the electric field,
we can use (72):
E(R>>a)=-Vo(R>>a)= 9,R 1+a)2a2 (81)
4 47rgOR3 10¢* )
If we proceed from the form of (73), then at
z=0, R~a, for the electric field, we obtain
the following:
q.R 6w’a’
E(R=a)=-V@p(R=a)~—= 1+ . (82)
(R=a)=Vo(R=a)= 25100
The inaccuracy in the definition of Ho W Poqg @°YYc

E(R za) depends on the inaccuracy of the
potential in (73).

In (75), approximate expressions were
presented for the vector potential components
A . The subsequent application of the curl
operation allows us to find the magnetic field by

the formula B =V x A ; however, the result is
cumbersome.

The expressions for the vector potential
components are greatly simplified near the axis
OZ . Leaving the largest terms in (76) and

taking into account that 4. =0, we find:

Ay(z=R>a)~ —

1077 pga’
21c¢?

(-
(-

15R3
w?a?
7c¢?

5
Ho W Poqga~XYc
A,(z=R ~ 2204 e
y( >a) 15R3
10mn py a’? wzaz)

21c? 7c?
94, 94y

B,(z=~R>a)=

dy 0z
Ho @ Pogq a®xzyc (1 __10mnpoa® wzaz)
5RS 21c? 7¢2 J°
04, 04,
By(zzR>a):6_z_Wz
Ho W Poqa°yZYc (1 _ 107 1 po a? _ wzaz)
5RS 21c¢2 7c?
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0A 04
B,z=R>a)=—2-—"=
Z( ) ox dy
Ho @ poqa®yc(2R%2-3x2-3y?) (1 1077 py a?
15R5 21c?

wzaz)
7¢2 )’

In (83), R>a, but R is not much larger
than the sphere’s radius a .

(83)

The components of the magnetic field in (83)
actually repeat expressions (47) for the magnetic
field in the middle zone, with a slight difference
in the terms containing the square of the speed of
light.

3. Conclusion

The presence of the sphere’s rotation leads to
addition of cylindrical symmetry about the
rotation axis (OZ to the sphere’s radial
symmetry in the formulae for the potential. As a
rule, this is expressed in the fact that the scalar
potential of the electromagnetic field becomes
dependent not only on the sphere’s radius a, the
distance R and the angular velocity @ , but
also on the angle 0 between the axis OZ and
the direction to the point P where the potential
is measured. The latter is confirmed by
expressions for the potential (32) in the middle
zone, (54) in the far zone, (72) and (73) in the
near zone, from which it follows that the
potential increases as the radius-vector R of the
observation point approaches the equatorial
plane of the rotating sphere. By the order of

magnitude, the relative change in the potential
2 2

does not exceed , depending on the

2

sphere’s radius a and on the angular velocity of
rotation @ .

Thus, for the potential of the rotating sphere,
we can expect dependence of the forme =

o F(a,R,w,0), where F(a,R,w,0) is a

4megR

certain function. In this case, the remote point P,
where the potential is calculated, has a radius-
vector R = (x,y,z) = (Rsinfcos¢, Rsinfcose,
Rcos6). However, due to the sphere’s symmetry,
there is no dependence on the angle ¢ in the

function F'(a,R,®,0) and in the potential @ .

In addition to the scalar potential, we
calculate the vector potential in the middle zone
(45), in the far zone (60) and in the near zone
(75). The first terms in the vector potential
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components in (45) contain ¢’ in the
denominator and in (60), the similar terms
contain ¢ in the denominator. Such a change in
the potential dependence, which appears when
going over from the middle zone to the far zone,
is a typical consequence of the method of
retarded potentials.

In (45) and in (60), there is the same term

1077 p,a’
218
the relativistic uniform system. However, the

2.2
w a

2
C

associated with the properties of

terms, which are proportional to and
define the dependence on the angular velocity
@, have different coefficients. A similar
situation occurs in the near zone for the case
when z = R > a, which is seen in (76).

This can be explained by the fact that in the
course of calculations, we used not coincident
procedures for expansion of functions and their
subsequent integration, which give different
accuracy. Another possible explanation may be
that, indeed, in different zones, the dependence
on @ is different. The accuracy of the results
obtained can be improved by increasing the
terms in expansion of functions into series;
however, introduction of each new term
significantly complicates the calculations. It
should be noted that for the purpose of more
convenient analytical presentation of the results
in an explicit form, some elliptic integrals were
expanded into series up to the second- and third-
order terms, while other integrals were expanded
into series up to the sixth-order terms.

Using the obtained expressions for the scalar
and vector potentials, we calculate the electric
and magnetic fields outside the rotating charged
sphere. The corresponding expressions for the
fields are presented in (47) for the middle zone,
in (61) for the far zone and in (79) in the near
zone for E. The formulae for the electric field
E in the near zone are made more precise in
(80) on the axis OZ, at small z in (81) and at
z=0, R~a in (82). In all cases, we can see
that the field E increases due to rotation, while

the maximum relative increase does not exceed
2 2

the value near the sphere’s surface in

2
C

the plane XOY .
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The components of the magnetic field B in
the near zone on the axis OZ on condition that
z = R > a are presented in (83). Comparison of
(47), (61) and (83) shows that within the
framework of the approach used, the obtained
approximate expressions for B differ in
different zones in small terms, associated with
the dependence on the angular velocity @,
repeating the corresponding difference for the
vector potential A .

Due to the charge conservation condition, the
charge g, (31) of the rotating sphere is equal to

the charge ¢, of the fixed sphere in (8). This

allows us to equate the Lorentz factor ¥, of the
particles’ motion in the center of the rotating
sphere and the similar Lorentz factor ¥, for the
same and generally fixed sphere.

The results obtained can be applied to
nucleons in atomic nuclei when calculating the
binding energy in the gravitational model of
strong interaction, which takes into account
attraction of nucleons to each other in the strong
gravitational field, repulsion of protons due to
the electric force, repulsion of nucleons’
magnetic moments oriented in the combined
magnetic field, as well as interaction of the
nucleons’ spin gravitational moments in the
torsion field of strong gravitation due to the
nucleons’ proper rotation. Since near the
equatorial plane at the surface of a rotating

proton the electric potential can be increased due
2 2

to the addition of the order of

>— according

c
to (73), then at a typical angular rotation velocity

®=1.03x10* rad/s, according to [17], and at
the proton radius of the order of 8.73x107'® m,
this increases the potential by a factor of 1.54.

As a result, this also has an impact on the value
of the binding energy of atomic nuclei.

Similar calculation for the neutron star PSR
J1614-2230, for which the angular velocity of

rotation is @ =1.994x10° rad/s and the radius

is a=12.8 km according to [18], gives
6 2 2
29 _851x107 and =2 ~0.04. So, if
c c

this star were charged, the field near the star’s
equator would probably also be increased by a
6w’a’
c2
field of a non-rotating star. The same applies to
the gravitational field in the covariant theory of
gravitation, the equations of which are similar to
the equations of the electromagnetic field [12].

factor of 1+

~1.04 as compared to the

Due to the fact that the calculations contain a
great number of integrals, the key details of these
calculations are presented in special files, which
are included in an appendix to this work [16].
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