Jordan Journal of Physics

ARTICLE

BALQARAD Geant4 Model: Enhancement in γ-ray Spectroscopy and Validation

E. Ababneh^a, S. Al-Amarat^a, S. Okoor^b, M. M. Imran^a and S. Dababneh^a

^a Department of Physics, Faculty of Science, Al-Balqa Applied University, Salt 19117, Jordan.

^b Physics Department, Yarmouk University, Irbid 21163, Jordan.

Doi: https://doi.org/10.47011/15.2.5

<u> </u>	
Received on: 12/10/2020;	Accepted on: 12/01/2021

Abstract: Advances in gamma-ray spectroscopy allow for excellent background suppression and increased efficiency using composite Clover detectors with combinations of active shields. The events from such combinations, registered in list mode and analyzed offline, promote significant sensitivity improvements for gamma detection. This study utilizes the modularity of such composite of high-purity germanium radiation detectors to investigate their applicability in different possible fields. A comprehensive survey is conducted on the appropriate radioactive isotope serving each application. According to its decay scheme, investigation on the proper modes of operation for each isotope is carried out by Monte Carlo simulation applied to the Clover detector geometry. Addback factor measurements were performed using the newly acquired BALQARAD Clover. In an offline analysis through self-developed software, the Clover direct and addback performances are deduced *versus* gamma-ray energy. Measurement results obtained using the Clover detectors agree reasonably well with those obtained by Monte Carlo simulation. Keywords: Geant4, HPGe, Clover-type detector, Detector modeling and simulation, Modes of operation, Addback factor.

Introduction

While standard gamma-ray spectrometry is commonly used to satisfy various requirements, many significant applications involving highly sensitive detection and gamma-ray measurement are hampered by ambient backgrounds and need enhanced signal-to-background ratios. Therefore, due to crystal size restriction, poor time characteristics and large Doppler broadening of the energy spectrum, standard spectroscopy is not well-suited for such applications. Nowadays, the increasing number of stations around the world for radiation detection equipment, mainly gamma-ray detectors, reflects the public interest in radioactive wastes and other contaminations in the surrounding environment. Recent advances using composite and segmented HPGe Clover detectors as active shields in conjunction with scintillators provide high degrees of versatility for various kinds of ambient, cosmic and sample relevant to background suppression. Besides, attempts to maximize efficiency by measuring at close geometry with standard setups are combined with severe associated effects, like summing, and limiting the measurement's accuracy. Combined with extensive Monte Carlo simulations, the essential corrections due to self-absorption, extended source and true coincidence summing can be accurate reliably obtained, allowing for measurement combined with high efficiency. Therefore, in addition to national security applications, food and water radiological protection, energy and natural resource applications, many environmental radioactivity measurements are foreseen to benefit from such a sensitive system.

Continued global research dedicated to the detection of low activities and yields by specific gamma signatures is reported in various literature articles [1-5], which revealed steady improvements through the use of arrays of Ge detectors in resolving power, efficiency and high ratio of full-energy to partial-energy events.

Researchers were motivated to investigate further the early encouraging results of using Clover HPGe detectors in several applications and fields. Dababneh et al., (2004) examined the benefits and disadvantages of different modes of operation. An experimental approach for determining the summing correction factor was formulated for the setup of two Clover HPGe detectors of the Karlsruhe Research Center in Germany [6]. Besides, in 2014, Dababneh et al.. reported on a setup of Clover HPGe detector in coincidence with specified energy windows in BGO counters covering a large solid angle and combined with large plastic veto counters, which led to a significantly improved sensitivity that allows for clear identification of specific ytransitions [7]. Different modes of operation have been tested for optimizing the final experimental setup. Sarmiento et al. used an experimental setup consisting of composite Ge and strongly segmented Si detectors in 2012 to investigate the nuclear structure of the heaviest elements [8]. A comparison between the simulated detector response of complex decay modes and the experimental data was constructed. A contrast was constructed between the simulated detector response of complex modes of decay and the experimental data [8]. The results provided an excellent testing scenario for new gating and triggering possibilities. Furthermore, a Canberra CryoPulse 5 high-purity germanium (HPGe) semiconductor detector was used to classify and quantify the isotopes that emit gamma in ports and waterways [9]. An experimental setup consisting of 8 segmented Clover HPGe detectors [10] has also investigated collective excitation and singleparticle state interaction. For any composite detector, the full detection mode is calculated by simultaneously testing direct and addback modes. The addback mode's advantage arises when the escaped events from one crystal may be recorded in the other crystals. This substantially increases the contribution to the full-energy peak (FEP) efficiency and reduces the Compton continuum [11].

Despite the above research efforts, when complex isotopes are involved in the decay mode or complicated calculation methods, many measurement difficulties can arise. It is worth mentioning here that there is no widely used integrated measurement method with welldefined calculation techniques. This study aims to perform a comprehensive analysis and review of different radioactive elements, analyze the application used and analyze preferable modes of operation based on the isotope decay scheme. This can be carried out with a validated and well-controlled measurement method via a newly acquired active shielded Clover detector named BALQARAD Clover, located at Saed Dababneh Laboratory (SDL) for Radiation Measurements at Al-Balga Applied University in Salt, Jordan. The BALQARAD Clover, to the best of our knowledge, is the first of its kind in the Middle East and in the Arab world. A model was developed by Geant4 code for the Clover and then validated after comparison was performed between experimental and simulated data using various radioactive point sources. Finally, for the BALQARAD Clover, the addition factor as a function of gamma energy was also calculated.

Materials and Methods

Clover Detector Setup

The BALQARAD detection system is a composite detection array consisting of four high-purity germanium crystals of the N-type arranged as Clover-shaped and different scintillator types. Each crystal's size is 60 mm in diameter and 60 mm in length and each crystal has a relative efficiency of 40%. For the BALOARAD Clover, a highly segmented active shield is specifically designed and consists of several BGO $(Bi_4Ge_3O_{12})$ and CsI(TI) scintillators surrounding the Clover (front, side and back scintillators). Large plastic scintillator panels fixed on top, right and left sides of the setup were used to select or reject particular Clover signals according to different criteria, mainly reducing cosmic-ray backgrounds. Each of Ge crystals and active shields provides energy-time information recorded event-byevent in the list file.

Modes of Operation

Different modes of operation are used for counting and analyzing the data. The perfect mode used for sample characterization depends on the decay scheme of the studied nuclide, the energies of gamma being analyzed and other nuclides in the sample that may interfere with the analysis being performed. As a result of the addback mode, events that are registered within a given timing window and then added together are considered. By adding Compton's energies scattered among all the crystals, the full-energy peak is populated by more events and the Compton continuum is reduced. Therefore, less background continuum at low energy will be provided in the spectrum. If two or more photons are emitted simultaneously and detected in separate crystals, the addback mode integrates these energies before binning them into the spectrum. This true coincidence summing is the drawback of using the addback mode. Thus, when studying radionuclides with cascade gammas in the addback mode, careful consideration must be taken. When each of the crystals is treated as a separated detector, then the operation is called direct mode. In this mode, each signal is registered separately and then the number of counts is added together, channel by channel, into the final direct mode spectrum summed up. Due to the solid angle, the direct mode is not oversensitive to true coincidence summing, although Compton's continuum is much higher.

Geant4 Model of the Clover Crystals

Monte Carlo simulation has been conducted to investigate the BALQARAD detection system's characteristics in various operation modes for different isotopes. Therefore, the experimental setup shown in Fig. 1 was modeled using the toolkit Geant4 [12] and extensive simulation runs were performed. The detector's model geometry consisted of the four Ge crystals, the scintillators surrounding them, the front shield of the BGO, the side shield of the BGO and the back catcher of the CsI, as well as the canisters containing these components. The lead shield and the source housings have also been modeled. It is worth mentioning here that the validation of the scintillation detectors output of the BALQARAD system will not be included in the current study.

(b)

FIG. 1. The BALQARAD active shielded Clover detector at Al-Balqa Applied University in Jordan. (a) Right panel: side pictures of the Clover and the active shield of the system. Left panel: The Monte Carlo model prepared using Geant4 showing the different components of the active shield and the Clover four crystals. (b) Sketch of the Boolean structure of the Clover crystals, which was constructed by detailed Geant4 simulation.

In the design, four germanium crystals were specified; each one was separately identified. Each crystal is a composite of many geometric shapes designed and then fused to obtain the crystal's final shape, as shown in Fig. 1. We first describe the crystal's geometry and construct the physical structure by thorough assignment of its component material, such as density, atomic number and mass number. Finally, the physical and geometrical definitions are linked together and the final crystal coordination is determined in the defined world.

Addback Factor

The addback factor F is defined as the ratio of the FEP detection efficiency of the addback mode to that of the direct mode. Therefore, the addback factor measures the increase in the FEP efficiency for a certain gamma-ray of energy E_{γ} [11].

Duchene explored the main feature of photopeak detection efficiency in composite detectors such as Clover in 1999 and the findings were contrasted with those obtained by simulation [3]. He found that the fit of the experimental data leads to an expression for the addback factor $F(E_{\gamma}) = 1 + f(E_{\gamma})$, where f is the addition factor that directly depends on the photon energy. The photoelectric effect is dominant at gamma-ray energy below 130 keV. Consequently, the FEP normally does not contribute much to multiple events and both direct and addback modes are the same. The addback factor F is equivalent to 1 (f = 0) over an energy range of less than 130 keV. The Compton scattering probability is increased at higher energies (above 130 keV) due to photon scattering in more than one crystal. The addition factor begins to increase with energy, as the addback mode would be more efficient. Therefore, the present work aims to test the BALQARAD device addback factor (F) using several gamma-ray energies obtained from ⁶⁰Co, ¹³⁷Cs and ²²Na point sources. For this purpose, the Clover's physical model was developed and the additional factor equation was obtained and compared with the simulated one.

Results and Discussion

The geometry was evaluated using a hypothetical Geant4 particle called Geantino (a non-interacting particle), after creating a Monte Carlo code based on comprehensive modeling of the device architecture. To verify the modeled geometry, which was perfectly matched with the real one, the particle-tracking information was used. A special simulation run was also carried out to compare our built code's performance to the experimental measurements.

The Validation of BALQARAD Clover Simulation Model

A comparison was carried out between experimental data and the results obtained from the simulation. In the validation process, several point sources (⁶⁰Co, ¹³⁷Cs and ²²Na) located at 24 mm from the Clover's front side were used. The source-detector distance used in the validity was settled at 24 cm, typically to avoid high detection dead time. Table 1 shows the full peak net area for the point sources in the addback and direct modes. It is evident that the simulated and measured net areas are in good agreement, with an average error percentage of less than 6%. It is also clear that the addback mode is better than the direct mode for all isotopes due to the high addback efficiency in the full-energy peak on the expense of the corresponding Compton continuum. Measurements of a simple decay scheme, as in ¹³⁷Cs source with energy 661.65 keV where Compton scattering is the dominant interaction, confirmed the addback gain as illustrated in the gamma-ray spectrum in Fig. 2a. In more complex decay schemes, such as ⁶⁰Co and ²²Na, two full energy peaks appear in coincidence. This will reduce the events recorded at the full-energy peak and cause the summing peak's appearance as shown in ⁶⁰Co and ²²Na gamma-ray spectrum in Fig. 2b and Fig. 2c, respectively. It can be seen that in each spectrum, the addback mode is higher than the direct one. For ²²Na, the slight difference between the two modes occurs due to the strong annihilation peak at 511 keV observed in the ²²Na isotope. Therefore, the summing peak is considered high in the case of the addback mode, since the full and the annihilation peaks coincide.

BALQARAD Geant4 Model: Enhancement in y-ray Spectroscopy and Validation

127

22

TABLE	1. Experime	ntal and simulate	d full-peak	net areas for 60	Co, 137 Cs and 22	Na point source
	Source		¹³⁷ Cs ⁶⁰ Co		Co	²² Na
	Ene	ergy Peak	661 keV	1173 keV	1332 keV	1274 keV
	Direct	Experimental	710057	149040	133963	39020
	Direct	Simulation	747316	147298	133168	37360
	Percent	age error (%)	5%	1%	0.5%	4%
	Addhaalr	Experimental	933151	185027	167071	39345
	Addback	Simulation	984908	180790	164531	38651
	Percent	age error (%)	5%	2%	1%	1%

FIG. 2. Gamma-ray spectra in different modes of operation. The observed full peak is compared with the simulated peak; both peaks confirmed the addback gain for (a) ¹³⁷Cs, (b) ⁶⁰Co and (c) ²²Na; the slight difference between the two modes in ²²Na is observed due to the summing peak at 1785 keV as a result of 511 keV and 1274 keV addition.

Simulated Detection Mode for Different Radionuclides

A literature survey shows that, for safety applications, the radiation content of various radiological, environmental, food and water samples has been reviewed. Each application involves measuring a particular radioisotope for a specific sample composition with its decay scheme. All radionuclides of concern in various applications that are part of the pathways leading to internal and external exposure are involved in the summarized survey in Table 2.

The well-validated simulation code was used to run a simulation to determine the radionuclide addback/direct mode in various environmental applications. A separate code written in the ROOT environment [30] is consequently used to finalize the analysis and to evaluate the counts in these two modes. The perfect mode to be used in any sample depends on the decay scheme of the studied nuclide, the energies of gamma that being analyzed and other nuclides in the sample which may interfere with the analysis being performed. One million events at the energies of interest were found to be sufficient to achieve satisfactory statistics. It is well known that photopeak interference occurs in complicated spectra produced from some environmental materials. For example, a typical case is the 186 keV photopeak, generated from the ²³⁵U and ²²⁶Ra photons of 185.72 keV and 186.25 keV, respectively [31].

TABLE 2.	List c	of radio	nuclides	of interest	for	different	applications.

Application	Radionuclide	References
Water	²³⁸ U, ²³⁵ U, ²²⁶ Ra, ²³² Th, ⁴⁰ K, ¹³⁷ Cs, ²²⁸ Ra, ²²² Rn, ²¹⁰ Po, ²¹⁰ Pb, ²³⁰ Th, ⁹⁰ Sr, ²²⁴ Ra, ²²³ Ra	[13-16]
Air	³ H, ¹⁴ C, ⁵¹ Cr, ⁵⁴ Mn, ⁶⁰ Co, ⁶⁵ Zn, ⁸⁵ Kr, ⁹⁰ Sr, ⁹⁹ Tc, ¹⁰³ Ru, ¹⁰⁶ Ru, ¹²⁵ Sb, ¹²⁹ I, ¹³¹ I, ¹³⁷ Cs, ¹⁴⁴ Ce, ¹⁵⁴ Eu, ¹⁵⁵ Eu, ²³⁴ U, ²³⁵ U, ²³⁸ U, ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Am	[17]
Food	238 Pu, 239 Pu, 240 Pu, 241 Am, 90 Sr, 106 Ru, 129 I, 131 I, 235 U, 35 S, 60 Co, 89 Sr, 103 Ru, 134 Cs, 137 Cs, 144 Ce, 192 Ir, 3 H, 14 C, 99 Tc	[18-20]
Soil	⁶⁰ Co, ¹³⁷ Cs, ⁹⁰ Sr, ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²³⁵ U, ²³² Th, ²²⁶ Ra, ²¹⁰ Pb, ⁴⁰ K, ²²⁸ Ac, ²¹⁴ Bi, ²²² Rn, ¹³¹ I, ¹³⁴ Cs, ^{129m} Te, ⁹⁵ Nb	[21-23]
Spices	²²⁶ Ra, ²³² Th, ⁴⁰ K	[24]
Brazil nuts	²²² Ra, ²²⁴ Ra, ²²⁶ Ra	[25]
Coal	²³⁸ U, ²²⁶ Ra, ²¹⁰ Po, ²¹⁰ Pb, ²³² Th, ²²⁸ Ra, ⁴⁰ K	[26]
Oil and gas	²³⁸ U, ²²⁶ Ra, ²¹⁰ Po, ²¹⁰ Pb, ²²² Rn, ²³² Th, ²²⁸ Ra, ²²⁴ Ra	[26]
Phosphate rocks	²³⁸ U, ²³² Th, ²²⁶ Ra, ²²⁸ Ra, ⁴⁰ K	[26]
Fertilizer production	²³⁸ U, ²³² Th, ²²⁶ Ra	[26]
Building materials	²²⁶ Ra, ²³² Th, ⁴⁰ K	[27,28]
Rare metals	²³⁸ U, ²³² Th, ⁴⁰ K	[29]

However, the use of the Clover system allows for identifying such events in terms of direct and addback modes with high sensitivity. Table 3 summarizes the isotopes of interest in the environmental applications, the counts in both direct and addback modes for each isotope's fullenergy peaks, and finally, the preferred operation mode for each isotope due to the complexity of the decay scheme. For gamma emitters of lowenergy range (less than 130 keV) such as ¹²⁹I, which has a simple decay scheme and emitting gamma-ray of energy ≈ 39.5 keV, the direct mode and addback mode are the same and appear to be in harmony at low-energy region due to the dominance of photoelectric effect. The behavior in the addback mode is better than in the direct mode because of the superiority of the Compton effect for higher energies (above 130 keV), as in the case of ⁴⁰K with a simple decay scheme characterized by its dominant gamma line at 1460.820 keV with 10.66% relative intensity.

	F F	0	T . •.	D' /	4 1 11 1	D C 1
Nuc	clide	Gamma	Intensity	Direct	Addback	Preferred operation
	234-11	energy (kev)	(%)	net area	net area	
	214 D:	63.29	3./ 15.10	95260	00151 221795	Direct
	214D.	609.320	45.49	239382	221/85	Direct
	214D:	/68.360	4.894	20639	188/3	Direct
	214D.	934.056	3.10/	11394	10/52	Direct
	214D:	1120.294	14.92	4/450	4/290	Both
	214p:	1238.122	5.834	10889	16832	Both
²³⁸ U	²¹⁴ D:	13/7.669	3.988	11384	14364	Addback
	²¹⁴ D:	1407.988	2.394	5899	5968	Addback
	²¹⁴ D:	1509.210	2.130	5361	5698	Addback
	²¹⁴ D:	1/29.595	2.8/8	/616	12851	Addback
	²¹⁴ D	1764.491	15.30	35503	42286	Addback
	²¹⁴ D:	1847.429	2.025	4872	7215	Addback
	226p	2204.059	4.924	9354	11432	Addback
	²¹⁴ Ra	186.211	3.64	50366	38219	Direct
	214-4	241.9950	7.251	91381	81017	Direct
	²¹⁴ Pb	295.2228	18.42	197532	185453	Direct
	²¹⁴ Pb	351.9321	35.60	327074	314925	Direct
	²¹⁴ Bi	609.320	45.49	244968	239571	Direct
	²¹⁴ Bi	768.360	4.894	20603	20066	Both
	²¹⁴ Bi	934.056	3.107	11593	11574	Both
	²¹⁴ Bi	1120.294	14.92	48827	51226	Addback
²²⁶ P a	²¹⁴ Bi	1238.122	5.834	17240	18200	Addback
Ka	²¹⁴ Bi	1377 669	3 988	11675	15311	Addback
	²¹⁴ Bi	1/07 088	2 304	5800	6240	Addback
	²¹⁴ B ;	1500 210	2.394 2 1 3 0	5602	6130	Addback
	214 D	1720.505	2.130	7642	12042	Autoack
	B1	1/29.595	2.8/8	/642	13943	Addback
	²¹⁴ Bi	1764.491	15.30	35631	45263	Addback
	²¹⁴ Bi	1847.429	2.025	5016	7759	Addback
	²¹⁴ Bi	2204.059	4.924	9752	12616	Addback
	²²⁸ Ac	129.065	2.42	46973	30801	Direct
	²²⁸ Ac	209.253	3.89	60827	47027	Direct
	²¹² Pb	238.632	43.6	516350	411188	Direct
	²²⁸ Ac	270.245	3.46	48365	36452	Direct
	²²⁸ Ac	328.000	2.95	37135	29168	Direct
	²²⁸ Ac	338.320	11.27	113876	102628	Direct
²³² Th	²²⁸ Ac	463.004	4.40	29916	24927	Direct
111	²¹² Bi	727 330	6.67	30177	28729	Direct
	$^{228}\Delta c$	794 947	4 25	19723	17478	Direct
	²²⁸ A c	011 204	7.2 <i>5</i> 25.8	0/082	00604	Addback
	²²⁸	064 766	25.0	10210	19695	Doth
	228 A	904.700	4.99	10310	18083	
	228 AC	968.971	15.8	54/11	57703	Addback
	²²⁰ Ac	1588.20	3.22	8060	9305	Addback
	"K	1460.820	10.66	30356	43364	Addback
	¹³ Cs	661.657	85.10	466011	614233	Addback
	<u>Pb</u>	46.539	4.25	83107	83573	Both
	<u>223</u> -	240.986	4.10	50129	44752	Direct
	²²³ Ra	144.235	3.27	63108	60106	Direct
	²²³ Ra	154.208	5.70	106522	102944	Direct

TABLE 3. The simulated peak net area recorded by addback and direct modes for isotopes that may be used in different applications.

		Gamma	Intensity	Direct	Addback	Preferred operation
Nuc	clide	energy (keV)	(%)	net area	net area	mode
	²²³ Ra	269.463	13.9	159912	168859	Addback
	223 Ra	323 871	3 99	34906	38125	Addback
	223 Ra	338 282	2.84	23974	26526	Addback
	⁵¹ Cr	320 0824	9.910	104427	123046	Addback
	⁵⁴ Mn	834 848	99 9760	453507	614488	Addback
	⁶⁰ Co	1173 228	99.85	329146	404409	Addback
	⁶⁰ Co	1332 492	99 9826	297208	366926	Addback
	⁶⁵ Zn	1115 539	50.04	182279	253582	Addback
	⁸⁵ Kr	513 997	0 434	2889	3741	Addback
	¹⁰³ R11	497.085	91.0	640853	810077	Addback
	¹⁰³ P 11	610 333	5 76	33602	44224	Addback
	125 ct	176.214	5.70	110400	10(200	Autoack
	125 CL	1/0.314	0.84	110480	106298	
	¹²⁵ C1	427.874	29.6	237780	291185	Addback
	125 CI	463.365	10.49	/9268	101993	Addback
	125 CI	600.59/	1/.65	1042/3	135082	Addback
	125 ct	606./13	4.98	293/7	3/962	Addback
	129 -	635.950	11.22	63330	84218	Addback
	13]T	39.578	7.51	143884	145440	Both
	131	80.185	2.62	58006	48/23	Direct
	131r	284.305	6.12	69965	74362	Addback
	131-	364.489	81.5	757827	918408	Addback
	13.1 144 m	636.989	7.16	40545	53346	Addback
	<u>154</u>	133.515	11.09	216271	207295	Direct
	¹⁵⁴ Eu	123.0706	40.4	790576	687963	Direct
	¹⁵ 'Eu	247.9290	6.89	81733	68840	Direct
	¹⁵⁴ Eu	591.755	4.95	27690	27563	both
	¹⁵⁴ Eu	723.3014	20.06	95466	104538	Addback
	¹⁵⁴ Eu	756.8020	4.52	19849	19350	Direct
	¹⁵⁴ Eu	873.1834	12.08	50387	54728	Addback
	¹⁵⁴ Eu	996.29	10.48	43048	56802	Addback
	¹⁵⁴ Eu	1004.76	18.01	65759	81286	Addback
	¹⁵⁴ Eu	1274.429	34.8	109927	139796	Addback
	155Eu	86 5479	30.7	703934	711483	Addback
	¹⁵⁵ Eu	105 3083	21.1	465286	473785	Addback
	²³⁴ U	53.20	0.1230	25146	18045	Direct
	²⁴¹ Am	59.5409	35.9	1032390	734439	Direct
	¹³⁴ Cs	563.246	8.338	48301	45903	Direct
	¹³⁴ Cs	569.331	15.373	86988	82722	Direct
	¹³⁴ Cs	604.721	97.62	539785	586465	Addback
	¹³⁴ Cs	795 864	85.46	377127	424450	Addback
	$^{134}C_{c}$	801 953	8 688	36850	37773	Addback
	134_{C}	12(5,195	2.017	10272	10004	Addudack
	192 .	1303.183	3.01/	103/2	19894	Addback
	¹⁾² lr	295.9565	28.71	290490	241766	Direct
	¹⁹² Ir	308.4550	29.70	291476	251717	Direct
	¹⁹² Ir	316.5061	82.86	813063	769592	Direct
	¹⁹² Ir	468.0688	47.84	333895	354465	Addback
	¹⁹² Ir	588.5810	4.522	24581	23995	Direct
	¹⁹² Ir	604.411	8.216	52665	81939	Addback
	¹⁹² Ir	612.426	5.34	37139	67763	Addback
	²²⁸ Ac	129.065	2.42	46722	30574	Direct
	²²⁸ Ac	209.253	3.89	60353	46628	Direct

		Gamma	Intensity	Direct	Addback	Preferred operation
Nuc	clide	energy (keV)	(%)	net area	net area	mode
	²²⁸ Ac	270.245	3.46	48997	36966	Direct
	²²⁸ Ac	328.000	2.95	37440	29227	Direct
	²²⁸ Ac	338.320	11.2	113617	102526	Direct
	²²⁸ Ac	463.004	4.40	30008	24968	Direct
	²²⁸ Ac	794.947	4.25	19237	17154	Direct
	²²⁸ Ac	911.204	25.8	95052	100085	Addback
	²²⁸ Ac	964.766	4.99	18510	18724	Both
	²²⁸ Ac	968.971	15.8	54594	57456	Addback
	²¹⁴ Bi	609.320	45.49	256754	284582	Addback
	²¹⁴ Bi	768.360	4.894	21747	23831	Addback
	²¹⁴ Bi	934.056	3.107	11764	13323	Addback
	²¹⁴ Bi	1120.294	14.92	51117	59571	Addback
	²¹⁴ Bi	1238.122	5.834	18278	21672	Addback
	²¹⁴ Bi	1377.669	3.988	12175	17988	Addback
	²¹⁴ Bi	1407.988	2.394	6206	7390	Addback
	²¹⁴ Bi	1509.210	2.130	5895	7205	Addback
	²¹⁴ Bi	1729.595	2.878	8037	15795	Addback
	²¹⁴ Bi	1764.491	15.30	37576	53803	Addback
	²¹⁴ Bi	1847.429	2.025	5240	9233	Addback
	²¹⁴ Bi	2204.059	4.924	10140	14795	Addback
	^{129m} Te	459.60	7.7	57422	69809	Addback
	^{129m} Te	487.39	1.42	10532	14276	Addback
	⁹⁵ Nb	765.803	99.808	484958	651595	Addback
	²²⁸ Ra	13.52	1.60	3097	1663	Direct
	²²² Ra	324.31	2.77	28457	33224	Addback

However, for radionuclides with complex decay schemes such as ²²⁸Ac and ²¹⁴Bi (Fig. 3 depicts the simulated complex decay schemes of ²¹⁴Bi), which are the decay products of natural radioactive decay chains, it is observed from the simulation spectra that the addback mode is poor due to coincidence summing. The secular

equilibrium occurs in a radioactive decay chain when the daughter's half-life is much shorter than that of the parent radionuclide. In this situation, the parent's decay rate and the production rate of the daughter are approximately constant.

FIG. 3. Simulated ²¹⁴Bi gamma-ray spectra for both addback and direct modes, where the ²¹⁴Bi dominant gamma line is at 609.32 keV with 45.49 % relative intensity.

Addback Factor

The addition factor (*f*) has been performed after measuring the addback factor (*F*) over different gamma energies obtained from 60 Co, 137 Cs and 133 Ba point sources. The acquired experimental data was fitted to get an equation compared to the simulated one given in Table 4 and Fig. 4a. The ratio is approximately one,

because the Compton scattering is very low at lower energies. With the increase in gamma-ray radiation, the addback factor begins to rise, so Compton's scattering becomes more probable. The addback factor becomes almost constant at very high energy, although the likelihood of scattering is still dominant compared with photoelectric absorption in the second crystal.

TABLE 4. The simulated addition factors for several gamma energies compared with those obtained from the experimental results.

Energy (keV)	Addition factor f (Experimental)	Addition factor $f(Simulated)$
356	$0.10773 \!\pm\! 0.0029$	0.12060 ± 0.00318
661	$0.2544 \!\pm\! 0.00355$	$0.25576 {\pm} 0.00381$
1173	0.30734 ± 0.00306	0.30172 ± 0.00305
1332	$0.32484 \!\pm\! 0.00319$	0.31388 ± 0.00322

The fitted addition factor equation is expressed, according to Duchene (1999), by the relationship with E_{γ} in keV [3]:

$$f(E_{\gamma}) = \begin{cases} P_1 + P_2 \ln E_{\gamma}, E_{\gamma} > 130 \ keV \\ 0, E_{\gamma} \le 130 \ keV. \end{cases}$$
(1)

The fitting parameters of the experimental results acquired from BALQARAD Clover were $P_1 = -0.83052$ and $P_2 = 0.16172$. The experimental values are comparable with the simulated full geometry performance, with P_1 = -0.77315 and $P_2 = 0.15276$ fitting parameters (compare two datasets in Fig. 4a and Fig. 4b). The two datasets exhibit the same behavior as predicted and provide a strong agreement

between the established Clover model and the actual experiment with satisfactory evidence. After the validation of the Clover simulation code, it is possible now to adopt the code and run the simulation with isotopes of wide energy range such as; ¹³³Ba (356.01 keV with 62.05%), ¹³⁴Cs (604.72 keV with 97.62%, 569.33 keV with 15.4% and 795.86 keV with 85.5%), ¹³⁷Cs (661.66 keV with 85.1%), ⁸⁸Y (898.04 keV with 93.7% and 1836.06 with 99.2%) and ⁶⁰Co (1173 keV with 99.85% and 1332.49 keV with 99.98%). The new fitting parameters for simulated addback factor with different isotopes with wide energy range are shown in Fig. 4c.

FIG. 4. The linear fit for (a) experimental and (b) simulated addition factors for available radionuclides in the radiation lab. (c) The linear fit for the simulated addition factor for a set of isotopes with a wide range of energy.

Conclusions

To examine possible applications, we have used the modularity of composite HPGe radiation detectors. Comprehensive Monte Carlo simulations based on detailed modeling of the system geometry were performed and compared with the obtained data experimentally. After using the Geant4 model, the results have shown that it is a highly valuable tool for simulating the HPGe system response. The measured addback factor $F(E_{\gamma})$ is larger than or equal to measured addition factor one. The has underlined strong agreement between the two sets of data by using experimental and simulated data. For each application, a detailed survey was

References

- Saha Sarkar, M., Datta, P., Ray, I., Deya, C.C., Chattopadhyay, S., Goswami, A., Banerjee, P., Singh, R.P., Joshi, P.K., Paul, S.D., Bhattacharya, S., Bhowmik, R., Chatterjee, J.M., Jain, H.C., Sen, S. and Dasmahapatra, B., Nucl. Instr. and Meth. A, 491 (2002) 113.
- [2] Eberth, J. and Simpson, J., Prog. Part. Nucl. Phys., 60 (2008) 283.
- [3] Duchêne, G., Beck, F.A., Twin, P.J., De France, G., Curien, D., Han, L., Beausang, W.C., Bentley, A.M., Nolan, J.P. and Simpson, J., Nucl. Instr. and Meth. A, 432 (1999) 90.
- [4] Boynton, V.W., Feldman, C.W., Squyres, W.S. *et al.*, Science, 297 (2002) 81.
- [5] Horne, M.S., Ph.D. Thesis, The University of Texas at Austin, (2013), USA. http://hdl.handle.net/2152/21557.
- [6] Dababneh, S., Patronis, N., Assimakopoulos, A.P., Görres, J., Heil, M., Käppeler, F., Karamanis, D., O'Brien, S. and Reifarth, R., Nucl. Instr. and Meth. A, 517 (2004) 230.
- [7] Dababneh, S., Görres, J., Heil, M., Käppeler, F., Reifarth, R. and Wiescher, M., Nucl. Instr. and Meth. A, 737 (2014) 135.
- [8] Sarmiento, L.G., Andersson, L.L. and Rudolph, D., Nucl. Instr. and Meth. A, 667 (2012) 26.

performed on the appropriate radioactive isotope and the desired operating mode of the Clover detector was determined. Further research into the perception of regional patterns in radionuclides is inspired by the early promising results of using Clover HPGe detectors in many applications and fields.

Acknowledgments

BALQARAD project is supported by the Jordanian Scientific Research Support Fund (SRSF) under grant #Bas/2/4/2014. The authors would like to acknowledge and appreciate the support given by the late BALQARAD founder, Prof. S. Dababneh.

- [9] Chick, D.M., Master Thesis, Western Kentucky University, (2016), Kentucky. https://digitalcommons.wku.edu/theses/1744.
- [10] Belvito, B., Master Thesis, University of Milano, (2015), Italy. http://www.infn.it/ thesis/PDF/getfile.php?filename=10181-Belvito-magistrale.pdf.
- [11] Rizwan, U.,Garnsworthy, B.A., Andreoiu, C. *et al.*, Nucl. Instr. and Meth. A, 820 (2011) 126.
- [12] Geant4. https://geant4.web.cern.ch. Accessed on 20 April 2019.
- [13] World Health Organization (WHO), "Guidelines for Drinking-water Quality", Third Edition, (2008). https://www.who.int/ water_sanitation_health/publications/gdwq3r ev/en/.
- [14] Milvy, P. and Cothern, R.C., Environ. Geochem. Health, 11 (1989) 63.
- [15] Munter, R., Proc. Estonian Acad. Sci., 62 (2013) 122.
- [16] Ahmed, K.N. and Turkish J., Eng. Env. Sci., 28 (2004) 345.
- [17] Fritz, G.B. and Patton W.G., Radionuclide Concentrations in Air on the Hanford Site (No. PNNL-13909), A Ten-year Trend Report 1991 through 2000, Pacific Northwest National Lab (PNNL), United States, (2002).

- Article
- [18] World Health Organization (WHO), Nuclear accidents and radioactive contamination of foods (2011). https://www.who.int/foodsafety/fs_managem ent/radionuclides and food 300311.pdf.
- [19] Codex Alimentarius Commission (CAC), Fact Sheet on Codex Guideline Levels for Radionuclides in Foods Contaminated Following Nuclear а or Radiological Emergency, (2011). http://www.fao.org/ fileadmin/user upload/agns/pdf/codex guidel ine for radionuclitide contaminated food. pdf.
- [20] US Food and Drug Administration (FDA), Supporting document for guidance levels for radionuclides in domestic and imported foods, (2004). https://www.fda.gov/food/ chemicals/supporting-document-guidancelevels-radionuclides-domestic-and-importedfoods
- [21] Simmons, A.M., Poston, M.T., Fritz, G.B. and Bisping, E.L., Radionuclide Concentrations in Terrestrial Vegetation and Soil Samples on and around the Hanford Site, 1971 through 2008 (PNNL-20577). Pacific Northwest National Lab, United States, (2011).https://www.pnnl.gov/main/publicatio ns/external/technical_reports/PNNL-20577.pdf.
- [22] Maphoto, P.K., Ph. D. Thesis, University of the Western Cape, (2004). http://hdl.handle.net/11394/1462.

- [23] Pallavicini, N., Master Thesis, Swedish University of Agricultural Sciences, Department of Soil and Environment, (2011). https://stud.epsilon.slu.se/3703/2/pallavicini_ n_111215.pdf.
- [24] Amin, M.R. and Ahmed, F., Pelagia Research Library Advances in Applied Science Research, 4 (2013) 350.
- [25] Martins, M., Pacheco, M.A., Lucas, S.C.A., Andrello, C.A., Appoloni, R.C. and Xavier, M.J.J., Acta Amazonica, 42 (2012) 157.
- [26] World Nuclear Association, Naturally Occurring Radioactive Materials (NORM). http://www.world-nuclear.org/informationlibrary/safety-and-security/radiation-andhealth/naturally-occurring-radioactivematerials-norm.aspxx. Accessed on 01 April 2019.
- [27] Quintana, B., Pedrosa, C.M., Vázquez-Canelas, L., Santamaría, R., Sanjuán, A.M. and Puertas, F., Radiat. Isot., 134 (2018) 470.
- [28] Ahmed, H.A., Jafir, O.A. and Abdullah, M.H., Jordan J. Phys., 13 (1) (2020) 73.
- [29] Shives, K.B.R., British Columbia Geological Survey Paper, 3 (2015) 199.
- [30] Brun, R. and Rademakers, F., Nucl. Instr. and Meth. A, 389 (1997) 81.
- [31] Anagnostakis, J.M., Radiat. Phys. Chem., 116 (2015) 3.