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Abstract: In this study, the Schrödinger equation was solved with a superposition of the 
Hulthen potential and generalized inverse quadratic Yukawa potential model using the 
Nikiforov-Uvarov (NU) method. For completeness, we also calculated the wave function. 
To validate our results, the numerical bound state energy eigenvalues was computed for 
various principal ݊ and angular momentum ℓ quantum numbers. With the aid of the 
Hellmann-Feynman theorem, the expressions for the expectation values of the square of 
inverse of position, ିݎଶ, inverse of position, ିݎଵ, kinetic energy, ෠ܶ and square of 
momentum, ݌ො are calculated. By adjusting the potential parameters, special cases of the 
potential were considered, resulting in Generalized Inverse Quadratic Yukawa potential, 
Hulthen potential, Coulomb potential, Kratzer potential, Inversely Quadratic Yukawa 
potential and Coulomb plus inverse square potential, respectively. Their energy eigenvalue 
expressions and numerical computations agreed with the literature. 
Keywords: Schrödinger equation, Hulthen potential (HP), Generalized inverse quadratic 

Yukawa potential (GIQYP), Nikiforov-Uvarov method. 
PACS: 03.65.−w, 03.65.Ca, 03.65.Ge. 
 

 
1. Introduction 

It is well established that the exact solutions 
of the Schrödinger equation contain all the 
necessary information for a quantum system. 
This is attributed to the fact that the 
eigenfunctions associated with these problems 
contain very pertinent information regarding the 
quantum systems under consideration [1-4]. 

Recently, researchers have showed great 
interest in the analytical solutions of the 
Schrödinger equation with some physical 
potential models by using different methods [5]; 
the asymptotic iteration method (AIM) [6,7], 
exact-quantization rules [8-10], the Nikiforov–

Uvarov (NU) method [11–20], supersymmetric 
quantum mechanics (SUSYQM) [21], Wentzel-
Kramers-Brillion and Jeffery (WKBJ) 
approximation method [22-24], the Nikiforov–
Uvarov-functional analysis method (NUFA) 
[25,26],the series expansion method [27-30] and 
so on. 

Hulthen potential is one of the important 
molecular potentials used in different areas of 
physics, such as nuclear and particle, atomic and 
condensed matter physics and chemical physics, 
to describe the interaction between two atoms 
[31].  



Article   Okoi et al. 

 138

Several works have been carried out on this 
potential. For instance, the asymptotic iteration 
method has been applied to obtain the solution of 
the Schrödinger equation with Hulthen potential 
[32-34]. 

The Klein-Gordon equation has previously 
been solved with a position-dependent mass [35, 
36]. Authors in Ref. [37,38] solved the 
Schrödinger equation with Hulthen plus ringed-
shaped potential and [31] solved the Schrödinger 
equation for the interaction of Coulomb and 
Hulthen potentials within the framework of 
supersymmetric approach and Nikiforov-Uvarov 
method. 

The generalized inverse quadratic Yukawa 
potential (GIQYP) is a combination of the 
inverse quadratic Yukawa (IQY) and the 
Yukawa potentials. It is asymptotic to a finite 
value as ݎ →  ∞ and becomes infinite at ݎ =  0 
[39]. 

In the present work, we attempt to investigate 
the bound-state solutions of the non-relativistic 
radial Schrödinger equation with the interaction 
of Hulthen plus Generalized Inverse Quadratic 
Yukawa potential:  

(ݎ)ܸ = − ௏బ௘షమഀೝ

ଵି௘షమഀೝ − ଵܸܷଶ,         (1a) 

where ଵܸ is the coupling strength of the 
potential, ߙ is the screening parameter, ଴ܸ is the 
strength of the potential, ݎ(݂݉) is the radial 
distance to the particle and ܷ = 1 + ௘షഀೝ

௥
. 

Hence, Eq. (1a) can be rewritten as:  

(ݎ)ܸ = − ௏బ௘షమഀೝ

ଵି௘షమഀೝ − ܥ − ஻௘షഀೝ

௥
− ஺௘షమഀೝ

௥మ ,       (1b) 

where ܣ = ܥ = ଵܸ and ܤ = 2 ଵܸ. 

In Fig. 1a and Fig. 1b, we show the shape of 
the potential under study as it varies with r  for 
different values of the adjustable screening 
parameter and for potentials: HP, GIQYP and 
HPGIQYP, respectively. 

The work is organized as follows. We present 
a brief review of the Nikiforov-Uvarov method 
in Section 2, while in Section 3, this method is 
applied to obtain the bound-state solutions of the 
Hulthen plus Generalized Inverse Quadratic 
Yukawa potential (HPGIQYP). In Section 4, we 
deduce some special cases by adjusting some 
parameters of the potential and Section 5 
presents the results and discussion. We use the 
Hellman-Feynmann theorem to calculate the 
expectation values of some physical observables 
in Section 6 and finally, our concluding remarks 
are captured in Section 7.  

 

 

 

 

FIG. 1. (a) The shape of the Hulthen potential plus generalized inverse quadratic Yukawa potential for ଴ܸ = ܣ =
ܥ = 1.00ܸ݁ and ܤ = 2ܸ݁ by varying values of ߙ. (b) The shape of the Hulthen potential, generalized inverse 

quadratic Yukawa and Hulthen potential plus generalized inverse quadratic Yukawa potential for ଴ܸ = 5ܸ݁, ܣ =
ܥ = 1.00ܸ݁, ܤ = 2ܸ݁ and ߙ = 0.1݂݉ିଵ. 

 

a b 



Eigensolution and Expectation Values of the Hulthen and Generalized Inverse Quadratic Yukawa Potential 

 139

2. Review of the Nikiforov-Uvarov 
Method 

The Nikiforov-Uvarov (NU) method is based 
on solving hypergeometric-type second-order 
differential equations by means of special 
orthogonal functions [40]. The main equation 
which is closely associated with the method is 
given in the following form [40];  

߰ᇱᇱ(ݖ) + ఛ෤(௭)
ఙ(௭) ߰ᇱ(ݖ) + ఙ෥(௭)

ఙమ(௭) (ݖ)߰ = 0         (2) 

where (ݖ)ߪ and ߪ෤(ݖ) are polynomials at most 
second-degree, ߬̃(ݖ) is a first-degree polynomial 
and ߰(ݖ) is a function of the hypergeometric 
type. 

The exact solution of Eq. (2) can be obtained 
by using the following transformation: 

(ݖ)߰ =  (3)           .(ݖ)ݕ(ݖ)߶ 

This transformation reduces Eq. (2) into a 
hypergeometric-type equation of the form: 

(ݖ)ᇱᇱݕ(ݖ)ߪ + (ݖ)ᇱݕ(ݖ)߬ + (ݖ)ݕߣ = 0.         (4) 

The function ߶(ݏ) can be defined as the 
logarithm derivative: 
థᇲ(௭)
థ(௭) =  గ(௭)

ఙ(௭)            (5) 

where 

(ݖ)ߨ  =  ଵ
ଶ

(ݖ)߬]  (6)          [ (ݖ)̃߬ −

with (ݖ)ߨ being at most a first-degree 
polynomial. The second ߰(ݖ) being ݕ௡(ݖ) in Eq. 
(3) is the hypergeometric function with its 
polynomial solution given by Rodrigues relation: 

(ݖ)(௡)ݕ = ஻೙
ఘ(௭)

ௗ೙

ௗ௦೙  (7)           [(ݖ)ߩ(ݖ)௡ߪ]

Here, ܤ௡ is the normalization constant and 
 is the weight function which must satisfy (ݖ)ߩ
the conditions: 

൫(ݖ)ߩ(ݖ)ߪ൯ᇱ
=  (8)          ;(ݖ)߬(ݖ)ߪ

(ݖ)߬ = (ݖ)̃߬  +  (9)           .(ݖ)ߨ2

It should be noted that the derivative of ( )s  
with respect to ݏ should be negative. The 
eigenfunctions and eigenvalues can be obtained 
using the definition of the following function 

( )s  and parameter ߣ, respectively: 

 

(ݖ)ߨ =
ఙᇲ(௭)ିఛ෤(௭)

ଶ
± ටቀఙᇲ(௭)ିఛ෤(௭)

ଶ
ቁ

ଶ
(ݖ)෤ߪ − +   (ݖ)ߪ݇

(10) 

where 

 ݇ = ߣ −  (11)          .(ݖ)ᇱߨ

The value of k  can be obtained by setting the 
discriminant of the square root in Eq. (10) equal 
to zero. As such, the new eigenvalue equation 
can be given as: 

௡ߣ = −݊߬ᇱ(ݖ) − ௡(௡ିଵ)
ଶ

݊ ,(ݖ)ᇱᇱߪ = 0,1,2, … (12) 

3. Bound-state Solution with Hulthen 
and Generalized Inverse Quadratic 
Yukawa Potential 

The radial Schrödinger equation can be given 
as [41]: 
ௗమோ೙೗

ௗ௥మ + ଶఓ
ℏమ ቂܧ௡௟ − (ݎ)ܸ − ℏమℓ(ℓାଵ)

ଶఓ௥మ ቃ ܴ௡௟ = 0,  (13) 

where ߤ is the reduced mass, ܧ௡ℓ is the energy 
spectrum, ℏ is the reduced Planck’s constant and 
݊ and ݈ are the radial and orbital angular 
momentum quantum numbers, respectively (or 
vibration-rotation quantum number in quantum 
chemistry). Substituting Eq. (1b) into Eq. (13) 
gives: 
ௗమோ೙೗

ௗ௥మ + ଶఓ
ℏమ ቂܧ௡௟ + ௏బ௘షమഀೝ

ଵି௘షమഀೝ + ܥ + ஻௘షഀೝ

௥
+

஺௘షమഀೝ

௥మ − ℏమℓ(ℓାଵ)
ଶఓ௥మ ቃ ܴ௡௟ = 0.        (14) 

Employing the Greene and Aldrich 
approximation scheme [42], which is given by:  
ଵ

௥మ = ସఈమ௘షమഀೝ

(ଵି௘షమഀೝ)మ.           (15) 

Eq. (14) becomes; 
ௗమோ೙೗

ௗ௥మ + ଶఓ
ℏమ ቂܧ௡௟ + ௏బ௘షమഀೝ

ଵି௘షమഀೝ + ܥ + ஻௘షഀೝ

௥
+

஺௘షమഀೝ

௥మ − ଶℏమℓ(ℓାଵ)ఈమ௘షమഀೝ

ఓ(ଵି௘షమഀೝ)మ ቃ ܴ௡௟ = 0.        (16) 

ௗమோ೙ℓ(௥)
ௗ௥మ + ଶఓ

ℏమ(ଵି௘షమഀ ೝ)మ ቂ(ܧ௡௟ + 1)(ܥ −
݁ିଶఈ ௥)ଶ + ଴ܸ݁ିଶఈ௥(1 − ݁ିଶఈ௥) +
ଶఈ௥(1ି݁ߙܤ2 − ݁ିଶఈ௥ ) + ଶ݁ିସఈ௥ߙܣ4 −
 ଶℏమℓ(ℓାଵ)ఈమ௘షమഀೝ

ఓ
 ቃ ܴ௡ℓ(ݎ) = 0.       (17) 

Eq. (17) can be simplified and introducing the 
following dimensionless abbreviations: 
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⎩
⎪⎪
⎨

⎪⎪
௡ߝ−⎧ = ఓ(ா೙೗ା஼)

ଶℏమఈమ

ߚ = ఓ௏బ
ଶℏమఈమ

ߛ = ℓ(ℓ + 1)
ߜ = ఓ஻

ℏమఈ

ߟ = ଶఓ஺
ℏమ ⎭

⎪⎪
⎬

⎪⎪
⎫

,         (18) 

and using the transformation ݏ = ݁ିଶఈ ௥ , we 
obtain: 
ௗమோ೙ℓ(௥)

ௗ௥మ = ଶݏଶߙ4 ௗమோ೙ℓ(௦)
ௗ௦మ + ݏଶߙ4  ௗோ೙ ℓ(௦)

ௗ௦
.    (19) 

Substituting Eqs. (18) and (19) into Eq. (17) 
yields: 
ௗమோ೙ℓ(௦)

ௗ௦మ + ଵି௦
௦(ଵି௦)

ௗோ೙ℓ(௦)
ௗ௦

+ ଵ
௦మ(ଵିୱ)మ ௡ߝ)ଶݏ−] +

ߚ + ߜ − (ߟ + ௡ߝ2)ݏ + ߚ + ߜ − (ߛ −
(ݏ)௡]ܴ௡ℓߝ = 0 .         (20) 

By comparing Eqs. (20) and (2), we obtain 
the following parameters: 

⎩
⎨

⎧
(ݏ)̃߬ = 1 − ݏ

(ݏ)ߪ = 1)ݏ − (ݏ
(ݏ)෤ߪ = ௡ߝ)ଶݏ− + ߚ + ߜ − (ߟ

௡ߝ2)ݏ+                    + ߚ + ߜ − (ߛ − ⎭௡ߝ
⎬

⎫
.     (21) 

Substituting these polynomials into Eq. (21) 
gives: 

(ݏ)ߨ = − ௦
ଶ

± ඥ(ܽ − ଶݏ(݇ + (ܾ + ݏ(݇ + ܿ,  (22) 

where: 

ቐ
ܽ = ଵ

ସ
+ ௡ߝ + ߚ + ߜ − ߟ

ܾ = ௡ߝ2− − ߚ − ߜ + ߛ
ܿ = ௡ߝ

ቑ.        (23) 

To find the constant ,k  the discriminant of 
the expression under the square root of Eq. (22) 
must be equal to zero. As such, we have that: 

݇± = ߚ) + ߜ − (ߛ ± 2ටߝ௡ ቀଵ
ସ

+ ߛ −   ቁ.       (24)ߟ

Substituting Eq. (24) into Eq. (22) yields: 

(ݏ)ߨ = − ௦
ଶ

± ቈቆටቀଵ
ସ

+ ߛ − ቁߟ + ඥߝ௡ቇ ݏ −

ඥߝ௡቉.          (25)  

From our knowledge of NU method, we 
choose the expression ߨ(s), where the function 

( )s  has a negative derivative. This is given by: 

݇ି = ߚ) + ߜ − (ߛ − 2ටߝ௡ ቀଵ
ସ

+ ߛ −  ቁ.       (26)ߟ

From Eq. (9), the parameter ( )s  becomes: 

(ݏ)߬ = 1 − ݏ2 − 2 ቈቆටቀଵ
ସ

+ ߛ − ቁߟ + ඥߝ௡ቇ ݏ −

ඥߝ௡቉.          (27) 

Referring to Eq. (11), the constant  is 
obtained as: 

ߣ = − ଵ
ଶ

− ቆටቀଵ
ସ

+ ߛ − ቁߟ + ඥߝ௡ቇ +

ߚ) + ߜ − (ߛ − 2ටߝ௡ ቀଵ
ସ

+ ߛ −  ቁ.        (28)ߟ

Employing Eq. (12) and taking that: 

߬ᇱ(ݏ) = −2 − 2 ቆටቀଵ
ସ

+ ߛ − ቁߟ + ඥߝ௡ቇ < 0  

      (29) 

and 

( ) 2s    ,          (30) 

we have:  

௡ߝ = ଵ
ସ

൦
ఉାఋିఎିቆ௡ାభ

మାටభ
రାఊିఎቇ

మ

ቆ௡ାభ
మାටభ

రାఊିఎቇ
൪

ଶ

.       (31) 

Substituting Eq. (23) into Eq. (31) yields the 
energy eigenvalue equation of the Hulthen plus 
Generalized Inverse Quadratic Yukawa potential 
in the form: 

௡ ℓܧ = ܥ− − ℏమఈమ

ଶఓ
቎

ഋೇబ
మℏమഀమା ഋಳ

ℏమഀିమഋಲ
ℏమ

ቆ௡ାభ
మାටభ

రାℓ(ℓାଵ)ିమഋಲ
ℏమ ቇ

−

ቆ݊ + ଵ
ଶ

+ ටଵ
ସ

+ ℓ(ℓ + 1) − ଶఓ஺
ℏమ ቇ቏

ଶ

.       (32)  

The corresponding wave functions can be 
evaluated by substituting (ݏ)ߪ ݀݊ܽ (ݏ)ߨ from 
Eq. (25) and Eq. (21), respectively, into Eq. (5). 
Solving the first-order differential equation 
gives: 

(ݏ)ߔ = ඥఌ೙(1ݏ − (ݏ
భ
మାටభ

రାఊିఎ
.         (33) 

The weight function ( )s  from Eq. (8) can be 
obtained as: 
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(ݏ)ߩ = ଶඥఌ೙(1ݏ − (ݏ
ଶටభ

రାఊିఎ
 .       (34) 

From the Rodrigues relation of Eq. (7), we 
obtain:  

(ݏ)௡ݕ ≡ ௡ܰ,௟ ௡ܲ

ቆଶඥఌ೙,ଶටభ
రାఊିఎቇ

(1 −  (35)       ,(ݏ2

where  ,
nP    is the Jacobi polynomial. 

Substituting ݕ  ݀݊ܽ  (ݏ)ߔ௡(ݏ) from Eq. (33) 
and Eq. (35), respectively, into Eq. (3), we 
obtain the radial wave function as: 

ܴ௡(ݏ) =
௡ܰ,௟ݏඥఌ೙(1 −

(ݏ
భ
మାටభ

రାఊିఎ
௡ܲ

ቆଶඥఌ೙,ଶටభ
రାఊିఎቇ

(1 −  (36)      .(ݏ2

4. Deductions from Eq. (32) 
In this section, we take some adjustments of 

constants in Eq. (1b), noting that ܣ = ܥ = ଵܸ 
and ܤ = 2 ଵܸ, to have the following cases: 

a. Generalized Inverse Quadratic Yukawa 
Potential  

If ଴ܸ = 0, Eq. (1b) reduces to the Generalized 
Inverse Quadratic Yukawa potential: 

(ݎ)ܸ = − ଵܸ ቀ1 + ௘షഀೝ

௥
ቁ

ଶ
.         (37)  

and then Eq. (32) becomes:   
    

௡ ℓܧ = − ଵܸ − ଶℏమఈమ

ఓ
቎

మഋೇభ
ℏమ ቀభ

ഀିଵቁି൬௡ାభ
మ

(ଵାద)൰
మ

ଶ൬௡ାభ
మ

(ଵାద)൰
቏

ଶ

,  

      (38) 

where  

߷ = ට(2ℓ + 1)ଶ − ଼ఓ௏భ
ℏమ .          (39) 

Eq. (38) is in full agreement with the results 
in Eq. (24) of [39]. 

b. Hulthen Potential 

If ଵܸ = 0 and ଴ܸ = ܼ݁ଶߙ, Eq. (1b) reduces to 
the Hulthen potential: 

V(ݎ) = − ௓௘మఈ ௘షమഀೝ

ଵି௘షమഀೝ .          (40) 

and Eq. (32) becomes: 

௡ ℓܧ = − ℏమఈమ

ଶఓ
ቂ ఓ௓௘మ

ℏమఈ(௡ାℓାଵ) − (௡ାℓାଵ)
ଶ

ቃ
ଶ

.       (41) 

Eq. (41) is identical with the energy 
eigenvalues formula given in Eq. (32) of Ref. 
[26]. 

c. Coulomb Potential 

If ܣ = ܥ = ଵܸ = ߙ ,0 → 0 and ଴ܸ = 0, Eq. 
(1b) reduces to the Coulomb potential and the 
energy from Eq. (32) becomes: 

௡ ℓܧ = −  ఓ஻మ

ଶℏమቆ௡ାభ
మାටభ

రାℓ(ℓାଵ)ቇ
మ         (42) 

Eq. (42) is very consistent with the result 
obtained in Eq. (101) of Ref. [29].  

d. Kratzer Potential 

If ߙ → 0 and ଴ܸ = 0 and if we set ܣ = − ଵܸ, 
ܤ = 2 ଵܸ and ܥ = − ଵܸ, then Eq. (1b) reduces to  

(ݎ)ܸ = ܥ − ஻
௥

+ ஺
௥మ.         (43) 

Eq. (32) becomes: 

௡ ℓܧ = C − ఓ஻మ

ଶℏమቆ௡ାభ
మାටభ

రାℓ(ℓାଵ)ାమഋಲ
ℏమ ቇ

.       (44) 

Eq. (44) is very consistent with the result 
obtained in Eq. (125) of Ref. [29].  

e. Inversely Quadratic Yukawa Potential 

If ଴ܸ = ܣ ,0 = − ଵܸ, ܤ = 2 ଵܸ, ܥ = ଵܸ and 
ܥ = ܤ = 0, the potential Eq. (1b) reduces to the 
Inverse Quadratic Yukawa potential  

(ݎ)ܸ = − ஺௘షమഀೝ

௥మ .         (45) 

Eq. (32) becomes: 

௡ ℓܧ = − ℏమఈమ

ଶఓ
൦

మഋಲ
ℏమ ାቆ௡ାభ

మାටభ
రାℓ(ℓାଵ)ିమഋಲ

ℏమ ቇ
మ

ቆ௡ାభ
మାටభ

రାℓ(ℓାଵ)ିమഋಲ
ℏమ ቇ

൪

ଶ

.  (46) 

Eq. (46) is identical to the results in; Eq. (37) 
of Ref. [33].  

f. Coulomb Plus Inverse-Square Potential 

If we set ܥ = 0, ଴ܸ = 0 and ߙ → 0, Eq. (1b) 
reduces to the Coulomb plus Inverse-Square 
potentia 

(ݎ)ܸ = − ஻
௥

+ ஺
௥మ.         (47) 

Eq. (32) becomes: 

௡ ℓܧ = − ఓ஻మ

ଶℏమቆ௡ାభ
మାටభ

రାℓ(ℓାଵ)ାమഋಲ
ℏమ ቇ

.       (48) 
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5. Results and Discussion 
In the present consideration, the energy 

eigenvalues of the Hulthen potential plus 
Generalized Inverse Quadratic Yukawa potential 
were computed using Eq. (32). The explicit 
values of these energies for different principal 
and angular quantum numbers are given in Table 
2. 

For comparison and validation of our results, 
we have also computed the energy eigenvalues 
of the Generalized Inverse Quadratic Yukawa 
potential using the energy equation given in Eq. 
(38) as a special case. The results in Table 1 
show for energy eigenvalue of GIYQP that for a 
fixed value of the azimuthal quantum number l , 
the energy spectrum increases slowly with an 
increase in the principal quantum number n ; for 
small adjustable screening parameter   for 
weak potential coupling strength 1V in the range 
0.5 – 1.0 fmିଵ, which is in good agreement with 
the results in Table 1 of Ref. [39]. In Table 2 
(which shows the results of our work), the 
energy eigenvalues of HPGIYQP are shown. We 
have observed that, as the state (n, l) increases 
(i.e., from ground state to first excited state, 
second excited state … etc.), there is a slow 
increase in the energy eigenvalues. But when the 
coupling strengths of the potential increase in a 
particular potential range, there is a rapid 
decrease in the energy eigenvalues in any state. 
More so, it is seen that the energy eigenvalues 
are very sensitive to the potential range 
(screening parameter) as they decrease more 
rapidly as the screening parameter decreases in 
all states. 

However, Figs. 2a-2c give graphical 
expressions of Table 2, re-affirming the above 
observations. Fig. 2d shows the dependence of 
energy on the screening parameter for p-wave 
which is consistent with the above observations. 
The relationship between the energy spectrum 

and the screening parameter is an exponential 
increasing function. So, for screening parameter 
0.02 < ߙ < 1.0ܸ݁, there are exponential 
increases in the energy spectrum. Finally, Fig. 2e 
and Fig. 2f present the relationships of 
dependence of the energy spectrum on the 
potential strength 0V  and the coupling strength 

1V . Both curves establish a decaying exponential 
relationship. Figs. 2e and 2f show that the 
highest energy possible for all states is when 

0 0 V eV , after which as 0V  increases, the 
energy eigenvalue curves for different states fall 
towards zero.  

6. Hellmann-Feynman Theorem (HFT) 
This theorem is so invaluable for obtaining 

the expectation values of physical observables 
for any value of the principal and angular 
momentum quantum numbers ,n l . This can 
however be achieved if the Hamiltonian H of a 
given quantum system is known. So, the theory 
states that [43] if the Hamiltonian  H q  of a 

physical system, the energy eigenvalues  E q  

and eigenfunction  q  all depend on the 
parameter q , then:  
డா೙೗(௤)

డ௤
= 〈߰௡௟(ݍ) ቚడு෡(௤)

డ௤
ቚ ߰௡௟(ݍ)ቚ〉,       (49) 

provided that the  nl q associated normalized 
eigenfunction is continuous with respect to q . 
However, the effective Hamiltonian containing 
the potential which corresponds to the non-
relativistic spectrum given by Eq. (32) is: 

෡ܪ = − ℏమ

ଶఓ
ௗమ

ௗ௥మ + ℏమ

ଶఓ௥మ ݈(݈ + 1) − ௏బ௘షమഀೝ

ଵି௘షమഀೝ − ܣ −
஻௘షഀೝ

௥
− ஼௘షమഀೝ

௥మ          (50) 
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FIG. 2. Energy eigenvalues of the non-relativistic Hulthen potential plus generalized inverse quadratic Yukawa 
potential against (a) ℓ for various values of ݊. ଴ܸ = 0.6fmିଵ, ଵܸ = 0.5fmିଵ and ߙ = 0.1݂݉ିଵ, (b) against ݊ for 

various values of ℓ. ଴ܸ = 0.6 fmିଵ, ଵܸ = 0.5fmିଵ and ߙ = 0.1݂݉ିଵ, (c) against ℓ for various values of ݊. 
଴ܸ = 1fmିଵ, ଵܸ = 1fmିଵ and ߙ = 0.1݂݉ିଵ, (d) against ߙ for various values of “݊ and ℓ”. ଴ܸ = 0.6fmିଵ, ଵܸ =

0.5fmିଵ, (e) against ଴ܸ for various values of “݊ and ℓ”., ଵܸ = 0.5 fmିଵ and (f) against ଵܸ for various values of “݊ 
and ℓ”. ଴ܸ = 0.6fmିଵ. 

 

 

c  

b a 

d 

e f 
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TABLE 1. The bound-state energy levels (in units of fmିଵ) of the GIQYP for various values of ݊, ݈ and for ℏ = ߤ = 1, noting that ܣ = ܥ = ଵܸ ܽ݊݀ ܤ = 2 ଵܸ. 

݊ ݈ 
 ௡௟ܧ

ଵܸ = 0.5, ߙ
= 0.001 

PQR23 
 ௡௟ܧ

ଵܸ = 1, ߙ
= 0.001 

PQR23 
 ௡௟ܧ

ଵܸ = 0.5, ߙ
= 0.01 

PQR23 
 ௡௟ܧ

ଵܸ = 1, ߙ
= 0.01 

PQR23 

0 1 -0.6896035397 −0.6896035396138025 -2.9940045000 −2.994004500000000 -0.6774133456 −0.6774133455125515 -2.9404500000 −2.940450000000000 
1 1 -0.5718076188 −0.5718076188414074 -1.4970045000 −1.497004500000000 -0.5619400366 −0.5619400365376546 -1.4704500000 −1.470450000000000 
2 1 -0.5371277912 −0.5371277912043335 -1.2197845000 −1.219784500000000 -0.5281909973 −0.5281909972598103 -1.1984500000 −1.198450000000000 
3 1 -0.5224100938 −0.5224100938146438 -1.1227601250 −1.122760125000000 -0.5141450483 −0.5141450483150030 -1.1035125000 −1.103512500000000 
0 2 -0.5630508544 −0.5630508543825075 -1.3022018720 −1.302201872184403 -0.5533867400 −0.5533867400061118 -1.2792683390 −1.279268338661399 
1 2 -0.5337240097 −0.5337240097533026 -1.1553639390 −1.155363939225181 -0.5249118233 −0.5249118232916035 -1.1353673650 −1.135367365171019 
2 2 -0.5207493205 −0.5207493205425896 -1.0939382320 −1.093938232041968 -0.5125947737 −0.5125947736790960 -1.0754456090 −1.075445608618366 
3 2 -0.5138959793 −0.5138959792881225 -1.0625485320 −1.062548531648839 -0.5063882922 −0.5063882922242523 -1.0451201250 −1.045120125270810 
0 3 -0.5326018749 −0.5326018749170197 -1.1436858170 −1.143685816860237 -0.5238335921 −0.5238335921350012 -1.1239490570 −1.123949057454857 
1 3 -0.5201906957 −0.5201906956637058 -1.0883107370 −1.088310737089324 -0.5120761646 −0.5120761646075057 -1.0699832630 −1.069983262515873 
2 3 -0.5135787736 −0.5135787736130005 -1.0594189440 −1.059418943879603 -0.5061129918 −0.5061129917794308 -1.0421247450 −1.042124745183449 
3 3 -0.5096463319 −0.5096463318898519 -1.0424680190 −1.042468019323530 -0.5028802558 −0.5028802557635820 -1.0260919330 −1.026091932802665 
0 4 -0.5199025668 −0.5199025668480347 -1.0856649680 −1.085664968464422 -0.5118093031 −0.5118093030597658 -1.0674179890 −1.067417988764047 
1 4 -0.5134143289 −0.5134143288870058 -1.0579298620 −1.057929861731356 -0.5059709011 −0.5059709010589428 -1.0407023850 −1.040702385388879 
2 4 -0.5095438531 −0.5095438530724833 -1.0415487330 −1.041548732718895 -0.5028023247 −0.5028023247194076 -1.0252361230 −1.025236123010328 
3 4 -0.5070530264 −0.5070530264169021 -1.0310763970 −1.031076397206152 -0.5010876689 −0.5010876689076859 -1.0156716870 −1.015671686891542 
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TABLE 2. The bound-state energy levels (in units of fmିଵ) of the HPGIQYP for various values of ݊, ݈ and for ℏ = ߤ = 1. 

݊ ݈ 
 ௡௟ܧ

ଵܸ = 0.5, ଴ܸ = 0.6, 
ߙ = 0.1 

 ௡௟ܧ
ଵܸ = 1, ଴ܸ = 1, 

ߙ = 0.1 

 ௡௟ܧ
ଵܸ = 0.5, ଴ܸ = 0.6, 

ߙ = 0.01 

 ௡௟ܧ
ଵܸ = 1, ଴ܸ = 1, 

ߙ = 0.01 
0 1 -3.02794168 -23.4450000 -183.6065088 -1351.440450 
1 1 -1.25382506 -6.12000000 -70.24922680 -338.2204500 
2 1 -0.75642115 -2.93388889 -36.87401010 -150.5873389 
3 1 -0.57323417 -1.84500000 -22.70756380 -84.91601250 
0 2 -0.50160252 -2.93388889 -47.30232586 -150.58733890 
1 2 -0.50884962 -1.84500000 -27.50904441 -84.91601250 
2 2 -0.54151791 -1.36980000 -18.00072816 -54.51985800 
3 2 -0.59051577 -1.14222222 -12.71389828 -38.00867222 
0 3 -0.56948304 -1.54875057 -22.36746921 -66.28180714 
1 3 -0.50775385 -1.22868582 -15.21644814 -44.64029952 
2 3 -0.50313291 -1.07529324 -11.04000634 -32.15364428 
3 3 -0.53270349 -1.01122095 -8.391149730 -24.30197400 
0 4 -0.58486300 -1.14222222 -13.13851287 -38.00867222 
1 4 -0.64567506 -1.03683674 -9.744735670 -28.05326632 
2 4 -0.71825487 -1.00125000 -7.530023660 -21.59215312 
3 4 -0.80186936 -1.01043210 -6.005476110 -17.16277099 
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a. Expectation Value 2r   

Here, we let q l  in Eq. (49).  

డா೙೗(௟)
డ௟

= 〈߰௡௟(ݍ) ቚడு෡(௟)
డ௟

ቚ ߰௡௟(݈)ቚ〉       (51) 

Taking the partial derivative of Eq. (32) with 
respect to l, we have: 

డா೙೗(௟)
డ௟

= − ଶℏమఈమ

ଶఓ
(2݈ + 1) ቈ ఙ

௡ାభ
మାఒ

− ݊ + ଵ
ଶ

+

቉ߣ ൥− ఙ

ଶఒቀ௡ାభ
మାఒቁ

మ − ଵ
ଶఒ

൩         (52) 

where  
ߪ = ఓ௏బ

ଶℏమఈమ + ఓ஻
ℏమఈ

− ଶఓ஼
ℏమ

ߣ = ටଵ
ସ

+ ݈(݈ + 1) − ଶఓ஼
ℏమ

        (53) 

and 
〈߰௡௟(ݍ) ቚడு෡(௟)

డ௟
ቚ ߰௡௟(݈)ቚ〉 = ℏమ

ଶఓ
(2݈ +  (54) 〈ଶିݎ〉(1

Then, on equating Eq. (52) and Eq. (54), we 
find: 

〈ଶିݎ〉 = ఈమ

ఒ
ቈ ఙ

௡ାభ
మାఒ

− ݊ + ଵ
ଶ

+ ቉ߣ ൥ ఙ

ቀ௡ାభ
మାఒቁ

మ + 1൩.  

 (55) 

b. Expectation Value 1r   

Letting q B , in Eq. (49), and taking the 
partial derivative of Eq. (32) with respect to B , 

డா೙೗(஻)
డ஻

= − ଶℏమఈమ

ଶఓ

ഋ
ℏమഀ

௡ାభ
మାఒ

ቈ ఙ
௡ାభ

మାఒ
− ݊ + ଵ

ଶ
+   ቉ߣ

 (56) 
Similarly, 

〈߰௡௟(ܤ) ቚడு෡(஻)
డ஻

ቚ ߰௡௟(ܤ)ቚ〉 = −݁ିఈ௥〈ିݎଵ〉.     (57) 
Then, on equating Eq. (56) and Eq. (57), we 

obtain: 

〈ଵିݎ〉 = ଶℏమఈమ

ଶఓ

ഋ
ℏమഀ

௡ାభ
మାఒ

݁ఈ௥ ቈ ఙ
௡ାభ

మାఒ
− ݊ + ଵ

ଶ
+   .቉ߣ

      (58) 

c. Expectation Values 2p   and T   or 
the Viral Theorem 

Here, we take the partial derivative of Eq. 
(32) with respect to   to obtain: 

డா೙೗(ఓ)
డఓ

= − ℏమఈమ

ଶఓ

⎣
⎢
⎢
⎢
⎡ቀ೙శభ

మశഊቁ൬ ೇబ
మℏమഀమశ ಳ

ℏమഀ
షమ಴

ℏమ൰

೙శభ
మశഊ

ାఙ మ಴
మℏమഊ

ቀ௡ାభ
మାఒቁ

మ + ߪ ଶ஼
ଶℏమఒ

⎦
⎥
⎥
⎥
⎤

+  ℏమఈమ

ଶఓమ ቈ ఙ

௡ାభ
మାఒ

− ݊ + ଵ
ଶ

+ ቉ߣ

  

 (59) 
and  

〈߰௡௟(ߤ) ቚడு෡(ఓ)
డఓ

ቚ ߰௡௟(ߤ)ቚ〉 = − ଵ
ఓ

ቆℏమ

ଶఓ
ௗమ

ௗ௥మ −

ℏమ

ଶఓ௥మ ݈(݈ + 1)ቇ = − ଵ
ఓ

෡ܪൣ − ܸ൧ = − ଵ
ఓ

〈ܶ〉  (60) 

So, on equating Eq. (59) and Eq. (60), we 
obtain:  

〈ܶ〉 = ℏమఈమ

ଶ

⎣
⎢
⎢
⎢
⎡ቀ೙శభ

మశഊቁ൬ ೇబ
మℏమഀమశ ಳ

ℏమഀ
షమ಴

ℏమ൰

೙శభ
మశഊ

ାఙ మ಴
మℏమഊ

ቀ௡ାభ
మାఒቁ

మ + ߪ ଶ஼
ଶℏమఒ

⎦
⎥
⎥
⎥
⎤

−

  ℏమఈమ

ଶఓ
ቈ ఙ

௡ାభ
మାఒ

− ݊ + ଵ
ଶ

+ ቉ߣ .

  

      (61) 
But, 

 
− ଵ

ఓ
〈ܶ〉 = − ଵ

ଶఓమ  (62)         .〈ଶ݌〉
So,   

〈ଶ݌〉 = ଶߙℏଶߤ

⎣
⎢
⎢
⎢
⎡

ቀ೙శభ
మశഊቁ൬ ೇబ

మℏమഀమశ ಳ
ℏమഀ

షమ಴
ℏమ൰

೙శభ
మశഊ

ାఙ మ಴
మℏమഊ

ቀ௡ାభ
మାఒቁ

మ

ߪ+ ଶ஼
ଶℏమఒ ⎦

⎥
⎥
⎥
⎤

 

   − ℏଶߙଶ ቈ ఙ
௡ାభ

మାఒ
− ݊ + ଵ

ଶ
+ ቉ߣ .

  

      (63) 
7. Conclusion 

In this study, we have presented the 
approximate analytical bound-state solutions of 
the Schrödinger equation for an interaction of the 
Hulthen potential with the Generalized Inverse 
Quadratic Yukawa potential obtained within the 
Nikiforov-Uvarov framework. The 
corresponding energy eigenvalues and 
eigenfunctions were computed for different 
quantum states and the adjustable screening 
parameter was obtained. Expectation values of 
some physical observables have also been 
calculated using the Hellmann-Feynmann 
Theorem (HFT). Further, special cases of our 
potential have been discussed and for limiting 
cases, our results conform to those of available 
literature.  
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